
Secure Networking with NAT Traversal for Enhanced

Mobility

Lubomir Cvrk1, Vit Vrba
1

1 Brno University of Technology, Dept. of Telecommunications, Purkynova 118,

61200 Brno, Czech Republic
{cvrk, vrba}@westcom.cz

Abstract. When a peer in a public network opens a connection to another one

being behind a network address translator, it encounters the network address

translation problem. So called “UDP hole punching” approach allows to open a

public-to-private or private-to-private network connection. This article deals

with this approach to propose new security architecture for IPv4 communica-

tion introducing so called “implicit security” concept. Main contributions are

ability to interconnect to any host behind NAT using just a host’s domain name,

enhanced mobility, and encryption and authentication of all data transmitted

through this connection right from a packet sender to a local receiver. Secure

channel is established on-demand automatically and is independent on any ap-

plication. No additional modification of current NAT, IPv4 or DNS is required.

1 Introduction

Communication in IPv4 networks encounters the network address translation (NAT)

problem. When a peer needs to initiate communication with another one which is

behind a NAT box, it is basically impossible.

But there are several approaches, how to obviate this problem. One of them uses so

called TCP/UDP hole punching, introduced by Daniel Kegel in [3], fairly well de-

scribed in [4]. This approach uses NAT characteristic behavior when a connection

from a private to public network is established. A NAT box creates a “hole” – a rule

that allows packets from the host in the public network pass into a private network

destined to a host which has opened the connection. In case of the TCP protocol this

rule exists until TCP connection is closed. In case of the UDP protocol the situation is

a little bit different, because the UDP does not use the institute of a two sided connec-

tion. Packets sent by the UDP across a NAT box out to the public network force it to

create appropriate address translation rule. But there is no sequence for closing this

communication (it is not connected) and therefore there is no object or flag usable

for the control of the translation rule existence. Hence NAT implementations use

time-outs for incoming packets. The time-out is as short as 20 seconds for a reply, but

this is not standardized constant, just experimental results (see [4]).

Application can cryptographically secure its data transmissions with several ap-

proaches. The first one, and probably mostly used, is security built into an application.

This approach requires a good crypto library and developers with cryptographic skills.

A user of a software system is then in mercy of its developer, whether she builds her

system in such a way that it provides cryptographic protection of a transmitted data, or

not. He has to look for the information about encryption to know how confident data

could he enter.

Better approaches how to protect communication operate at lower layers than ap-

plication level security providers. The SSL virtual private networking (VPN, [7]) or

IPSec ([5]) are well known.

Both these VPN implementations encounter several disadvantages: VPN server

must exist in the public network or at least NAT box must be configured to route VPN

traffic to a VPN server in a private network.

After correct authentication to the VPN server all data transmitted over the Internet

between the user’s computer and the VPN server are encrypted, messages are reply-

protected and authenticated. But when a user starts to communicate with some other

node in the Internet, everything is as bad as without VPN protection. It is needed to

remark that even if in the VPN, the communication with another local network host

behind the VPN server (on the local network) is also insecure.

2 Implicit security model

Implicit security is inspired by the opportunistic encryption – the idea introduced by

John Gilmore in the FreeS/WAN project [9]. Implicit security, the concept we intro-

duce, establishes a secured channel whenever it is possible. When a destination host is

behind NAT, no VPN is needed and the channel is decrypted by that host so the end-

to-end communication security problem is solved. Nobody but the sender and the

receiver reads the messages.

3 Architecture components

Architecture of the system works with IPv4 and requires three main components: 1)

Connector server in the public network tightly cooperates with appropriate DNS serv-

er; 2) Connector client establishes connections using connector server (initiates the

UDP hole punching process); 3) Packet processor is installed on every participating

host.

3.1 Packet processor

The network packet processor is bumped in the protocol stack below the network

level. It captures outgoing packets, asks the connector client to create a secure channel

and passes packets into this channel.

The packet’s IP payload is packed in the UDP protocol with appropriate port and

destination setup. Incoming packet comes back to the specified UDP port, so packet

processor detects it and unpacks. The restored original packet is then passed up to the

user-space. This simple technique allows the channel to be very easily traversed

across NAT boxes or firewalls, because the data of all protocols are packed and

transmitted over one single UDP port.

When the packet processor detects outgoing packets, it automatically tries to establish

secure connection. For this service it asks the connector client.

3.2 Connector client

The connector client logs in a connector server when it starts (usually with the operat-

ing system, it runs as a service), and waits for the packet processor’s request to con-

nect to another host.

3.3 Connector server

The connector server must be connected in the public network, so connector clients

are able to connect from private networks.

The server handles the UDP hole punching process. For details of the UDP hole

punching, see [3], [4].

The server also handles client’s login process. This requires some cooperation with

appropriate DNS server.

The server may keep a database with public keys and may be configured in the

strict mode to accept only signed login requests.

4 Architecture overview

In the following figures these terms are used: “Detec” – we named this system “Detec”

[ditek], the abbreviation of “Decentralized end-to-end communicator”; “Detec peer”

or “Caller” is a host which requests communication with another host – “called host”,

which may be behind NAT.

Below is described the architecture from the caller’s point of view.

4.1 Login to connector server

When a client starts the connector client, it tries to log in the connector server. IP

address or domain name is known from the configuration of the client. This example

is configured in such a way that client (Detec peer) is behind NAT in a private net-

work.

The fig. 1 shows the messages sent between client and server:

Fig. 1. Login process

First, the client sends the server a message with a login request, and as a parameter

it passes the MAC address of its network interface and its local IP address (1).

The server checks the static host database (2) whether this client should be assigned

a static (3a) DNS name or dynamic (3b). When a client is to receive a static DNS

name, the login request message must be therefore signed and the server must know

client’s public key. In this case the server also authenticates itself to the client using

public key cryptography.

The server then saves appropriate DNS name to the DNS server’s database (4) and

assigns host’s DNS name to IP address 0.0.0.1. This IP address is not routable and is

from the reserved address space 0.0.0.0/8 meaning “this network”. Below is explained

why.

The logout process is very similar to login and the server deletes client’s A record

from the DNS server database.

The DNS server should have a special zone (zones) reserved for the purpose of this

system, i.e. third (fourth etc., depends on administrator) level domain and must be

primary. In real life this is the DNS server handling public-IP-to-name mapping of the

local network gateway’s public interface. The connector server and the DNS may be

installed on the same host (better for security).

4.2 Opening a connection

When the client is logged in the connector server it can open a connection. Every

connection starts with the DNS query, represented by the function “gethostby-

name”. The result of this function is IP address of the host.

Fig. 2. Finding host’s IP address

The fig. 2 shows the example how to get home_pc’s address. First, the gethost-

byname socket API function is called. This function generates DNS query to resolve

the domain name “home-pc.detec.domain.net”. The authoritative name server

answers “0.0.0.1”. The query was notified by the packet processor. When the response

is received, the packet processor detects that IP is 0.0.0.1. This tells to the packet

processor that some application from an upper layer needs to connect to a host being

behind NAT. The packet processor accepts the DNS UDP packet but does not pass it

to upper layers. Instead it takes a look in its “Detec IP reservation stack”, where DNS

name and appropriate assigned IP is stored. The stack answers 0.0.0.86. This means,

that the stack saved the pair (home-pc.detec.domain.net, 0.0.0.86). Note that the

stack stores global IP addresses too, where no modification is required. The packet

processor modifies then the resolved DNS data and replaces “0.0.0.1” with “0.0.0.86”

and passes the packet up. The global 0.0.0.1 IP address assigned to every Detec’s

host is on the local machine transformed to the first available Detec IP address. This

address space provides more than 16 millions of single IP addresses. It is a very low

probability that this space would ever exceed, because one host usually does not

communicate with so many others roughly in the same time. Every established con-

nection is automatically closed after the network inactivity time is out.

4.3 Data transmission and packet processing

Once the application receives the destination’s IP address (0.0.0.86) it tries to open a

communication channel (i.e. TCP). On the fig. 3 it is represented by the tcp_SYN (1).

This packet is captured by the packet processor, because its destination IP (0.0.0.86)

is in the IP reservations stack. Because the IP is from the network 0.0.0.0/8 the pro-

cessor knows that a destination (called host) is behind NAT. That is why a UDP holes

on both NAT boxes (caller’s and called host’s) must be opened.

4.3.1 Tunnel creation

Opening these holes is done this way: The packet processor asks the connector server

for the called host’s public IP address and a UDP port where a secured tunnel will be

established (2a). It opens a UDP connection to the server (2b). Connector server sends

a request to open a UDP connection (3a) to the called host and it opens it (3b). Server

sends the message 3a through a TCP connection that the connector client has opened

to the connector server at login process. The connector server is the called host’s one,

not the caller’s. Its IP is translated from detec.domain.net.

Once both clients opened the UDP connection to the server it saves the UDP source

port values (received from NAT boxes). Then it sends both sides the public IPs and

the UDP ports to use (4a, 4b). When they receive this data they start sending UDP

packets and the UDP hole is created on the both sides (5, 6). In the event of received

packet from the opposite host (7) they both send udp_hole_punching_done mes-

sages to each other (8,9). If any of them does not receive this message in a configured

time-out (in seconds), then the process state resets and begins again. If three attempts

fail, then the application packet is dropped. In future versions this may need some

interaction with a user to decide what to do.

The results of the UDP hole punching (NAT public address and the UDP port) are

associated with appropriate 0.0.0.0/8 address in the internal connection database.

4.3.2 Tunneling

The original packet is processed and encapsulated into the UDP secure tunnel (11).

On the called host’s side it is processed by the packet processor and sent to appropri-

ate application. The response is packed by the called host and sent to the caller. After

message number processing, source IP verification and message authentication the

packet is decrypted and passed to the upper layers, otherwise it is dropped.

Fig. 3. Data transmission

5 Packet processing

The packet processor encrypts and authenticates the outgoing packets and decrypts

and verifies incoming packets. Outgoing packets are immediately sent over the UDP

channel and incoming are received from the UDP channel.

This requires a protocol that supports encryption and authentication with reply pro-

tection. That is why we have designed the protocol SPUT (Secure protocol for UDP

tunneling).

5.1 Secure protocol for UDP tunneling

This protocol defines some overhead fields required for successful decryption and

reply protection.

Fig. 4. SPUT protocol definition

The field message number indicates the number of currently processed packet.

When it exceeds 32 bits, the key negotiation process is started to negotiate new ses-

sion key. The system keeps track of received messages and once it receives a message

it can not accept a message with the same message number. A 32 bit value is used

internally where each bit is a flag informing the packet processor whether the message

with current message number was already received or not. This value provides a win-

dow for 32 messages, because they may come out of order. When a message is re-

ceived bits in this flag are rotated left by appropriate number of bits and a flag is set to

1. Messages with the message number smaller than current message number decreased

by 32 are dropped as well as messages already received. The field command is used to

control the encryption / decryption process. Nowadays it uses only the value 1, which

closes the connection. In this case an empty packet is sent. The next header field indi-

cates the protocol number encapsulated in SPUT. The original IP payload is the field

of variable length used for TCP or UDP (or any other) data from the original packet. It

does not contain original IP header. The last field of the protocol is MAC. HMAC-

SHA-256 is used for authentication computation, exactly as described in [8].

The fig. 5 shows encrypted and authenticated fields of the SPUT protocol. SPUT is

designed to use encrypt-first-authenticate-then method of MAC computation.

Fig. 5. Encrypted and authenticated fields

The SPUT protocol’s overhead is 320 bits. Data are transported as the UDP payl-

oad whose overhead is 64 bits. That is why the system requires decrement of the max-

imum transmission unit by 384 bits = 48 bytes.

In case of multiple hosts behind NAT talking to one host (H) the tunnel and the

payload destination ports must be remapped in such a way that H stores the original

packet’s source ports as future destination ports and substitutes the IP payload’s port

(if payload is TCP or UDP) for another port assigned by H. This allows H to identify

more hosts hidden behind the public network interface of one NAT box.

5.2 Encryption process

Encryption process uses the AES-128 in CTR mode. The whole process requires

computation of a key stream using the message number (and a secret key of course)

as an input.

The key stream k is generated as follows:

128/..0);||||,(ljsijKEk j

j is a number of current 128 bits long block of data to encrypt (8 bits). i is a SPUT

message number (32 bits). s is a constant made of first (least significant) 88 bits of the

secret session key. l is a number of bits of the data to encrypt. These values are conca-

tenated to a 128 bits input block for AES encryption. kj is 128 bits key-stream seg-

ment.

6 Experiments and results

We have tested several parts of the architecture. The most important information we

had to find out was whether the packet processing overhead is acceptable. That is why

the overall performance has been tested and compared to the implementation of IPSec.

6.1 Packet processor overall performance

We have implemented this architecture in C++ for the Microsoft Windows platform.

This platform requires an NDIS kernel driver that hooks over the network interface

and captures all traffic and passes it to the user space.

There is one disadvantage in out current implementation. It transfers captured

packets from the kernel-mode to user-mode so we expected this to impact perfor-

mance especially on the high speed lines. The measurements have proven this (see fig.

6).

Bit rates on high speed lines

0

1000

2000

3000

4000

5000

6000

7000

100 Mb/s 50 Mb/s 19 Mb/s 16 Mb/s 4 Mb/s 3 Mb/s

Bandwidth

S
p

e
e
d

 [
k
B

/s
]

Detec channel IPsec channel Common channel

Fig. 6. Bit rates on high speed lines

The speed limit of this kind of implementation is 2293 kB/s – about 17.9Mb/s. This

is acceptable for most use-cases because the system is designed for end-users not

routers or gateways which must not use it.

In comparison with Microsoft’s IPsec implementation in Microsoft Windows XP

Professional our implementation is slower but not significantly. The speed limit of

IPsec is around 3000 kB/s. IPsec is probably implemented in kernel mode and its code

is optimized. Our code is just an initial version built with debug information and with

no source code or compiler optimizations.

6.2 Performance on low bandwidths

On low bandwidths (1.5Mb/s and lower) the packet processor is as fast as IPsec

and common (insecure) channel (see fig. 7). The fact of encryption and authentication

is not perceptible since the bandwidth is 19 Mb/s or slower (see fig. 6).

Bit rates on low speed lines

0

50

100

150

200

1,5 Mb/s 1 Mb/s 512 kb/s 128 kb/s 64 kb/s 32 kb/s

Bandwidth

S
p

e
e
d

 [
k
B

/s
]

Detec channel IPsec channel Common channel

Fig. 7. Bit rates on low speed lines

6.3 Performance impact ratio on low speeds

We have compared the performance impact ratio of IPsec and Detec to the common

(insecure) communication channel of the IP protocol - fig. 8.

Performance impact ratio

0,00%

1,00%

2,00%

3,00%

4,00%

5,00%

6,00%

19

Mb/s

16

Mb/s

4

Mb/s

3

Mb/s

1,5

Mb/s

1

Mb/s

512

kb/s

128

kb/s

64

kb/s

32

kb/s

Bandwidth

R
a
te

 [
%

]

Detec performance impact ratio IPsec performance impact ratio

Fig. 8. Performance impact ratio

The rate means how many percents is particular encrypted connection slower than

insecure one.

From the graph can be seen that on very low speeds (128kb/s and less) IPSec and

Detec produce almost the same performance. This is due to the overhead of ESP pro-

tocol which is greater than that of SPUT protocol.

6.4 Packet analysis

For the reason of encryption checking we have analyzed the data transmitted through

the network. The fig. 9 shows sequence of plain ICMP echo-request messages.

Fig. 9. Sequence of ICMP messages

The fig. 10 shows these messages transported by the Detec system. They are trans-

ported within the UDP protocol port 32589, both encrypted by AES-128-CTR and

authenticated using HMAC-SHA-256.

Fig. 10. Encrypted ICMP sequence

The same plaintext from the source messages is encrypted to two different crypto-

grams in encrypted messages.

7 Conclusion

This article has introduced the new secure communication architecture for IPv4 with

NAT traversal. Key benefits it brings are ability to interconnect to any host behind

NAT using just a host’s domain name, and encryption and authentication of all data

transmitted in this connection. Secure channel is established on-demand automatically

and is independent on any application. Applications do not need to care of encryption

of the data they transmit over the network.

The architecture is based on a packet processor which captures packets to encrypt,

authenticates and sends over the UDP to the destination. The DNS database is used

for the global naming service of clients behind NAT. It assigns these clients a special

IP address so the packet processor can recognize that the host it needs to connect to is

behind NAT and therefore the process requires the UDP hole punching to establish a

LAN-LAN channel.

Performance of the packet processor has been measured and the results are show-

ing it to be as fast as IPsec implementation in Microsoft Windows XP Professional.

The future releases are expected to be faster than IPsec because of kernel-level im-

plementation, lower protocol overhead and optimization of the source code.

Every user of this system is reachable by a single DNS name from any public or

private network in the world which strongly simplifies his mobility.

Acknowledgement: This article has been sponsored by the Ministry of Industry

and Trade of the Czech Republic, project no. FT-TA3/011.

8 References

[1] Fergusson, N., Schneier, B., Practical Cryptography, Wiley Publishing, Inc., Indianopo-

lis USA, 2003

[2] A. J. Menzes, P. C. van Oorschot, S. A. Vanstone, Handbook of applied cryptography,

CRC Press LLC, Florida, USA, 1997.

[3] D. Kegel, “NAT and Peer-to-peer networking”, Web page,

http://alumnus.caltech.edu/~dank/peer-nat.html. 1999.

[4] B. Ford, P. Srisuresh, and D. Kegel, “Peer-to-Peer Communication Across Network

Address Translators”, Web page, http://www.brynosaurus.com/pub/net/p2pnat/ 2005.

[5] S. Kent, R. Atkinson, “Security Architecture for the Internet Protocol”, RFC 2401, 1998.

[6] T. Dierks, C. Allen, “The TLS Protocol Version 1.0”, RFC 2246, 1999.

[7] OpenVPN project, http://openvpn.sourceforge.net

[8] H. Krawczyk, M. Bellare, and R. Canetti, "HMAC: Keyed-Hashing for Message Authen-

tication", RFC 2104, 1997.

[9] FreeS/WAN project, http://www.freeswan.org

[10] S. Kent, R. Atkinson, “IP Encapsulating Security Payload (ESP)”, RFC 2406, 1998.

[11] L. Cvrk, V. Zeman, D. Komosny, “H.323 Client-Independent Security Approach”. Lec-

ture Notes in Computer Science, 2005.

[12] S. Kent, and R. Atkinson, “IP Encapsulating Security Payload (ESP)”, RFC 2406, 1998.

