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Abstract. When a peer in a public network opens a connection to another one 

being behind a network address translator, it encounters the network address 

translation problem. So called “UDP hole punching” approach allows to open a 

public-to-private or private-to-private network connection. This article deals 

with this approach to propose new security architecture for IPv4 communica-

tion introducing so called “implicit security” concept. Main contributions are 

ability to interconnect to any host behind NAT using just a host’s domain name, 

enhanced mobility, and encryption and authentication of all data transmitted 

through this connection right from a packet sender to a local receiver. Secure 

channel is established on-demand automatically and is independent on any ap-

plication. No additional modification of current NAT, IPv4 or DNS is required. 

1 Introduction 

Communication in IPv4 networks encounters the network address translation (NAT) 

problem. When a peer needs to initiate communication with another one which is 

behind a NAT box, it is basically impossible.  

But there are several approaches, how to obviate this problem. One of them uses so 

called TCP/UDP hole punching, introduced by Daniel Kegel in [3], fairly well de-

scribed in [4]. This approach uses NAT characteristic behavior when a connection 

from a private to public network is established.  A NAT box creates a “hole” – a rule 

that allows packets from the host in the public network pass into a private network 

destined to a host which has opened the connection. In case of the TCP protocol this 

rule exists until TCP connection is closed. In case of the UDP protocol the situation is 

a little bit different, because the UDP does not use the institute of a two sided connec-

tion. Packets sent by the UDP across a NAT box out to the public network force it to 

create appropriate address translation rule. But there is no sequence for closing this 

communication (it is not connected) and therefore there is no object or flag   usable 

for the control of the translation rule existence.  Hence NAT implementations use 

time-outs for incoming packets. The time-out is as short as 20 seconds for a reply, but 

this is not standardized constant, just experimental results (see [4]). 



Application can cryptographically secure its data transmissions with several ap-

proaches. The first one, and probably mostly used, is security built into an application. 

This approach requires a good crypto library and developers with cryptographic skills. 

A user of a software system is then in mercy of its developer, whether she builds her 

system in such a way that it provides cryptographic protection of a transmitted data, or 

not. He has to look for the information about encryption to know how confident data 

could he enter. 

Better approaches how to protect communication operate at lower layers than ap-

plication level security providers. The SSL virtual private networking (VPN, [7]) or 

IPSec ([5]) are well known.  

Both these VPN implementations encounter several disadvantages: VPN server 

must exist in the public network or at least NAT box must be configured to route VPN 

traffic to a VPN server in a private network.  

After correct authentication to the VPN server all data transmitted over the Internet 

between the user’s computer and the VPN server are encrypted, messages are reply-

protected and authenticated. But when a user starts to communicate with some other 

node in the Internet, everything is as bad as without VPN protection. It is needed to 

remark that even if in the VPN, the communication with another local network host 

behind the VPN server (on the local network) is also insecure. 

2 Implicit security model 

Implicit security is inspired by the opportunistic encryption – the idea introduced by 

John Gilmore in the FreeS/WAN project [9]. Implicit security, the concept we intro-

duce, establishes a secured channel whenever it is possible. When a destination host is 

behind NAT, no VPN is needed and the channel is decrypted by that host so the end-

to-end communication security problem is solved. Nobody but the sender and the 

receiver reads the messages.  

3 Architecture components 

Architecture of the system works with IPv4 and requires three main components: 1) 

Connector server in the public network tightly cooperates with appropriate DNS serv-

er; 2) Connector client establishes connections using connector server (initiates the 

UDP hole punching process); 3) Packet processor is installed on every participating 

host. 

3.1 Packet processor 

The network packet processor is bumped in the protocol stack below the network 

level. It captures outgoing packets, asks the connector client to create a secure channel 

and passes packets into this channel. 



The packet’s IP payload is packed in the UDP protocol with appropriate port and 

destination setup.  Incoming packet comes back to the specified UDP port, so packet 

processor detects it and unpacks. The restored original packet is then passed up to the 

user-space.  This simple technique allows the channel to be very easily traversed 

across NAT boxes or firewalls, because the data of all protocols are packed and 

transmitted over one single UDP port. 

When the packet processor detects outgoing packets, it automatically tries to establish 

secure connection. For this service it asks the connector client. 

3.2 Connector client 

The connector client logs in a connector server when it starts (usually with the operat-

ing system, it runs as a service), and waits for the packet processor’s request to con-

nect to another host. 

3.3 Connector server 

The connector server must be connected in the public network, so connector clients 

are able to connect from private networks.  

The server handles the UDP hole punching process. For details of the UDP hole 

punching, see [3], [4].  

The server also handles client’s login process. This requires some cooperation with 

appropriate DNS server. 

The server may keep a database with public keys and may be configured in the 

strict mode to accept only signed login requests. 

4 Architecture overview 

In the following figures these terms are used: “Detec” – we named this system “Detec” 

[ditek], the abbreviation of “Decentralized end-to-end communicator”; “Detec peer” 

or “Caller” is a host which requests communication with another host – “called host”, 

which may be behind NAT.  

Below is described the architecture from the caller’s point of view. 

4.1 Login to connector server 

When a client starts the connector client, it tries to log in the connector server. IP 

address or domain name is known from the configuration of the client. This example 

is configured in such a way that client (Detec peer) is behind NAT in a private net-

work. 

The fig. 1 shows the messages sent between client and server: 

 



 

Fig. 1. Login process 

First, the client sends the server a message with a login request, and as a parameter 

it passes the MAC address of its network interface and its local IP address (1). 

The server checks the static host database (2) whether this client should be assigned 

a static (3a) DNS name or dynamic (3b). When a client is to receive a static DNS 

name, the login request message must be therefore signed and the server must know 

client’s public key. In this case the server also authenticates itself to the client using 

public key cryptography. 

 

The server then saves appropriate DNS name to the DNS server’s database (4) and 

assigns host’s DNS name to IP address 0.0.0.1. This IP address is not routable and is 

from the reserved address space 0.0.0.0/8 meaning “this network”. Below is explained 

why. 

The logout process is very similar to login and the server deletes client’s A record 

from the DNS server database. 

The DNS server should have a special zone (zones) reserved for the purpose of this 

system, i.e. third (fourth etc., depends on administrator) level domain and must be 

primary. In real life this is the DNS server handling public-IP-to-name mapping of the 

local network gateway’s public interface.  The connector server and the DNS may be 

installed on the same host (better for security). 

4.2 Opening a connection 

When the client is logged in the connector server it can open a connection. Every 

connection starts with the DNS query, represented by the function “gethostby-

name”. The result of this function is IP address of the host.  

  

 



 

Fig. 2.  Finding host’s IP address 

The fig. 2 shows the example how to get home_pc’s address. First, the gethost-

byname socket API function is called. This function generates DNS query to resolve 

the domain name “home-pc.detec.domain.net”. The authoritative name server 

answers “0.0.0.1”. The query was notified by the packet processor. When the response 

is received, the packet processor detects that IP is 0.0.0.1. This tells to the packet 

processor that some application from an upper layer needs to connect to a host being 

behind NAT. The packet processor accepts the DNS UDP packet but does not pass it 

to upper layers. Instead it takes a look in its “Detec IP reservation stack”, where DNS 

name and appropriate assigned IP is stored. The stack answers 0.0.0.86. This means, 

that the stack saved the pair (home-pc.detec.domain.net, 0.0.0.86). Note that the 

stack stores global IP addresses too, where no modification is required. The packet 

processor modifies then the resolved DNS data and replaces “0.0.0.1” with “0.0.0.86” 

and passes the packet up.  The global 0.0.0.1 IP address assigned to every Detec’s 

host is on the local machine transformed to the first available Detec IP address. This 

address space provides more than 16 millions of single IP addresses. It is a very low 

probability that this space would ever exceed, because one host usually does not 

communicate with so many others roughly in the same time. Every established con-

nection is automatically closed after the network inactivity time is out. 

4.3 Data transmission and packet processing 

Once the application receives the destination’s IP address (0.0.0.86) it tries to open a 

communication channel (i.e. TCP). On the fig. 3 it is represented by the tcp_SYN (1). 

This packet is captured by the packet processor, because its destination IP (0.0.0.86) 

is in the IP reservations stack. Because the IP is from the network 0.0.0.0/8 the pro-

cessor knows that a destination (called host) is behind NAT. That is why a UDP holes 

on both NAT boxes (caller’s and called host’s) must be opened. 

4.3.1 Tunnel creation 

Opening these holes is done this way: The packet processor asks the connector server 

for the called host’s public IP address and a UDP port where a secured tunnel will be 

established (2a). It opens a UDP connection to the server (2b). Connector server sends 

a request to open a UDP connection (3a) to the called host and it opens it (3b). Server 

sends the message 3a through a TCP connection that the connector client has opened 



to the connector server at login process. The connector server is the called host’s one, 

not the caller’s. Its IP is translated from detec.domain.net. 

Once both clients opened the UDP connection to the server it saves the UDP source 

port values (received from NAT boxes). Then it sends both sides the public IPs and 

the UDP ports to use (4a, 4b). When they receive this data they start sending UDP 

packets and the UDP hole is created on the both sides (5, 6). In the event of received 

packet from the opposite host (7) they both send udp_hole_punching_done mes-

sages to each other (8,9). If any of them does not receive this message in a configured 

time-out (in seconds), then the process state resets and begins again. If three attempts 

fail, then the application packet is dropped. In future versions this may need some 

interaction with a user to decide what to do. 

The results of the UDP hole punching (NAT public address and the UDP port) are 

associated with appropriate 0.0.0.0/8 address in the internal connection database.  

4.3.2 Tunneling   

The original packet is processed and encapsulated into the UDP secure tunnel (11). 

On the called host’s side it is processed by the packet processor and sent to appropri-

ate application. The response is packed by the called host and sent to the caller. After 

message number processing, source IP verification and message authentication the 

packet is decrypted and passed to the upper layers, otherwise it is dropped. 

 

 

Fig. 3. Data transmission 

5 Packet processing 

The packet processor encrypts and authenticates the outgoing packets and decrypts 

and verifies incoming packets. Outgoing packets are immediately sent over the UDP 

channel and incoming are received from the UDP channel. 



This requires a protocol that supports encryption and authentication with reply pro-

tection. That is why we have designed the protocol SPUT (Secure protocol for UDP 

tunneling).  

5.1 Secure protocol for UDP tunneling  

This protocol defines some overhead fields required for successful decryption and 

reply protection. 

 

Fig. 4.  SPUT protocol definition 

The field message number indicates the number of currently processed packet. 

When it exceeds 32 bits, the key negotiation process is started to negotiate new ses-

sion key. The system keeps track of received messages and once it receives a message 

it can not accept a message with the same message number. A 32 bit value is used 

internally where each bit is a flag informing the packet processor whether the message 

with current message number was already received or not. This value provides a win-

dow for 32 messages, because they may come out of order. When a message is re-

ceived bits in this flag are rotated left by appropriate number of bits and a flag is set to 

1. Messages with the message number smaller than current message number decreased 

by 32 are dropped as well as messages already received. The field command is used to 

control the encryption / decryption process. Nowadays it uses only the value 1, which 

closes the connection. In this case an empty packet is sent. The next header field indi-

cates the protocol number encapsulated in SPUT. The original IP payload is the field 

of variable length used for TCP or UDP (or any other) data from the original packet. It 

does not contain original IP header. The last field of the protocol is MAC. HMAC-

SHA-256 is used for authentication computation, exactly as described in [8]. 

The fig. 5 shows encrypted and authenticated fields of the SPUT protocol. SPUT is 

designed to use encrypt-first-authenticate-then method of MAC computation.  

 

 

 

 

 

 



 

Fig. 5.  Encrypted and authenticated fields 

The SPUT protocol’s overhead is 320 bits. Data are transported as the UDP payl-

oad whose overhead is 64 bits. That is why the system requires decrement of the max-

imum transmission unit by 384 bits = 48 bytes. 

In case of multiple hosts behind NAT talking to one host (H) the tunnel and the 

payload destination ports must be remapped in such a way that  H stores the original 

packet’s source ports as future destination ports and substitutes the IP payload’s port 

(if payload is TCP or UDP) for another port assigned by H.  This allows H to identify 

more hosts hidden behind the public network interface of one NAT box. 

5.2 Encryption process 

Encryption process uses the AES-128 in CTR mode. The whole process requires 

computation of a key stream using the message number (and a secret key of course) 

as an input.  

The key stream k is generated as follows: 

128/..0);||||,( ljsijKEk j  

j is a number of current 128 bits long block of  data to encrypt (8 bits). i is a SPUT 

message number (32 bits). s is a constant made of first (least significant) 88 bits of the 

secret session key. l is a number of bits of the data to encrypt. These values are conca-

tenated to a 128 bits input block for AES encryption. kj is 128 bits key-stream seg-

ment. 

6 Experiments and results 

We have tested several parts of the architecture. The most important information we 

had to find out was whether the packet processing overhead is acceptable. That is why 

the overall performance has been tested and compared to the implementation of IPSec.  

6.1 Packet processor overall performance 

We have implemented this architecture in C++ for the Microsoft Windows platform. 

This platform requires an NDIS kernel driver that hooks over the network interface 

and captures all traffic and passes it to the user space.  

There is one disadvantage in out current implementation. It transfers captured 

packets from the kernel-mode to user-mode so we expected this to impact perfor-

mance especially on the high speed lines. The measurements have proven this (see fig. 

6). 
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Fig. 6. Bit rates on high speed lines 

The speed limit of this kind of implementation is 2293 kB/s – about 17.9Mb/s. This 

is acceptable for most use-cases because the system is designed for end-users not 

routers or gateways which must not use it.  

In comparison with Microsoft’s IPsec implementation in Microsoft Windows XP 

Professional our implementation is slower but not significantly. The speed limit of 

IPsec is around 3000 kB/s. IPsec is probably implemented in kernel mode and its code 

is optimized. Our code is just an initial version built with debug information and with 

no source code or compiler optimizations.  

6.2 Performance on low bandwidths 

On low bandwidths (1.5Mb/s and lower) the packet processor is as fast as IPsec 

and common (insecure) channel (see fig. 7). The fact of encryption and authentication 

is not perceptible since the bandwidth is 19 Mb/s or slower (see fig. 6).  
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Fig. 7. Bit rates on low speed lines 

 



6.3 Performance impact ratio on low speeds 

We have compared the performance impact ratio of IPsec and Detec to the common 

(insecure) communication channel of the IP protocol - fig. 8.  
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Fig. 8. Performance impact ratio 

The rate means how many percents is particular encrypted connection slower than 

insecure one. 

From the graph can be seen that on very low speeds (128kb/s and less) IPSec and 

Detec produce almost the same performance. This is due to the overhead of ESP pro-

tocol which is greater than that of SPUT protocol. 

6.4 Packet analysis 

For the reason of encryption checking we have analyzed the data transmitted through 

the network. The fig. 9 shows sequence of plain ICMP echo-request messages. 

 

 
 

Fig. 9. Sequence of ICMP messages  

 

The fig. 10 shows these messages transported by the Detec system. They are trans-

ported within the UDP protocol port 32589, both encrypted by AES-128-CTR and 

authenticated using HMAC-SHA-256.  

 



 
 

Fig. 10. Encrypted ICMP sequence 

The same plaintext from the source messages is encrypted to two different crypto-

grams in encrypted messages. 

7 Conclusion 

This article has introduced the new secure communication architecture for IPv4 with 

NAT traversal. Key benefits it brings are ability to interconnect to any host behind 

NAT using just a host’s domain name, and encryption and authentication of all data 

transmitted in this connection. Secure channel is established on-demand automatically 

and is independent on any application. Applications do not need to care of encryption 

of the data they transmit over the network. 

The architecture is based on a packet processor which captures packets to encrypt, 

authenticates and sends over the UDP to the destination. The DNS database is used 

for the global naming service of clients behind NAT. It assigns these clients a special 

IP address so the packet processor can recognize that the host it needs to connect to is 

behind NAT and therefore the process requires the UDP hole punching to establish a 

LAN-LAN channel.  

Performance of the packet processor has been measured and the results are show-

ing it to be as fast as IPsec implementation in Microsoft Windows XP Professional. 

The future releases are expected to be faster than IPsec because of kernel-level im-

plementation, lower protocol overhead and optimization of the source code. 

Every user of this system is reachable by a single DNS name from any public or 

private network in the world which strongly simplifies his mobility. 
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