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Abstract. This paper describes the analysis of algorithms for the hidden layer 

construction of network and for learning of the Radial Basis Function neural 

Network (RBFN). We compared results obtained by using of learning 

algorithms LMS (Least Mean Square) and Gradient Algorithms (GA) and 

results are obtained by using of algorithms APC-III and K-means for hidden 

layer contruction of neural network. The principles and algorithms given below 

have been used in an application for object classification that was developed at 

Brno University of Technology. This solution is suitable for the research of 

personal wireless communications and similar systems. 
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1 Introduction 

The Radial Basis Function Network (RBFN) belongs to the most recent neural 

networks. It is a type of single-direction multilayer network and forward multi-layer 

network with counter-propagation of signal. This network has two layers with 

different types of neurons in each layer. Its advantage is mainly the speed of learning. 

The structure of this two-layer network is similar to that of the MLP (the Multi Layer 

Perceptron Neural Network) type of network but the function of output neurons must 

be linear and the transfer functions of hidden neurons are the so-called Radial Basis 

Functions – hence the name of the network. The characteristic feature of these 

functions is that they either decrease monotonically or increase in the direction from 

their centre point. Except for the input layer which only serves the purpose of handing 

over values an RBFN has a hidden layer (RBF) and an output layer is formed by 

perceptrons. This neural network can be used for wide scale of problems because it is 

able to approach arbitrary function and its training is quicker than for MLP neural 

network. Quicker learning is given by this, that RBFN has only two layers with 

weight and every layer may be determined sequential. 
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2 Creation of Hidden Layer RBFN 

Problems at creation of RBFN consist on determination of the number of neurons in 

hidden layer, on determination of the middles of these neurones and on determination 

of the neurones width. Powerful method for determination of the number and quality 

of neurons of hidden layer is the algorithm APC-III. This single-pass associating 

algorithm unlike other uses constant radial.   

2.1 Algorithm APC-III 

C: the number of neurons   

cj: the middle of  j-th  neuron 

nj: the number of samples in j-th neuron 

dij: the distance between  xi and j-th neuron 

 
{ 

 C=1; c1  x1; n1 = 1; 

 for(i = 2; i =< P; i++)  // for every pattern from training set 
{ 

  for(i = 1; i =< C; i++) // for every neuron 

{ 

 calculate dij; 

 if(dij =< R0)  // insert xi into j-th neuron 

 { 

  cj = (cjnj + xi)/(nj + 1); 

  nj = nj + 1; 

  break; 

}; 

}; 

if(xi is not in any neuron)  // create new neuron 

{ 

 C = C + 1; 

 cc  xi; 

 nc = 1; 

};  

}; 

2.2 K-Means Algorithm 

Initialize RBF neuron centres C in random. 

Calculate m() for all samples from the training set. 

Calculate new centres C as the average of all samples that pertained to centre k by 

the pertinence function. 

Terminate if m() does not change, otherwise continue with point 2. 



Specially for classification, the RBF network is simplified by refraining from 

searching for clusters, which have to be searched when approximating. The centres 

(prototypes) of neurons are set so that RBF neurons are represented by model 

clusters for the best. 

2.3 Description of Implementation 

Each neuron in the radial basis layer will give on the output the value that depends 

on how close the input vector is to each of the weight vectors of the given neurons. 

Thus the RBF neurons whose weight vectors are a bit different from input vector p 

have an output of about zero. On the contrary, the RBF neuron whose weight vector 

is close to the input vector will have a value of about 1. Individual neuron layers 

have the form of one-dimensional array. The weight matrix is in the form of two-

dimensional array, where the index gives the number of neurons being connected. It 

is necessary to enter the number of RBF neurons n for one category. The principal 

computation methods are: 

calculatePrototype() – by using the algorithm chosen (the K-means algorithm is used 

in the program) it will calculate the weight values of prototype C. On the output of 

RBF neurons the first 1…n neurons will calculate the output for the first category, 

n+1…2n for the second category, etc.  

calculate_sigma() – after calculating the weight values of prototypes, the size of the 

sphere of influence will be calculated for each RBF neuron. 

calculate_h() – it will calculate the outputs of RBF neurons. The radial basis function 

reaches maximum of 1 when there is 0 on the input. The RBF neuron thus operates 

as an indicator that produces 1 always when the input vector is identical to its weight 

vector. 

calculateOutputRBF() – on the output each RBF neuron contains the (in principle) 

percentage agreement with the input model. For the output neuron the value of the 

neuron which most agrees with the network input (maximum value) is chosen from n 

RBF neurons in the category given. 

Algorithm APC-III is very powerful at creation of hidden layer of neural network. 

That is why it is enough to use this algorithm on input training set only once. That is 

great advantage against  K-means algorithm.  In addition APC-III is headed to 

creation of  reasonable  of the number of neurons and to determination of the radial of 

neurons on basis of  training set distribution. 

3 Determination of the Width of the Area (of Neuron) 

For hidden layer it is necessary to determine the width of the single areas. The 

transient neurons function uses this width for calculation. In created testing program 

are used two variants of the areas width determination.  

             a) all areas have the same width R0 



             b) every neuron has its own width 

3.1 Algorithm of  Calculation  of the Own Width of the Area (of Neuron) 

Algorithm searches to every area the nearest one such, to this area belongs to the 

other  pattern and at the same time it was the nearest to calculated area. By the help of 

distance  of middles of these two areas is determined the width of the area like 

multiple of those distance. Like the multiplier is used  the distance coefficient, which 

is adjusted in the programme and which specifies on how many  per cent of those 

distance will be set-up the width of this area. 

3.2 Pseudo-code of the Algorithm 

Input:   the distance coefficient of the neuron hidden layer 

Output: the widths of neurons 

rk:  the distance coefficient 

C:  the number of neurons 

cj:  the middle of  j-th  neuron 

vj:  the pattern allocated to j-th neuron 

Dij:  the distance between i-th and j-th neurons 

dst:  the minimal distance between i-th and j-th neurons 

j:  the width of j-th neuron 

   
{ 

 for(i = 1; i =< C; i++) // for every neuron 

{ 

for(j = 1; j =< C; j++) // pro every neuron 

{  

if(i == j) 

{ // the distance of neuron to itself is zero 

  Dij = -1; 

continue; 

}; 

if(vi == vj 

 { // the distance of neuron with the same patterns is 

omitted 
  Dij = -1; 

continue; 

}; 

jiij
ccD  ; 

Dji = Dij; 

}; 

}; 



for(i = 1; i =< C; i++) // for every neuron 

{ 

  //  location of minimal distance will be performed 

  //  it is necessary at calculation to ignore items, which have value –1 

   
ij

cj
Ddst

..1
min


 ; 

  // we calculate the width of neuron 

  









100

rk
dst

i
 ; 

}; 

}; 

The distances between middles of areas are placed into the matrix of distances.  This 

matrix must have on diagonal zero distances, that have be good for better filtering out 

on the minimization substituted by the value -1. Likewise the distances among the 

neurons with the same associated pattern are eliminated and in lieu of distance is into 

the matrix inserted the value -1. The distance coefficient is inserted in percents (in 

front of using is divided by 100). 

Connection of hidden layer to output layer of neurons is the last step on network 

creation.  These layers are connected by the system every with everyone from the 

other layer. The programme then randomly sets scales and thresholds of outgoing 

layer of the neural network. Thereby it is creation of the Radial Basis Function 

Network (RBFN) finished. The next phase is learning of neuron network. 

4 Learning of RBFN 

The learning process consist on precept of given network to answer correctly to 

engaged training set. As the hidden layer was in this network represented so-called 

areas and the middles of the areas are fast given to it, the learning process 

oversimplifies only to setting of scales and thresholds of the output layer.  Gradient 

method and Last Mean Square (LMS) method were tested for learning of neuron 

network. 

The gradient method (GA) uses relations derived for outgoing layer for algorithm 

Back-propagation (BP). On difference from the  method BP this method optimizes  

only  scales and thresholds  of outgoing layer. 

Method Least Mean Square (LMS) tries to find optimal scaled vector for general 

middle quadratic error of the network. This scaled vector is given by normal division:  

  yHHHw TT 1
  

where w is scale vector, H is suggestion matrix  
ijij

xhH    and y is vector of 

outgoing values. This method in contrast to of others ones uses like transient function 

of outgoing neurons layer in lieu of sigmoid the linear function. 



5 Programme Solution, Parameter Setting 

At learning programme requires setting of following values: 

 

a)  The   values common for all types of learning 

 - The number of iteration on one etalon: designates how many times will 

be submitted  pattern set on learning of the network on the input. The optimal  value 

for given to application was 5000.  

  -  The diagnosis accuracy: designates, to what degree of accuracy the 

network will learn and subsequently will also diagnostic presented patterns. At setting 

of high value network will diagnostic high accurate, it is so errors in recognition will 

be almost zero, but the disadvantage will be inability of the network to generalize, 

which makes no-diagnosis of the damaged patterns. On the contrary at setting of low 

value the error count will grow at realising. The recommended value is 80%. 

     - The minimal error: past its over-fulfilment, i.e. if  the error of learned 

network will be less than minimal error, reaches to stopping of calculation before 

reaching of given of the number of iterations. This election is recommended to use 

only while using of a large number of iterations. 

       - The method of determination of the number of neurons: here it is 

possible to choose the method of creation of hidden layer. The recommended setting 

is algorithm APC-III. 

       -  The coefficient  : this coefficient is the main creation parameter for 

RBFN network. The coefficient is exploited to calculation of the radius R0, by the 

help of it subsequently algorithm APC-III. 

       -  Option of the radius: this option causes, so after creation of hidden 

layer oneself  its own width calculates for every neuron in this layer. 

        - The coefficient of the distance of the middles: designates in percents 

how many from the distances of neurons will be the width of neuron.  

 

b) The values of parameter for gradient method 

       -  The learning speed: set the step size degree of learning. The 

recommended value is 0.5. 

     - The adaptive step of learning: it is possible to set adaptive (variable) step 

of learning 

      -  The maximum step: designates the initial step of learning  of the neural 

network. The recommended value is to the extend of 1 until 1.5.  

      -   The exponent of the curve of the learning step: designates by the help 

of what curve will be the actual step of learning extracted. Whereby higher number,  

the speed of learning will be thereby  moved towards finding of learning process, 

where it will decline very quickly. 

 

The number of outgoing neurons forms dynamically, according to the number of 

learned patterns. The outgoing vector is after rounding binary and indicates the class 

of classified subject. For example at the number of classes 5 can the outgoing vector 

shapes  0,0,0,0,1 , which indicates first-class inside of order. 



The values of all scales and thresholds on the outgoing layer are at the beginning 

randomly initialized to values from the interval 1.0;1.0 .  

The current total mean square error and information on activities, that the programme 

just performs, displays along the learning.  

6 Conclusion 

The LMS learning method quickly navigates to aim. In contrast to the gradient 

method it needs only one iteration for all patterns together. LMS has also better 

characteristics on downsizing of a number of neurons in the hidden layer. The 

gradient method is not very suitable for learning of this network (in light of learning 

time). Learning of LMS is thanks to using algorithm APC-III reduced to learning of 

outgoing layer. The best results arranged the neuron network RBFN with the 

algorithm APC-III and with the  learning method LMS (Least Mean Square).  

Radial Basis Function networks can be designed very quickly. The time necessary for 

network learning was very little. The network was able to classify correctly 100% 

models and at the same time to recognize correctly even slightly damaged models. As 

the number of radial basis neurons is comparable the input space size and problem 

complexity RBF networks can be larger than MLP networks. Recognition with the aid 

of neural network is suitable where high-speed classification with randomly rotated 

objects is required and where we need to tolerate some differences between learned 

etalons and classified objects.  
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