
Analysis of Algorithms for Radial Basis

Function Neural Network

Jiri Stastny
1
, Vladislav Skorpil

2

1 Department of Automation and Computer Science,
2 Department of Telekommunications,

Brno University of Technology,

Purkynova 118, 612 00 Brno, Czech Republic,
stastny@fme.vutbr.cz, skorpil@feec.vutbr.cz

Abstract. This paper describes the analysis of algorithms for the hidden layer

construction of network and for learning of the Radial Basis Function neural

Network (RBFN). We compared results obtained by using of learning

algorithms LMS (Least Mean Square) and Gradient Algorithms (GA) and

results are obtained by using of algorithms APC-III and K-means for hidden

layer contruction of neural network. The principles and algorithms given below

have been used in an application for object classification that was developed at

Brno University of Technology. This solution is suitable for the research of

personal wireless communications and similar systems.

Keywords: Radial basis function, Learning algorithm, Neuron, Hidden layer.

1 Introduction

The Radial Basis Function Network (RBFN) belongs to the most recent neural

networks. It is a type of single-direction multilayer network and forward multi-layer

network with counter-propagation of signal. This network has two layers with

different types of neurons in each layer. Its advantage is mainly the speed of learning.

The structure of this two-layer network is similar to that of the MLP (the Multi Layer

Perceptron Neural Network) type of network but the function of output neurons must

be linear and the transfer functions of hidden neurons are the so-called Radial Basis

Functions – hence the name of the network. The characteristic feature of these

functions is that they either decrease monotonically or increase in the direction from

their centre point. Except for the input layer which only serves the purpose of handing

over values an RBFN has a hidden layer (RBF) and an output layer is formed by

perceptrons. This neural network can be used for wide scale of problems because it is

able to approach arbitrary function and its training is quicker than for MLP neural

network. Quicker learning is given by this, that RBFN has only two layers with

weight and every layer may be determined sequential.

mailto:stastny@uai.fme.vutbr.cz
mailto:skorpil@feec.vutbr.cz

2 Creation of Hidden Layer RBFN

Problems at creation of RBFN consist on determination of the number of neurons in

hidden layer, on determination of the middles of these neurones and on determination

of the neurones width. Powerful method for determination of the number and quality

of neurons of hidden layer is the algorithm APC-III. This single-pass associating

algorithm unlike other uses constant radial.

2.1 Algorithm APC-III

C: the number of neurons

cj: the middle of j-th neuron

nj: the number of samples in j-th neuron

dij: the distance between xi and j-th neuron

{

 C=1; c1  x1; n1 = 1;

 for(i = 2; i =< P; i++) // for every pattern from training set
{

 for(i = 1; i =< C; i++) // for every neuron

{

 calculate dij;

 if(dij =< R0) // insert xi into j-th neuron

 {

 cj = (cjnj + xi)/(nj + 1);

 nj = nj + 1;

 break;

};

};

if(xi is not in any neuron) // create new neuron

{

 C = C + 1;

 cc  xi;

 nc = 1;

};

};

2.2 K-Means Algorithm

Initialize RBF neuron centres C in random.

Calculate m() for all samples from the training set.

Calculate new centres C as the average of all samples that pertained to centre k by

the pertinence function.

Terminate if m() does not change, otherwise continue with point 2.

Specially for classification, the RBF network is simplified by refraining from

searching for clusters, which have to be searched when approximating. The centres

(prototypes) of neurons are set so that RBF neurons are represented by model

clusters for the best.

2.3 Description of Implementation

Each neuron in the radial basis layer will give on the output the value that depends

on how close the input vector is to each of the weight vectors of the given neurons.

Thus the RBF neurons whose weight vectors are a bit different from input vector p

have an output of about zero. On the contrary, the RBF neuron whose weight vector

is close to the input vector will have a value of about 1. Individual neuron layers

have the form of one-dimensional array. The weight matrix is in the form of two-

dimensional array, where the index gives the number of neurons being connected. It

is necessary to enter the number of RBF neurons n for one category. The principal

computation methods are:

calculatePrototype() – by using the algorithm chosen (the K-means algorithm is used

in the program) it will calculate the weight values of prototype C. On the output of

RBF neurons the first 1…n neurons will calculate the output for the first category,

n+1…2n for the second category, etc.

calculate_sigma() – after calculating the weight values of prototypes, the size of the

sphere of influence will be calculated for each RBF neuron.

calculate_h() – it will calculate the outputs of RBF neurons. The radial basis function

reaches maximum of 1 when there is 0 on the input. The RBF neuron thus operates

as an indicator that produces 1 always when the input vector is identical to its weight

vector.

calculateOutputRBF() – on the output each RBF neuron contains the (in principle)

percentage agreement with the input model. For the output neuron the value of the

neuron which most agrees with the network input (maximum value) is chosen from n

RBF neurons in the category given.

Algorithm APC-III is very powerful at creation of hidden layer of neural network.

That is why it is enough to use this algorithm on input training set only once. That is

great advantage against K-means algorithm. In addition APC-III is headed to

creation of reasonable of the number of neurons and to determination of the radial of

neurons on basis of training set distribution.

3 Determination of the Width of the Area (of Neuron)

For hidden layer it is necessary to determine the width of the single areas. The

transient neurons function uses this width for calculation. In created testing program

are used two variants of the areas width determination.

 a) all areas have the same width R0

 b) every neuron has its own width

3.1 Algorithm of Calculation of the Own Width of the Area (of Neuron)

Algorithm searches to every area the nearest one such, to this area belongs to the

other pattern and at the same time it was the nearest to calculated area. By the help of

distance of middles of these two areas is determined the width of the area like

multiple of those distance. Like the multiplier is used the distance coefficient, which

is adjusted in the programme and which specifies on how many per cent of those

distance will be set-up the width of this area.

3.2 Pseudo-code of the Algorithm

Input: the distance coefficient of the neuron hidden layer

Output: the widths of neurons

rk: the distance coefficient

C: the number of neurons

cj: the middle of j-th neuron

vj: the pattern allocated to j-th neuron

Dij: the distance between i-th and j-th neurons

dst: the minimal distance between i-th and j-th neurons

j: the width of j-th neuron

{

 for(i = 1; i =< C; i++) // for every neuron

{

for(j = 1; j =< C; j++) // pro every neuron

{

if(i == j)

{ // the distance of neuron to itself is zero

 Dij = -1;

continue;

};

if(vi == vj

 { // the distance of neuron with the same patterns is

omitted
 Dij = -1;

continue;

};

jiij
ccD  ;

Dji = Dij;

};

};

for(i = 1; i =< C; i++) // for every neuron

{

 // location of minimal distance will be performed

 // it is necessary at calculation to ignore items, which have value –1

  
ij

cj
Ddst

..1
min


 ;

 // we calculate the width of neuron

 









100

rk
dst

i
 ;

};

};

The distances between middles of areas are placed into the matrix of distances. This

matrix must have on diagonal zero distances, that have be good for better filtering out

on the minimization substituted by the value -1. Likewise the distances among the

neurons with the same associated pattern are eliminated and in lieu of distance is into

the matrix inserted the value -1. The distance coefficient is inserted in percents (in

front of using is divided by 100).

Connection of hidden layer to output layer of neurons is the last step on network

creation. These layers are connected by the system every with everyone from the

other layer. The programme then randomly sets scales and thresholds of outgoing

layer of the neural network. Thereby it is creation of the Radial Basis Function

Network (RBFN) finished. The next phase is learning of neuron network.

4 Learning of RBFN

The learning process consist on precept of given network to answer correctly to

engaged training set. As the hidden layer was in this network represented so-called

areas and the middles of the areas are fast given to it, the learning process

oversimplifies only to setting of scales and thresholds of the output layer. Gradient

method and Last Mean Square (LMS) method were tested for learning of neuron

network.

The gradient method (GA) uses relations derived for outgoing layer for algorithm

Back-propagation (BP). On difference from the method BP this method optimizes

only scales and thresholds of outgoing layer.

Method Least Mean Square (LMS) tries to find optimal scaled vector for general

middle quadratic error of the network. This scaled vector is given by normal division:

  yHHHw TT 1


where w is scale vector, H is suggestion matrix  
ijij

xhH  and y is vector of

outgoing values. This method in contrast to of others ones uses like transient function

of outgoing neurons layer in lieu of sigmoid the linear function.

5 Programme Solution, Parameter Setting

At learning programme requires setting of following values:

a) The values common for all types of learning

 - The number of iteration on one etalon: designates how many times will

be submitted pattern set on learning of the network on the input. The optimal value

for given to application was 5000.

 - The diagnosis accuracy: designates, to what degree of accuracy the

network will learn and subsequently will also diagnostic presented patterns. At setting

of high value network will diagnostic high accurate, it is so errors in recognition will

be almost zero, but the disadvantage will be inability of the network to generalize,

which makes no-diagnosis of the damaged patterns. On the contrary at setting of low

value the error count will grow at realising. The recommended value is 80%.

 - The minimal error: past its over-fulfilment, i.e. if the error of learned

network will be less than minimal error, reaches to stopping of calculation before

reaching of given of the number of iterations. This election is recommended to use

only while using of a large number of iterations.

 - The method of determination of the number of neurons: here it is

possible to choose the method of creation of hidden layer. The recommended setting

is algorithm APC-III.

 - The coefficient : this coefficient is the main creation parameter for

RBFN network. The coefficient is exploited to calculation of the radius R0, by the

help of it subsequently algorithm APC-III.

 - Option of the radius: this option causes, so after creation of hidden

layer oneself its own width calculates for every neuron in this layer.

 - The coefficient of the distance of the middles: designates in percents

how many from the distances of neurons will be the width of neuron.

b) The values of parameter for gradient method

 - The learning speed: set the step size degree of learning. The

recommended value is 0.5.

 - The adaptive step of learning: it is possible to set adaptive (variable) step

of learning

 - The maximum step: designates the initial step of learning of the neural

network. The recommended value is to the extend of 1 until 1.5.

 - The exponent of the curve of the learning step: designates by the help

of what curve will be the actual step of learning extracted. Whereby higher number,

the speed of learning will be thereby moved towards finding of learning process,

where it will decline very quickly.

The number of outgoing neurons forms dynamically, according to the number of

learned patterns. The outgoing vector is after rounding binary and indicates the class

of classified subject. For example at the number of classes 5 can the outgoing vector

shapes  0,0,0,0,1 , which indicates first-class inside of order.

The values of all scales and thresholds on the outgoing layer are at the beginning

randomly initialized to values from the interval 1.0;1.0 .

The current total mean square error and information on activities, that the programme

just performs, displays along the learning.

6 Conclusion

The LMS learning method quickly navigates to aim. In contrast to the gradient

method it needs only one iteration for all patterns together. LMS has also better

characteristics on downsizing of a number of neurons in the hidden layer. The

gradient method is not very suitable for learning of this network (in light of learning

time). Learning of LMS is thanks to using algorithm APC-III reduced to learning of

outgoing layer. The best results arranged the neuron network RBFN with the

algorithm APC-III and with the learning method LMS (Least Mean Square).

Radial Basis Function networks can be designed very quickly. The time necessary for

network learning was very little. The network was able to classify correctly 100%

models and at the same time to recognize correctly even slightly damaged models. As

the number of radial basis neurons is comparable the input space size and problem

complexity RBF networks can be larger than MLP networks. Recognition with the aid

of neural network is suitable where high-speed classification with randomly rotated

objects is required and where we need to tolerate some differences between learned

etalons and classified objects.

Acknowledgement. This research was supported by the grants:

MSM 0021630529 Intelligent systems in automation (Research design of Brno

University of Technology)

MSM 6215648904/03 Research design of Mendel University of Agriculture and

Forestry in Brno

No 102/07/1503 Advanced Optimizing the design of Communication Systems via

Neural Networks. The Grant Agency of the Czech Republic (GACR)

Grant 1884/2007/F1/a “Innovation of computer networks participation in high-speed

communication” (grant of the Czech Ministry of Education, Youth and Sports)

Grant 1889/2007/F1/a „ Repair of digital exchanges education in the course Access

and Transport Networks“ (grant of the Czech Ministry of Education, Youth and

Sports)

No MSM 0021630513 Research design of Brno University of Technology ”

Electronic communication systems and new generation of technology (ELKOM)”

2E06034 Lifetime education and professional preparation in the field of telematics,

teleinformatics and transport telematics (grant of the Czech Ministry of Education,

Youth and Sports)

References

1. Miehie, D., Spiegelhalter, D. J., Taylor, C. C.: Machine Learning, Neural and

Statistical Classification. Ellis Horwood, NY, 1994.

2. Lim, T., Loh, W. Y., Snih, Y.: A comparison of of prediction accuracy, complexity

and training time of thirty-three old and new classification algorithms. 1999.

http://www.stat.wisc.edu/~limt/mach1317.pdf

3. De Juan, Ch.: Contour Recognition Problem, [online]. 2001. Dostupné z:

<www.cc.gatech.edu/classes/ay2000/cs7495_fall/participants/cnd/ps3/ps3.html

4. Goldberg, D. E.: Genetic Algorithms in Search, Optimization and Machine

Learning. Addisson-Wesley, 1989.

5. Nilsson, N. J.: Principles of Artificial Intelligence. Springer Verlag, Berlin, 1982.

6. Ripley, B. D.: Pattern Recognition and Neural Networks. Cambridge University

Press, Cambridge (United Kingdom), 1996.

7. Pavlidis, T.: Algorithms for Graphics and Image Processing. Bell Laboratories,

Computer Science Press, 1982.

8. Wong, K. CH.: A new diploid scheme and dominance change mechanism for non-

stationary function optimization. In Proceedings of the Sixth International

Conference On Genetic algorithms, Pittsburgh, USA, 15. – 19. July 1995

9. Sarle, W. S.: Neural Networks and Statistical Models. Proceedings of the

Nineteenth Annual SAS Users Group International Conference, Cary, NC: SAS

Institute,1994, pp 1538-1550.

10. Šnorek, M., Jiřina, M.: Neuronové sítě a neuropočítače. ČVUT, Praha,1998.

ISBN 80-01-01455-X.

11. Šťastný, J., Škorpil, V.: Neural Networks Learning Methods Comparison.

International Journal WSEAS Transactions on on Circuits and Systems, Issue 4,

Volume 4, April 2005, ISSN 1109-2734, pp. 325-330.

12. Vestenický,P. The Prediction Properties of Kalman Filter in Proceedings of

TRANSCOM '95. UT&C, Zilina, pp. 243-248, 1995

13. Krbilová, I. and Vestenický,P.: Forgalomszabályozásés szolgáltatásminöség”

Magyar távközlés 7, Vol.. 6/96, pp. 32-33, 1996

14. Vestenický, P. The Functions of ATM Interfaces in Proc. of DDECS „97

Conference Proceedings. VSB Technical University, Ostrava, pp. 186-191, 1997

15. Bubeníková, E. and Vestenický, P. Principles Of The Intranet Information

System Creation in Proc. of ELEKTRO‟99 Conference Proceedings, section

Information & Safety Systems. University of Žilina, pp. 77-81, 1999

16. Vestenický, P. Optimization of Selected RFID System Parameters in Proc. of.

AEEE 3, Vol. 2, pp. 113-114, 2004

http://www.cc.gatech.edu/classes/AY2000/cs7495_fall/participants/cnd/ps3/ps3.html

17. Krbilová, I. and Vestenický, P. Use of Intelligent Network Services in Proc. of

ITS. RTT , CTU Prague, 2004

18. Vestenický, M. and Vestenický, P. Evolutionary Algorithms in Design of

Switched Capacitors Circuit in Proc. of International Workshop „Digital

Technologies 2004“. Slovak Electrical Society and University of Zilina, pp.34-37,

2004

