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Abstract. Early researches focused on the security of homogenous sensor net-
works. However, recent works have demonstrated that the presence of heteroge-
neous sensor nodes gives better performance than homogenous ones in terms of
energy consumptions, storage overhead, and network connectivity. In this paper,
we propose a hierarchical key management scheme named HERO which is based
on random key pre-distribution. HERO aims to construct a secure tree instead of
complete connected graph as in existing schemes. Thanks to this realistic assump-
tion, our key management scheme reduces considerably the number of pre-loaded
keys assigned to each node while maintaining high security level at the same time.
The preliminary simulation results using TOSSIM demonstrates that our scheme
outperforms existing ones with respect to storage overhead.

1 Introduction

Recent advances in Wireless Sensor Networks (WSN) technology make them ideal can-
didates to various applications [5, 7] such as environment monitoring, military surveil-
lance, forest fire monitoring, agriculture monitoring, etc. Security in WSN is a critical
challenge especially for uncontrolled and hostile environments. Indeed, security vul-
nerabilities in WSN stem from their characteristics [8] that make them attractive: the
wireless nature of radio channels exposes transmitted data in WSN to eavesdropping
and manipulation, the resources limitations of motes prevent using heavy cryptographic
techniques, and the deployment of sensors, generally, in unattended areas exposes them
to intentional and accidental physical destruction. However, recent researches show that
the performance and the lifetime of WSN can be improved by using heterogeneous sen-
sor nodes instead of homogenous ones without significantly increasing the cost [9]. In
Heterogeneous Sensor Networks (HSN) there is a few powerful and expensive nodes,
and a large number of inexpensive and simple sensor nodes. A few key management
schemes [11, 3,4] have been proposed for (HSN). All these schemes try to exploit the
heterogeneity features, in order to reduce the number of stored keys per node, and to
guarantee a good level of security at the same time.

In this paper, we present an effective key management scheme based on probabilis-
tic key pre-distribution; HERO(Hierarchical kEy management pRotocol for heterOge-
neous wireless sensor networks). HERO provides a key management solution to secure
a HSN relying on the construction of a secure tree. Moreover, it reduces the number of
loaded keys because it needs only to store the keys which are necessary to build the se-
cure tree, not to secure all possible links in the network as in all existing schemes[2, 11,



3,4]. The rest of the paper is organized as follows. In section II, we report on the related
works presented in the literature. In section III, we detail our scheme. We evaluate the
performances of HERO in section IV. In section V, we present some simulation results.
Finally, we conclude the paper in section VI.

2 Related Works

Most of previous key management solutions have been proposed for homogeneous
WSN, while a few works have been recently proposed for heterogeneous ones [?,11,
3]. The majority of these solutions are based on probabilistic key-distribution proposed
by Eschenauer and Gilgor in [2]. This scheme is based on probabilistic key sharing
among the sensor nodes. Prior to sensor network deployment, a large pool of P keys
and their identifiers are generated. Each sensor node is pre-loaded with a key ring of
k keys and their associated key identifiers which are selected randomly from the key
pool without replacement. After sensor network deployment, each two neighbor sensor
nodes compare their list of key identifiers in order to discover their shared key which
will be used to secure the link between them. Due to the random distribution of keys to
each sensor node, a shared key may be not available between two nodes. In this case,
it is necessary to find a secure path composed of secure links using the shared keys of
intermediary nodes. The probability of secure path existence using this scheme depends
on the number of pre-loaded keys in each sensor. Unfortunately, to reach high proba-
bilities this scheme may induce high storage overhead not supported by many types of
sensor nodes. New key management schemes have been proposed for (HSN). These
schemes are based on the basic scheme of probabilistic key pre-distribution [2]. Du et
al. [11] proposed the Asymmetric Pre-distribution (AP) key management scheme. Its
main idea is to pre-load a relatively large number of keys in each one of a small number
of powerful nodes (H-sensor), while only a small number of keys are stored in each
one of nodes (L-sensor) which have very limited space of storage and capacity of com-
munication. Due to the usage of these two types of nodes, two different types of key
rings have been used to achieve a high probability that each two nodes share at least one
shared key. Indeed, AP scheme is more scalable than the basic scheme and it reduces
the number of pre-loaded keys compared to the basic scheme, but it is still sometimes
unsuitable for some types of sensors due to memory constraints. Also, in order to reduce
the storage requirements and to maintain the same security strength of the basic scheme
and AP scheme [2, 11], Hussain et al. [3] proposed a key generation process to reduce
the key storage requirement. Brown et al. in [4], proposed a public-key-based scheme.
In order to establish a secure communication topology in the network, each H-sensor
needs to store (4+DH) keys where DH corresponds to the degree of this H-sensor. This
means that each H-sensor stores enough keys to communicate with each node within its
cluster, and the number 4 refers to four types of keys which are its public key, its private
key, its group key, and the public key of the base station. For L-sensors, each node u
must store (3+2Du) where Du corresponds to the group keys for all its neighbors, and
the number 3 refers to three types of keys: its public key, its private key, and the public
key of the base station. Although, this scheme may not need too large storage compared
to other schemes, it is based on public key cryptography which is too heavy for tiny



sensors. Recently, Traynor et al. [12] presented a protocol named LIGER. This protocol
is based on the presence of a key distribution center(KDC), which stores the mapping
of pre-loaded keys to nodes. This protocol consists of two components: the first is a
protocol for a network in an infrastructure-less ( i.e. without KDC). This component
is defined as a protocol to instantiate probabilistic keying, and is referred to as LION.
While, the second component is relied to the availability of KDC ( i.e. network with
KDCQ). It exploits the knowledge of the pre-loaded keys to perform the probabilistic au-
thentication with a high degree of confidence. In addition, session keys are established
with enforcement of the least privilege. This component is referred to as TIGER

All the schemes presented above assume the requirement to find a shared key be-
tween any two nodes in the network. We believe that this assumption is too strong. In
fact, the primary goal in most WSN applications is to collect sensed information from
the observed area, and not to have a complete connected graph. This can be achieved
through a many-to-one communication scheme. Thus, we propose in our scheme HERO
to elevate this assumption while achieving this primary goal. In HERO we replace the
construction of a completely connected secure graph with a secure tree. As we can see
in the performance evaluation sections, this allows to considerably reduce the required
number of preloaded keys.

3 HERO(Hierarchical kEy management pRotocol for
heterOgeneous wireless sensor networks) description

HERO is a new key management scheme that allows to create a secure tree rooted at
the sink. Limiting the key sharing requirement to the child-parent relationship allows to
reduce the key storage overhead to few keys per mote, as we can see in the performance
evaluation section.

In HERO, we adopt a heterogeneous sensor network (HSN) consisting of a powerful
base station (the Sink), and two types of sensor nodes: a small number of powerful
sensor nodes with a large radio range (r), which are referred as Super nodes (Sn), and a
large number of simple nodes with a small radio range (u), which are referred as Normal
nodes (Nn). Since sensor type influences the tree construction, each mote embeds to its
sent messages an indicator (ind) that specifies the mote category (Sn or Nn). In the
following paragraphs, we describe our scheme in details.

3.1 HERO Details

HERO scheme includes essentially two phases: Key pre-distribution and child-parent
shared key discovery. In addition, we discuss two important operations in WSN: estab-
lishing keys for newly deployed sensors and the revocation of compromised keys.

Key Pre-distribution A large key pool (P) of P keys and the corresponding key Ids are
generated off-line. Then, each Sn node is pre-loaded with K keys and their correspond-
ing key Ids. These keys are randomly selected from the large key pool without replace-
ment. We refer to this set of keys as KP (Key Pool), such that KP4 N KPp # ¢ where A



and B are two Sn nodes. Then each Nn node is pre-loaded with m (m < K) keys and
their corresponding key Ids. These keys are randomly selected from P without replace-
ment. We refer to this set of keys as PKP (Parcel Key Pool), such that PKP,NPKP; # ¢,
and PKP,NKPx # ¢ where i and j are two Nn nodes and X is a Sn node.
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Fig. 1. Construction of a secure tree

Child-parent Shared Key Discovery The goal of HERO is to construct a secure tree
(see figure 1). Therefore, HERO aims to construct a secure path between each node and
the Sink, contrary to other schemes [11, 3] that aim to build a secure complete graph.
After pre-loading each node with its key ring as described above, the Sink broadcasts a
tree construction request. Since the Sink stores the key pool P, it is sure that all sensor
nodes have at least one shared key with the Sink. When a sensor node ( Sn or Nn) re-
ceives this request from the Sink, it considers the Sink as its parent, and selects one key
of its key ring as its shared key with the Sink. These nodes are now attached to the tree
rooted at the sink. Each newly attached node forwards the ™ tree construction request ”
downstream as follows:

Each attached node i (Sn or Nn) authenticates the request through computing one Mes-
sage Authentication Code (MAC), over its identifier, using each key of its key ring. For
instance, the “tree construction request” forwarded by node i will be:
{id;,MAC(K1,id;), MAC(K2,id;),. .., MAC(Kk,id;), ind;}, where k is the size of node’s
key ring and ind; refers to the type of node i. Then, node i broadcasts the request. When
anode receives this message, it checks the type of the node. Thus, there are two different
cases:

1. Receiving node is an Sn node:
Suppose that A is the receiving node and B is the sending node. Then, A checks the
type of node B. So:
— If B is an Sn node. Then A checks the request message in order to discover if
it has a shared key with B or not. This is done by verifying the corresponding



MAC. Here, if A finds a shared key with B, it notes node B as its parent and
notes their shared key in its table of routing. Otherwise, A does nothing and it
waits receiving a request from another node.
— If B is an Nn node. Then A waits wishing receiving a request from an Sn node.
2. Receiving node is an Nn node: If A finds a shared key with B, it notes B as its
parent in its routing table and their shared key. Otherwise, it waits receiving another
request.

Establishing keys for newly deployed sensors The deployment of new nodes in WSN
may be required for several reasons such as: Solving the problem of the miss of cover-
age in the tested area, enhancing the accuracy of the sensed phenomena, and prolonging
the lifetime of the deployed network.

To attach a new node A to the secure tree, the new node must search for a parent, already
attached to the secure tree, with whom it shares a key. Thus, A is firstly pre-loaded with
its key ring of k keys which are selected randomly from the key pool. Then, it broad-
casts a request message as follows:
{Ids,MAC(K1,ids),MAC(K2,idy),....,MAC(Kk,idy), indy }.

When a deployed sensor node B, which is already an attached node, receives this mes-
sage, it broadcasts the following message:
{Idg,MAC(K1,idp),MAC(K2,idp),...,MAC(Kk,idg),indg}.

When A receives this message, it checks if it has a shared key with B. If A and B have
a shared key, A notes B as its parent. Otherwise A waits receiving a message from an-
other node. Furthermore, due to one of the reasons which are cited above, a deployed
node C may be still unattached to the secure tree. So, upon receiving the request of the
new node A, C attempts to profit from this new node to attach to the secure tree. Thus,
it checks if there is a shared key with A, if a shared key is found, C considers A as its
parent.
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Fig. 2. Frequency of key usage with different key pool sizes

Key Revocation Whenever a sensor node is compromised, it is necessary to revoke all
its keys. First, the sink generates a signature key that it sends securely to each sensor



except the compromised one. One method to distribute this signature key securely to
the sensors [2], is to encrypt it with a list ok keys selected from the key rings of not
compromised sensors, so that all sensors could decrypt the signature key except the
compromised one. Then the sink broadcasts a message containing the identifiers of the
compromised keys authenticated with the signature key. Upon receiving this revocation
message, each sensor node verifiers the signature using the signature key. Then, it re-
moves the corresponding keys from its key ring. However, due to the revocation of the
compromised keys, some links may disappear. So, in order to reconfigure these links;
the affected nodes restart a new child-parent shared key discovery phase.

Figure 2 shows that, out of P=1000 keys, only 60% of the keys are used to secure links,
only 17.30% are used to secure one link, 7.70% are used to secure two links, and only
6.30% are used to secure three links. This means that compromising one key leads to the
compromise of another link with probability 0.17, of two other links with probability
0.07 and so on. Moreover, the compromise of one Nn node of key ring size m=5 leads
to reconfigure only 4 links in average. So, a very small number of nodes are affected
due to the compromise an Nn. Therefore, only a small number of messages are required
to reconfigure the affected links.

4 Evaluation of HERO

In order to construct a secure tree with a minimum key storage overhead, we must find
the minimum size of an Nn’s key ring such that the probability of that Nn attaches to
the secure tree be high. An Nn node attaches to the secure tree as a child of an Sn node
except when this Nn node has not any shared key with at least one Sn node within
its neighborhood. In this case, as we have explained in previous section, the Nn node
attaches to the secure tree as a child of another Nn node within its neighborhood with
which it has a common key. Therefore, the probability that an Nn node attaches to the
secure tree (P,) is the probability that an Nn node shares at least one key with at least
one Sn within its neighborhood (Ps,,) or that it does not share any key with any Sn node
within its neighborhood (1 — Ps,) and it shares at least one key with at least one Nn
within its neighborhood (Py,,). Thus, we can write this as:

Pa:PSn+(1_PSn)XPNn (1)

Where, Ps, is the probability that an Nn node shares at least one key with at least one
Sn of its neighborhood, then P, = 1- the probability that no key in common between
an Nn node and any one of Sn node within its neighborhood. Then,

where Ng,, is the number of Sn nodes within a Nn node’s neighborhood.
Similarly, since Py, is the probability that an Nn node shares at least one key with
at least one Nn within its neighborhood, then, Py, =1- the probability that no key in



common between an Nn node and any one of Nn node within its neighborhood. Then,
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Let us assume that N = n; +ny (n; and ny being the numbers of Sn and Nn nodes
respectively, where n; << ny) are uniformly distributed within a square area having a
surface Z=L x L m?. Thus, the density of deployed Sn and Nn nodes are Dy, = "7‘ and
Dy, = % respectively. Then, the possible number of Sn node within a zone which is

2
covered by an Nn node is Ng, = Ds, x Zy, = "“Z7%= | where i is the radius of Nn
node. Also, the possible number of Nn nodes within a zone which is covered by an Nn
2
node is Ny, = Dp X Zyy = "5

Hereafter, we present an example of a network consisting of 10 IRIS motes as Sn nodes
with radio range r=350m, and 1000 MicaZ motes as Nn nodes with radio range u=90m.
These sensor nodes are deployed uniformly within a square-grid of 500 x 500m? with
density D = % = 40.4 x 10~ node/m?. Then, the possible number of Sn and Nn nodes
within an Nn node’s neighborhood are: Ng,=1 node and Ny,= 102 nodes respectively.
By using the equation 4, where P=3000, m=5 and K=100, we obtain Pa=0.6397. Thus,
we notice that an Nn node needs only to be pre-loaded with a very small number of
keys to be attached to the secure tree with a relatively high probability.

Figure 3 shows the probability of attachment Pa as function of m and K i.e. Pa=f(m,K)
where m={1,2,3,4,5} and K={100,150,200,250,300}.

Figure 3.a illustrates Pa=f(m,K) for P=1000, while figure 3.b illustrates Pa=f(m.k)
for P=3000. However, by comparing these two figures, we can clearly notice that Pa
decreases when P increases when m and K are fixe. For instance, with K=100 and
m=3 we obtain Pa= 0.7097 for P=1000 and 0.335 for P=3000. Moreover, Pa increases
when K increases when m and P are fixe. For example, with P=1000 and m=1, there
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Fig. 3. Pa=f(m,K) where K={100,150,200,250,300}, m={1,2,3,4,5}, Ng,, = 1, Ny,=102

is an increment of 24% in Pa when K increases from 100 to 150. We notice also that
Pa increases when m increases when K and P are fixe. For instance, for P=1000 and
K=100, there is an increment of 54% in Pa when m increases from 2 to 3. Thus, we
can conclude that with a very small size of m, HERO can give a high probability of
attachment, and hence a high probability of constructing a secure tree. HERO can also
be considered as an efficient protocol since it provides a high security level (compared
to existing protocols) with a very small key storage overhead.

5 Simulation and analysis

We have implemented a prototype of HERO using TinyOS [6] environment. TinyOS
is an event-driven operating system commonly used on WSN motes. The programs are
written in nesC which is a C-like language [10, 14]. Basically, we have defined a new
interface KeyManager, and developed a module implementing this interface KeyMan-
agerM. It contains all commands and events which are necessary to manage the keys in a
network. We have also developed the component TreebuilderM that uses KeyMangerM
to build the secure tree.

In what relates to the network topology, we considered a square-grid of 500 x 500m?.
Super nodes have a 350m radio range (like IRIS motes), and Normal nodes have a 90m
radio range (like MicaZ motes) [13]. The positions of the nodes are distributed uni-
formly over the square grid. We assumed also that 1% of the nodes are Super nodes. We
carried out intensive simulations of our prototype using TOSSIM [1] which emulates
the execution of the developed code over a personal computer. We were mainly inter-
ested in evaluating the secure coverage ratio with respect to the network size, and the
key ring size at Super Nodes and Normal Nodes for different key pool sizes. We mean
by the secure coverage ratio the number of motes that succeed to establish a secure path
to the Sink, over the total number of motes in the network.
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Fig. 4. The components and the interfaces of TinyOS used to implement HERO

5.1 Secure coverage ratio vs. key ring sizes

In this simulation scenario, we considered a 1000 motes network. Mote 0 being the
Sink, and 10 motes are considered as Super nodes. We considered different key ring
sizes for two cases: a pool of 1000 keys and a pool of 2000 keys. Figure 5 illustrates
the evolution of the secure coverage of the network for a 1000 and 2000 key pool
respectively. We notice that in both cases the secure coverage of the network increases
when increasing the key ring sizes. What is interesting to notice is the fact that with
small key rings we can reach very high secure coverage of the network. Namely for a
1000 key pool, we can reach more than 90% of secure coverage with only 7 keys at Nn
nodes and 50 keys at Sn. Depending on the resources available at Super nodes, we can
reach the same coverage ratio while further decreasing Nn ring size: we can use 6 keys
in Nn ring while using 100 keys in Sn ring, or 5 keys in Nn ring while using 150 keys
in Sn ring, or only 4 keys in Nn ring while using 200 keys in Sn ring. We also notice
that the smaller is the key pool, the greater is the coverage ratio. However, the rekeying
overhead is smaller when the key pool is greater. Indeed, with a large key pool only
few nodes share the same keys of a compromised node (cf. 3.1). Table 5.1 compares
HERO to some solutions of the literature with respect to the probability of key sharing.
We notice that HERO induces the smallest key ring storage overhead while achieving
the highest key sharing probability.
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Table 1. Comparison of some key pre-distribution solutions with respect to key sharing probabil-
ity for Key pool size P=1000

WSN type Protocol Parcel Key ring Probability
key pool size(m)  of sharing a
size(K) key
Homogeneous Eschenauer and Gligor’s basic 100 100 0.5
scheme

Heterogeneous Asymmetric key pre- 500 20 0.5
distribution scheme (AP)
Brown et al. public-key based 104 43 0.5
scheme

HeterogeneousHERO 100 3 0.7

5.2 Secure coverage ratio vs. network size

In this simulation scenario, we considered a key pool size of 1000 keys. Each Super
Node is initiated with a ring of 100 keys, and each Normal Node is initiated with a
ring of 5 keys. The key rings are randomly chosen from the 1000 key pool. Then we
varied the network size from 100 nodes to 1000 nodes. For each point, we run our
simulation 10 times and we calculated the average secure coverage ratio of the network.
Figure 6 illustrates the evolution of secure coverage ratio when we increase the network
size. We notice that the secure coverage ratio depends on the density of the network:
the greater is the network density, the higher is the secure coverage ratio. Moreover,
for network size in [100 — 300] nodes the secure coverage ratio increases with almost
100%. With only 550 motes, HERO allows to reach more than 90% of secure coverage
of the network. This means that with only 1 mote per 450m> we reach more than 90%
of secure coverage using HERO.
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6 Conclusions

In this paper, we have studied random key pre-distribution for wireless sensor networks.
This category of key management schemes aims to secure links between sensors of a
WSN. Many studies and applications demonstrate that communications in WSN follow
mostly many-to-one paradigm. Also, the new works confirm that, the usage of het-
erogeneous nodes gives better performance than homogenous ones in terms of energy
consumptions, storage overhead, and network connectivity. Therefore, we exploited the
heterogeneity features, in this paper, to propose a new key management scheme that
secures this communication paradigm through constructing a secure tree rooted at the
Sink. Our solution (HERO) is designed for heterogeneous sensor networks and relied on
random key pre-distribution. HERO secures child-parent links through pairwise shared
keys. Preliminary simulation results using TinyOS show that our solution reduces the
key storage overhead compared to existing schemes.
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