
Lessons for Autonomic Services from the Design

of an Anonymous DoS Protection Overlay

David Ellis and Ian Wakeman

University of Sussex

Abstract. In this paper we report on the design and implementation of
a Denial of Service protection overlay, and draw lessons for autonomous
services. Our approach is novel in that each node is only aware of a
subset of the other nodes within the overlay; the routing topology of the
overlay is hidden from internal and external nodes and the overlay uses
a distributed monitoring and trust system to detect misbehaving nodes.
In meeting these design goals, we have had to move beyond the normal
approaches to designing self-configuring and self-monitoring services, and
we highlight these issues as being important for the design of future
multi-organisation systems.

1 Introduction

Autonomic services attempt to provide services without human intervention. To
this end, the services typically are designed so that the various distributed com-
ponents work together to self-configure and self-regulate in the face of changing
demands and resource availability. Nearly all such services follow the following
paradigm for their design:

1. Decide on a desirable set of states to be maintained by the system
2. Find a set of local measurements and variables which can be used as indica-

tors of the distance from the desired goal state. These can be solely recovered
from local state, or can be found from other machines in the local vicinity.

3. Find a local action which moves the global state closer to the desired state
4. Repeat continuously.

The design problems within a single organisation are identifying the local and
global states and actions which allow the service to be built, and which provide
at least quasi-stability.

However, when the services are provided by distributed components owned
by different organisations, then the design problem becomes much more compli-
cated. Each organisation may be sensitive about revealing information to other
organisations. We may therefore have to restrict ourselves to state which can be
obtained from solely local sources. Worse, the system must be designed to deal
with machines which misbehave, both accidentally and intentionally. We have
to design the system to cope with denial of service attacks upon the information
exchange and control mechanisms. The system will have to make judgements

upon whether information is valid, either by using consensus techniques, or by
using policies set up by the system administrators.

In this paper we present the design and implementation of a Denial of Service
Protection overlay, similar to SOS [1] and Mayday [2]. However, rather than
assuming that each of the nodes within the overlay can be completely trusted,
we have aimed to provide a design that can work with untrusted nodes. In this
way, we believe the protection overlay can be used across multiple administrative
domains and machines safely.

Our design has several novel features, applying design principles suitable for
application to sutonomous services between untrusted components:

– Each internal node is only aware of a small subset of other nodes, and the
full set of internal nodes is difficult to discover for any attacker.

– The internal routing topology of the overlay is hidden from each of the
internal nodes, and from any of the external nodes. This makes it more
difficult to launch DoS attacks against key nodes or links within the overlay.
Performance is still comparable to other systems.

– The overlay uses a distributed monitoring and trust system to detect which
nodes are misbehaving, and subsequently remove them from routing of traf-
fic.

In the following sections, we present the design of the overlay; provide brief de-
scriptions of the construction, routing, choking and trust maintenance protocols
for the overlay as appropriate for autonomous services and present results from
simulation within NS2 and experience on PlanetLab.

2 Design Overview

DoS protection overlays function through providing a larger set of ingress points
for a service, thus providing increased inbound bandwidth, and allowing the
actual machine providing service to reject all traffic apart from the known egress
points from the overlay. In addition, the overlay should be able to detect the
increased traffic from a DoS attack, and react so as to filter this traffic from
within the overlay. The key question we have asked ourselves in this work is
whether the overlay can be formed from nodes across multiple administrative
domains, even to the extent of using the home machines of individual users?
Since untrusted nodes can therefore join the overlay, along with machines which
are easier to compromise by attackers, we want to design a protection overlay in
which the nodes have very limited knowledge about the overlay structure, there
is no central control, yet the system still auto-manages. Our basic requirements
from the overlay are thus:

– The overlay should reform itself as nodes join and leave the overlay without
disrupting connectivity for the end-point services.

– Routing must work without nodes having explicit knowledge of the topology.
– The overlay should identify DoS flows, and filter these flows at the entrance

to the overlay.

– The overlay must monitor itself and react to misbehaving member nodes of
the overlay.

In terms of the paradigm for autonomous services, each member of the over-
lay treats the rest of the overlay as a blackbox, making measurements without
knowledge of the other members. If nodes may be untrustworthy, then each
decision should be independent of other nodes.

2.1 Overlay Construction and Maintenance

Node allNodes, connectedNodes;

function maintainDegree

if degree == 0 then

ingress = pick(ingressSet);

connect(ingress);

elseif degree < MINDEGREE then

pullInfo();

elseif degree > MAXDEGREE then

n = select(connectedNodes);

pushInfo(n);

function pushInfo(n)

nlist = select(allNodes);

dropConnection(n);

n.receivePush(nList);

function receivePush(nList)

foreach n in nList

allNodes.add(n);

while(!connect(select(nList)));

function pullInfo

n = select(allNodes);

n.getInfo(this,parent(n));

function getInfo(n, referrer)

if referrer.isValid(n) then

nlist = select(allNodes);

n.receivePush(nList);

Fig. 1. Gossip pseudo code for graph generation and maintenance

Overlay construction must work despite having limited information. We have
based our overlay construction algorithm upon the Gossip protocols of Jelasity

et al [3]. We have found that such gossip protocols are an excellent match for
the composition of autonomous services. They are fast, work well with limited
knowledge, and work well to auto-regulate the configuration.

The key requirements of the topologies are:

– The graph should have a high degree of randomness, so that the topology
cannot be inferred and extrapolated from a small subset of topological in-
formation.

– The graph should be fully-connected with respect to the egress nodes to the
end-points.

– The graph should mirror the underlying network so as to reduce the problem
of latency stretch.

– There should be a variety of disparate paths between ingress and egress
nodes.

– There should be no single points of failure.
– Knowledge of the full topology should be hidden from nodes within the

network.

To join the overlay, a node receives the list of public ingress nodes to the network.
It then connects to one of the ingress nodes, and executes a pullInfo upon the
node. From this node, it selects a node to connect to, and if the connection is
successful, this becomes one of the node’s outgoing links. The pseudo-code for
this is shown in Figure 1.

MINDEGREE is set according to the expected size of the overlay network.
We wish to ensure that the overlay graph is fully connected, so following the
standard theory of random graphs [4], we need to ensure that for a graph of size
N , the average degree of the graph k is > ln(N). We therefore set MINDEGREE
to be equal to ln(N). Currently this is set statically, but it should be trivial to
allow the degree to be set dynamically according to estimates of overlay size
from the ingress nodes.

The public ingress nodes are aware of a large proportion of the nodes within
the overlay. However, to have been selected as public ingress nodes, the nodes
must have demonstrated themselves to be trustworthy as described below, and
we accept the risk of discovering composition from suborning one of the public
ingress nodes.

To prevent a node from crawling the network using a sequence of getInfo
exchanges, we require each node to also pass across the address of a node which
is connected to the queried node. This node can then be used to check the validity
of the requester, and to reject the request if too many getInfo requests are being
generated.

2.2 Route Learning

Since we wish to prevent dissemination of topology information, routes have to be
learnt by experimentation. We therefore have devised a route learning technique
based upon the use of probe packets sent out to the end-points within the overlay.

An rlearn packet is sent out down an outgoing link from an ingress node to probe
for a route to a specified end-point. As the packet passes through nodes, these
nodes record the passage of the rlearn packet. If the rlearn packet reaches an
egress node responsible for the end-point, then it constructs an rlearnResponse

packet which is returned along the return route. If a response is received, then we
update the rtt statistics to that endpoint out of the corresponding outgoing link
and the probability of using that outgoing link for that end-point is increased.
We provide the pseudo-code representing the learning algorithm in Figure 2.
Rtt statistics are collected and maintained using standard EWMA approaches, as

function rlearnSend(RlearnPkt p)

nextNode = pickNode(outgoingNodes);

rlearnEntry.from =p.src;

rlearnEntry.timestamp = now;

rlearnEntry.to = nextNode;

rtable[p.mark] = rlearnEntry;

send(p,next);

function rlearnReceive(RLearnRespPkt p)

discardInvalidPackets();

r = rtable[p.mark];

rtt = now - r.timestamp;

updateRtt(r.service,r.to,rtt);

Fig. 2. Pseudo-code for route learning

used in TCP. To compile the rtt statistics into the forwarding table probabilities,
we calculate probabilities using the following equation

routingtable(i, s) =
rttstore(i, s)∑n

j=0
rttstore(j, s)

These probabilities are used to bias the choice of outgoing link for a given end-
point.

The frequency with which rlearn packets are generated is a tunable parameter
which affects the rate at which routes are updated and how the network reacts
to changes in the underlying topology. We set the frequency of rlearn generation
based on the round trip times currently experienced by the node.

2.3 Choking and Pushback

Each node monitors the bandwidth used by each incoming link. In the au-
tonomous systems paradigm, this is a local measurement which indicates how
far the system is from its goal state. If any incoming link exceeds per-defined

thresholds, then the flow is throttled within that node, and a choke request
is sent back through the incoming link, the controlling action with the control
paradigm. When a choke message is received from an outgoing link, the receiving
node reduces its outgoing bandwidth to the sending node. This may cause the
receiving node to begin to drop packets, in which case a restriction is sent further
upstream. As a side effect the probabilities associated with using that outgoing
link will be reduced, as other links with more bandwidth will drop less packets.
Nodes may implement per flow restrictions if they wish but the lower granularity
is intended to fuel a simpler trust relationship model. Note how the measure-
ment and control action allows nodes to make local policy decisions about what
to accept and what to reject. Figure 3 shows the calculation of upstream virtual

function pushback(VirtualBandwidths, reduceAmount, avgDropped)

let tbw = temporary array

foreach upstream node

VirtualBandwidths[node] =

reduceAmount * avgDropped[node] / VirtualBandwidths[node]

if VirtualBandwidths[node] < 0 then

VirtualBandwidths[node] = 0

Fig. 3. Pseudo-code for pushback/choke

bandwidths. This algorithm is run periodically, to calculate any upstream band-
width restrictions. Choke messages are sent upstream only if vbw has changed
by some amount, we set this value 0.1. The amount the bandwidth is reduced
by is set by another tunable parameter reduceAmount. If this amount is very
high, it is equivalent to a complete block from an upstream node.

According to the rules above, there is no way for a node to re-establish its vir-
tual bandwidth. So an additional thread must be willing to increase bandwidth
if the upstream node is now operating within the set thresholds. This algorithm
is presented below:

function creep(VirtualBandwidths, creepAmount, threshold, avgDropped)

foreach upstream node

if(avgDropped[node] < VirtualBandwidths[node] *threshold)

VirtualBandwidths[node]*=creepAmount

Fig. 4. Pseudo-code for pushback/choke creep algorithm

Figure 4 shows the algorithm we used to creep the upstream bandwidths
up after they had been reduced. The threshold is needed because we want to

allow links with some packet loss increase particularly if the virtual bandwidth
is particularly low. How often creep is run is also a tunable parameter and must
be carefully balanced against the virtual bandwidth calculations.

2.4 Distributed Monitoring and Trust

Our overlay is built with nodes belonging to multiple organisations and requiring
distributed administration (MODA). Since the the different organisations do
not necessarily trust one another, there is a need to provide evidential trust
measures between the node and the organisations, which can be used to moderate
the probabilities of routing through any given node. In particular, if a node is
suborned by a malicious third party, we want the system to be self-monitoring
to detect anomalous behaviours and isolate the suborned node from the overlay.

We take as our inspiration the Eigentrust work from Kamvar et al [5], in
which the transitive trust relationships between nodes are used in the iterative
calculation of the left eigenvalue of the normalised trust matrix. The resultant
values show the relative levels of trust measure accorded to each node, and can
be used to identify suspicious nodes.

In our system, we are trying to detect nodes which either inject traffic into
the overlay, or drop traffic unnecessarily. To this end each node records the ma-
trix of incoming (R) and outgoing traffic (S) from its neighbour nodes. These
matrices are sent to a central trusted traffic monitor which calculates and mon-
itors the nodes. The traffic monitor combines the received S and R matrices in
the following fashion:

C =

N∑

i=0

(S′

i + Ri) + (S′

i + R′

i)

The global matrix C is normalised over the row totals, and the left hand eigen-
value is calculated by iterative multiplication of C. Note that the Ingress nodes
and egress nodes ensure that the matrix is in general irreducible and aperiodic,
and the left eigenvalues will converge. Nodes which inject or eject traffic emerge
as having values close to one.

Our current implementation uses a centralised node to collect, calculate and
monitor the traffic matrices. We are currently working on techniques to fully
distribute the trust calculation, in line with the design principles of autonomous
services.

3 Simulation Results

We have developed our algorithms within a homegrown simulator, and then have
used NS2 to verify our simulation results. In the following simulations, we use
topologies of 800 nodes, generated from the Georgia Institute of Technology’s
topology generator [6]. The overlay has 5 ingress nodes, 40 internal nodes, and 5
egress points to the 2 end-points. There are 10 clients randomly selected which

Throughput

flood.tr

noflood.tr

throughput x 103

time(s)0.0000

100.0000

200.0000

300.0000

400.0000

500.0000

600.0000

0.0000 20.0000 40.0000 60.0000 80.0000 100.0000

Fig. 5. The effect of a DDOS attack against the network when no pushback is used

Throughput

xg1.tr

xg3.tr

xg10.tr

throughput x 103

time(s)0.0000

100.0000

200.0000

300.0000

400.0000

0.0000 20.0000 40.0000 60.0000 80.0000 100.0000

Fig. 6. Using pushback with various creep settings to mitigate a DDOS attack

connect to a random ingress point and continually send traffic to the end-point
using TCP. For reasons of space, we show only how the total throughput is
protected by the overlay. For more complete results from simulation, see [7]. In
the following graphs, the throughput is the total bytes received, whilst the RTTs
are measured in milliseconds.

Figure 5 shows shows how the overlay deals with a DoS attack from one
ingress node in the absence of pushback and choking. When a flood occurs, the
bytes received are flattened, and an effective DOS attack has been accomplished.
When there is no flood about 600 × 103 bytes get transferred. The graph in
figure 6 shows the same scenario but with pushback/choke enabled. We used
three settings indicating how quickly the algorithm attempts to “creep” (see
section 2.3). The values were 1 second (xg1.tr); 3 seconds (xg3.tr) and 10 seconds
(xg10.tr). We can see that when we creep every three seconds we restore the
clients throughput to two thirds of what it was when no attack occurred. You
can also see that creeping too frequently or not frequently enough hinders the
recovery process. This is because creeping too frequently will restore the flooders
bandwidth too quickly; and creeping too infrequently will not allow legitimate
clients to recover from pushback requests.

4 Implementation on PlanetLab

Many systems perform well within simulation, but fail when deployed on the In-
ternet. By applying the the principles of autonomous services design, we believe
that our system will be robust to the various problems that are created within
the Internet. We have therefore deployed our code within PlanetLab as a Perl im-
plementation. To pass between nodes, the end-points are included as the Satnet
IP packet option, and we use standard NAT translation techniques to transfer
the packets within the overlay. The Satnet IP option [8] was used originally to
pass stream identifiers through nodes which didn’t recognize streams. We have
re-used this option to carry the end-point identifiers between nodes within the
overlay. Although it has been reported that IP options are not carried through
many of the Internet routers, the connections between many of the PlanetLab
nodes do allow IP options through, and we have successfully rate limited traf-
fic at low bandwidths. Obviously, we have not been able to run full DoS style
attacks within the infra-structure, but the results so far have been encouraging.

For the following results, we measured the performance of the overlay over
a 24 hour period on PlanetLab. We used 80 nodes within the overlay, with 5
ingress nodes and 5 egress nodes. Every 15 seconds, we measured the round trip
time from the ingress nodes to the egress nodes, both through the overlay, and
directly using a ping measurment, and the number of hops. As can be seen,
the average latency stretch is very respectable given the problems of context
switching on Planetlab nodes, and the system reacts well to the vagaries of
PlanetLab connectivity.

 1

 100

 1000

 1e+5

 1e+07

 1e+9

 1e+11

 0 10000 20000 30000 40000 50000 60000 70000 80000

overlay rtt

Fig. 7. Round trip time for overlay measurements in milliseconds

5 Conclusion

We have presented the design and implementation of an anonymous DoS protec-
tion overlay network. Our simulations and experience on PlanetLab show that
the approach can effectively reduce the effect of a DoS attack. If nodes can be
offered an incentive for participation, such as the use of micro-payments, then
such schemes as ours may find a niche for collaborative protection of small to
medium scale web sites and services.

We currently do not attempt to maintain packet ordering within a flow. If
we were to attempt to pin a route to a flow as soon as we identified a flow,
then entire flows may be sent into routing black holes within the overlay, which
would be unacceptable. Instead, we are investigating maintaining flow state, and
pinning a route to a flow once an acknowledgment has returned.

We have show that the careful design of the overall system to use black
box measurements and local actions which can be controlled by local policy can
lead to autonomous services between untrusted nodes. We believe that these
principles can help build robust services in the future.

References

1. A. Keromytis, V. Misra, and D. Rubenstein. Sos: Secure overlay services. In SIG-

COMM, Pittsburgh, PA, August 2002.

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0 10000 20000 30000 40000 50000 60000 70000 80000

direct rtt

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0 10000 20000 30000 40000 50000 60000 70000 80000

direct rtt

Fig. 8. Round trip time for direct measurements in milliseconds

2. David G. Andersen. Mayday: Distributed filtering for internet services. In 4th

Usenix Symposium on Internet Technologies and Systems, Seattle, Wa, March 2003.
3. Mrk Jelasity, Alberto Montresor, and Ozalp Babaoglu. Gossip-based aggregation in

large dynamic networks. ACM Transactions on Computer Systems, 23(3):219–252,
August 2005.

4. R. Albert and A.-L. Barabsi. Statistical mechanics of complex networks. Reviews

of Modern Physics, 74:47–97, 2002.
5. Sepandar D. Kamvar, Mario T. Schlosser, and Hector Garcia-Molina. The eigentrust

algorithm for reputation management in p2p networks. In Proceedings of the Twelfth

International World Wide Web Conference, 2003.
6. Ellen W. Zegura, Ken Calvert, and S. Bhattacharjee. How to model an internetwork.

In Proceedings of IEEE Infocom, San Francisco, Ca., 1996.
7. David Ellis and Ian Wakeman. Design and implementation of an anonymous dos

protection overlay. In Submitted for publication, 2006.
8. J.B Postel. Internet protocol. Technical Report RFC791, IETF, September 1981.

 0

 2

 4

 6

 8

 10

 12

 14

 0 10000 20000 30000 40000 50000 60000 70000 80000

"overlay.dat" using 1:3

Fig. 9. Number of hops across the overlay

