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Abstract. Finite-difference schemes for the computation of value func-
tions of nonlinear differential games with non-terminal payoff functional
and state constraints are proposed. The solution method is based on
the fact that the value function is a generalized viscosity solution of the
corresponding Hamilton-Jacobi-Bellman-Isaacs equation. Such a viscos-
ity solution is defined as a function satisfying differential inequalities
introduced by M. G. Crandall and P. L. Lions. The difference with the
classical case is that these inequalities hold on an unknown in advance
subset of the state space. The convergence rate of the numerical schemes
is given. Numerical solution to a non-trivial three-dimensional example
is presented.
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1 Introduction

Numerical methods for solving differential games (see [1–3] for concepts) are
intensively developed during two or three last decades. We consider control sys-
tems with nonlinear dynamics, non-terminal payoff functionals, and state con-
straints. Our approach is based on the approximation of viscosity solutions of the
Hamilton-Jacobi-Bellman-Isaacs equation associated with the considered differ-
ential game.

In [4], a pair of differential inequalities determining the value function of non-
linear differential games with non-terminal payoff functionals was introduced.
Additionally, the directional differentiability of the value function was required.
In [5], such a requirement was relaxed, and the results were stated in terms of
upper and lower directional derivatives. At the same time, the concept of viscos-
ity solutions for Hamilton-Jacobi equations was proposed in [6] and [7]. Further
investigations [8] showed that the inequalities for the upper and lower directional
derivatives are equivalent to the inequalities defining viscosity solutions.
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Grid methods based on vanishing viscosity techniques for finding viscosity
solutions of Hamilton-Jacobi equations were suggested in [9]. In [10], an abstract
operator that generates approximate solutions was introduced, and the uniform
convergence of approximate solutions to a viscosity solution was proved. A rep-
resentation of this operator in terms of differential game theory was given in [11].
The results of [10] and [11] cover differential games with the payoff functional

γ1(x(·)) = χ(T, x(T )). (1)

In [12], the approach of [10] and [11] was extended to differential games with
more general (non-terminal) payoff functionals of the form

γ2(x(·)) = min
t∈[t0,T ]

χ(t, x(t)), (2)

where t0 is the starting time, T the termination time, x(·) a trajectory of the
controlled system, and χ a given function.

In the present paper, differential games with payoff functionals of the form

γ3(x(·)) = max{ min
t∈[t0,T ]

χ(t, x(t)), max
t∈[t0,T ]

θ(t, x(t))}, (3)

where χ and θ are given functions, satisfying the relation χ(t, x) ≥ θ(t, x) for all
t and x, are considered. As it will be seen later, the first part of functional (3),
mint∈[t0,T ] χ(t, x), is responsible for the quality of the process, and the second
part, maxt∈[t0,T ] θ(t, x(t)), accounts for state constraints. In the following, differ-
ential inequalities defining viscosity solutions in the case of payoff functional (3)
will be formulated and compared with those related to payoff functionals (2)
and (1). A finite difference scheme based on a modified abstract operator that
generates approximations of viscosity solutions is presented, and an example of
computation of value function for a three-dimensional problem originated from
the famous isotropic rocket game introduced in [1] is given.

2 Statement of the Problem

Consider a collision-avoidance differential game with the dynamics

ẋ = f(t, x, α, β), t ∈ [0, T ], x ∈ R
n, α ∈ A ⊂ R

µ, β ∈ B ⊂ R
ν , (4)

where t is time; x = (x1, ..., xn) the state vector ; α, β are control parameters of
the players; and A,B are given compacts. The game starts at t = t0 and finishes
at t = T . The first player, control parameter α, strives to bring the trajectories
of system (4) to a target set given by

M := {(t, x) : t ∈ [0, T ], χ(t, x) ≤ 1}

within the time [t0, T ]. The objective of the second player, control parameter β,
is opposite. Besides, the trajectories should remain in a state constraint set
given by

N := {(t, x) : t ∈ [0, T ], θ(t, x) ≤ 1}.



Computation of Value Functions in Nonlinear Differential Games 3

Here, χ : [0, T ]×R
n → R and θ : [0, T ]×R

n → R are some given functions such
that χ(t, x) ≥ θ(t, x) for all t and x so that M ⊂ N holds.

We extend this differential game by considering the payoff functional (3)
being minimized by the first player and maximized by the second one. It is
easily seen that the value function of such an extended problem gives a solution
to the collision-avoidance differential game. In fact, if the value function of the
differential game (4) and (3) is less than or equal to 1 at the starting position of
the extended game, then there exists a strategy of the first player such that, for
all strategies of the second player and all trajectories x(·), two conditions hold:

(a) mint∈[t0,T ] χ(t, x(t)) ≤ 1 (the position (t, x(t)) arrives at the target set M at
some time instant t ≤ T ),

(b) maxt∈[t0,T ] θ(t, x(t)) ≤ 1 (the position (t, x(t)) remains in the state constraint
set N for all t ∈ [t0, T ]).

Let the extended game is formalized as in [2–4]. That is, the players use
feedback strategies which are arbitrary functions

A : [0, T ]× R
n → A, B : [0, T ]× R

n → B.

For any initial position (t0, x0) ∈ [0, T ]×R
n and any strategies A and B, two

functional sets X1(t0, x0,A) and X2(t0, x0,B) are defined. These sets consist of
the limits of the step-by-step solutions of (4) generated by the strategies A and
B, respectively (see [2–4]).

We assume that the function f is uniformly continuous, bounded and Lips-
chitzian in t and x on [0, T ] × R

n × A × B; the functions χ and θ are bounded
and Lipschitzian in t, x; and the following saddle point condition holds:

H(t, x, p) := max
β∈B

min
α∈A

〈p, f(t, x, α, β)〉 = min
α∈A

max
β∈B

〈p, f(t, x, α, β)〉

for any p ∈ R
n, (t, x) ∈ [0, T ]× R

n.
It is proved in [4, 13] that the differential game (4)–(3) has a value function

c : (t, x) → c(t, x) defined by the relation

c(t, x) = min
A

max
x(·) ∈

X1(t, x,A)

γ3(x(·)) = max
B

min
x(·) ∈

X2(t, x,B)

γ3(x(·)).

Thus, the upper value of the game coincides with the lower one for all (t, x) ∈
[0, T ]×R

n. The value function is bounded and Lipschitzian in t, x on [0, T ]×R
n.

3 Viscosity Solutions

We formulate differential inequalities defining the value function of the differ-
ential game (3,4) and compare them with corresponding differential inequalities
for the value functions of differential games (2,4) and (1,4).
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Proposition 1. A Lipschitz function c is the value function of differential game
(3) and (4) if and only if:

(i) for any (t, x) ∈ [0, T ]×R
n, c(T, x) = χ(T, x) and θ(t, x) ≤ c(t, x) ≤ χ(t, x);

(ii) for any point (s0, y0) ∈ [0, T ] × R
n such that c(s0, y0) ≤ χ(s0, y0) and any

function ϕ ∈ C
1 such that c−ϕ attains a local minimum at (s0, y0), the following

inequality holds
∂ϕ

∂t
(s0, y0) +H(s0, y0,

∂ϕ

∂y
(s0, y0)) ≤ 0; (5)

(iii) for any point (s0, y0) ∈ [0, T ] × R
n such that c(s0, y0) ≥ θ(s0, y0) and any

function ϕ ∈ C
1 such that c−ϕ attains a local maximum at (s0, y0), the following

inequality holds
∂ϕ

∂t
(s0, y0) +H(s0, y0,

∂ϕ

∂y
(s0, y0)) ≥ 0. (6)

The proof of Proposition 1 is given in [14].

Remark 1. If the relation θ(t, x) ≤ c(t, x) in (i) and the condition c(s0, y0) ≥
θ(s0, y0) in (iii) are omitted, relations (i)-(iii) define the value function of dif-
ferential game (2,4) (see [12]). If, additionally, the relation c(t, x) ≤ χ(t, x) in
(i) and the condition c(s0, y0) ≤ χ(s0, y0) in (ii) are omitted, relations (i)-(iii)
define the value function of differential game (1,4).

Remark 2. We call a Lipschitz function c satisfying relations (i)-(iii) of Propo-
sition 1 a generalized viscosity solution of the Hamilton-Jacobi equation

ct +H(t, x, cx) = 0.

Thus, a generalized solution exists and is unique.

4 Finite-Difference Schemes

In this section, an upwind operator (see [15] for the idea) is introduced, and
finite-difference schemes based on this operator are described.

Let ρ, h1, ..., hn be time and space discretization step sizes. The upwind op-
erator F is defined as follows:

F (c; t, ρ, h1, ..., hn)(x) = c(x) + ρmax
β∈B

min
α∈A

n
∑

i=1

(pRi f
+
i + pLi f

−

i ),

where fi = fi(t, x, α, β) are the right hand sides of the control system, and

a+ = max {a, 0}, a− = min {a, 0},

pRi = [c(x1, ..., xi + hi, ..., xn)− c(x1, ..., xi, ..., xn)]/hi,

pLi = [c(x1, ..., xi, ..., xn)− c(x1, ..., xi − hi, ..., xn)]/hi.
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Remark 3. Note that, if ρ is fixed, the time step operator can be restricted to
functions defined on rectangular grids with the step size hi in ith coordinate,
i = 1, n. Therefore, this operator will yield fully discrete finite difference schemes
when used in the approximation procedure considered below.

Let M = T/ρ + 1. Denote tm = mρ, m = 0, ...,M, and introduce the
following notation:

cm(xi1 , ..., xin) = c(tm, i1h1, ..., inhn),

χm(xi1 , ..., xin) = χ(tm, i1h1, ..., inhn),

θm(xi1 , ..., xin) = θ(tm, i1h1, ..., inhn).

In the case of functional (1), the finite-difference scheme be

cm−1 = F (cm; tm, ρ, h1, ..., hn), c
M = χM. (7)

In the case of functional (2), it is modified as follows:

cm−1 = min {F (cm; tm, ρ, h1, ..., hn), χ
m}, cM = χM. (8)

When the state constraint is presented, i.e. the functional (3) is considered,
the numerical scheme be

cm−1 = max
{

min {F (cm; tm, ρ, h1, ..., hn), χ
m}, θm

}

, cM = χM. (9)

The following convergence result holds.

Theorem 1. Let M be a bound of the right hand side of system (4). If
ρ

hi
≤

1

M
√
n
, then the grid functions obtained by the procedures (7), (8), and (9) con-

verge point-wise to the value functions of games (1,4), (2,4), and (3,4), respec-
tively, as ρ→ 0, hi → 0, and the convergence rate is max(

√
ρ,maxi

√
hi).

The proof of the Theorem is given in [14] and [16].

5 Example

It should be noted that high-dimensional computation (n ≥ 3) of value functions
of nonlinear differential games with state constraints is a very difficult problem.
Since about fifteen years, several groups are working on appropriate numerical
methods (see e.g. [17–21]), but only few three-dimensional problems are solved
numerically. The following example deals with a very famous unsolved problem.

In the PhD thesis by Pierre Bernhard [22] and in paper [23] by Joseph Lewin
and Geert Jan Olsder, a pursuit-evasion game deduced from the game of isotropic
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rockets [1] is considered:

ẋ = − Wy

Vp
sinφ+ Ve sinψ,

ẏ =
Wx

Vp
sinφ+ Ve cosψ − Vp,

V̇p = W cosφ.

(10)

Here, x and y are the coordinates of the evader (E) in the moving reference
system whose origin is at the position of the pursuer (P ), and the axis y is
directed along the velocity of P ; W is the magnitude of the acceleration of P ;
Vp the magnitude of the velocity of P ; φ the angle between the vectors of the

acceleration and velocity of P (we assume that −π/2 ≤ φ ≤ π/2, i.e. V̇p ≥ 0);
Ve the magnitude of the velocity of E; ψ the angle between the velocity vector
of E and the direction of y-axis (0 ≤ ψ ≤ 2π).

The target set is a a cylinder

M = {(x, y, Vp) : x2 + y2 ≤ 0.32}, (11)

and the state constraint set is given by

N = {(x, y, Vp) : a ≤ Vp ≤ b}, (12)

where a and b are positive numbers, which will be specified later.
It is observed in [23] that the classical homicidal chauffeur game [1] can be

deduced from (10). In fact, permitting only bang-bang controls of the pursuer,
φ = ±π/2, implies that cosφ = 0, and therefore Vp = const. Introduce a new
control parameter u = sinφ of the pursuer and allow it to assume values from the
interval [−1, 1] because the control system is linear with respect to u. Moreover,
setW ≡ 1, Vp ≡ 1, Ve ≡ 0.3, and introduce new control parameters, v1 = Ve sinψ
and v2 = Ve cosψ, of the evader. Reduce the target set (11) to M = {(x, y) :
x2 + y2 ≤ 0.32}. This yields the classical homicidal chauffeur game

ẋ = −yu+ v1, ẏ = xu+ v2 − 1, |u| ≤ 1,
√

v21 + v22 ≤ 0.3 (13)

whose numerical solutions are known and can be used for the verification of
computations applied to problem (10)–(12). Namely, solutions of (10)–(12) have
to converge to the solution of (13) as a and b go to 1 in (12).

The value function of differential game (10)–(12) is computed using the nu-
merical scheme (9). The spatial region and the grid size are chosen as [−10, 10]×
[−10, 10]× [0.1, 2] and 300× 300× 60, respectively. The time horizon T is equal
to 7, and the time step equals 0.01. The computation time is about 15 minutes
on a Linux SMP-computer with 8xQuad-Core AMD Opteron processors (Model
8384, 2.7 GHz) and shared 64 Gb memory.

Figures 1 and 2 show the computed three-dimensional set

{(x, y, Vp) : c(0, x, y, Vp) ≤ 0.3}. (14)
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Fig. 1. Level set (14) corresponding to the state constraint 0.8 ≤ Vp ≤ 1.2 (z-axis
measures Vp).

Fig. 2. Level set (14) corresponding to the state constraint 0.5 ≤ Vp ≤ 1.5 (z-axis
measures Vp).
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In the case of Figure 1, state constraint (12) is specified by a = 0.8 and b = 1.2,
whereas a = 0.5 and b = 1.5 for Figure 2.

Figure 3 shows the comparison of solutions of problems (10)–(12) and (13).
Curve 1 bounds the solvability set of problem (13) without any state constraints.
Curves 2 and 3 bound the sets

{(x, y) : c(0, x, y, 1) ≤ 0.3}, (15)

where c is as before the value function of problem (10) computed with a = 0.8
and b = 1.2 in the case of curve 2, and a = 0.5 and b = 1.5 in the case of curve 3.
It is seen that the closer a and b are to 1, the closer the corresponding curve is
to curve 1.

M

x

y

1

��✠

2 ❍❍❥

3
❍❍❨

Fig. 3. Comparison of solutions of problems (10)–(12) and (13). Curves 2 and 3 show
level set (15) in the case of the state constraints 0.8 ≤ Vp ≤ 1.2 and 0.5 ≤ Vp ≤ 1.5,
respectively. Curve 1 shows the solvability set of problem (13).

Figure 4 shows the case when the state constraint |y| ≤ 3 is additionally
imposed. The obtained set (14) is compared with the set given in Fig. 2.



Computation of Value Functions in Nonlinear Differential Games 9

Fig. 4. Comparison of the level set (14) corresponding to the state constraints 0.5 ≤
Vp ≤ 1.5 and |y| ≤ 3 (z-axis measures Vp) with the set from Fig. 2.

6 Conclusion

Our experience shows that the numerical method outlined in this paper is ap-
propriate for solving three- and even four-dimensional nonlinear problems with
state constraints. Next steps are to be aimed towards dimensions five and six,
which demands sparse representation of grid functions and operations on them,
bearing in mind supercomputing systems available now. Such results will allow
us to consider e.g. aircraft applications related to essentially nonlinear take-off
and landing problems with complex state constraints inherent for them.
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