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Abstract. The semilinear normal parabolic equations corresponding to
3D Navier-Stokes system have been derived. The explicit formula for so-
lution of normal parabolic equations with periodic boundary conditions
has been obtained. It was shown that phase space of corresponding dy-
namical system consists of the set of stability (where solutions tends to
zero as time t → ∞), the set of explosions (where solutions blow up
during finite time) and intermediate set. Exact description of these sets
has been given.
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1 Introduction

As well known (see e.g. [1],[2]), existence of weak solution to 3D Navier-Stokes
equations is proved with help of energy estimate, which is true because the im-
age B(v) of nonlinear operator from Navier-Stokes equations consists of vectors
tangent to sphere in the L2-space with the centrum in origin. If these vectors
would be tangent to sphere in Soblev H1-space, one could prove existence of
strong solution to 3D Navier-Stokes system by the methods similar to ones used
to prove existence of a weak solution. But this is not the matter: in this case
B(v) = Bτ (v)+Bn(v) where Bτ (v) is the component tangent to sphere inH1 and
Bn(v) is normal component. In this paper we change nonlinear operator B(v)
of input system on its normal part Bn(v). Obtained equations, which we call
Normal Parabolic Equations do not satisfy to analog in H1 of energy estimate
”‘in the most degree”’. We hope that investigation of these equations can help to
understand better the problems connected with solvability of 3d Navier-Stokes
system in the class of strong solutions.

In this paper we study Normal Parabolic Equations (NPE ) corresponding
to 3D Navier-Stokes system. In Section 2 we derive NPE. In Section 3 we study
some properties of NPE. The key property obtained there is existence of ex-
plicit formula for solution to NPE. In section 4 the structure of dynamical flow
corresponding to NPE is investigated.

⋆ The work has been fulfilled by RAS program ”Theoretical problems of modern math-
ematics‘”’, project ”‘Optimization of numerical algorithms of Mathematical Physics
problems”’.
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Note that NPE has been introduced in [3] where normal parabolic equation
corresponding to Burgers equation was studied. Here we generalize results from
[3] on the case of NPE corresponding to Navier-Stokes system and, besides,
continuer to develop the theory of NPE.

2 Semilinear Parabolic Equations of Normal Type

Our aim is to try to understand better how to investigate 3D Navier-Stokes sys-
tem in phase space of one time differentiable vector fields where energy estimate
is not true. To this end we derive some semilinear parabolic equation.

2.1 Navier-Stokes System and Helmholtz Equations

Let consider 3D Navier-Stokes equations with periodic boundary conditions:

∂tv(t, x)−∆v + (v,∇)v +∇p(t, x) = 0, div v = 0, (1)

v(t, . . . , xi, . . .) = v(t, . . . , xi + 2π, . . .), i = 1, 2, 3, (2)

v(t, x)|t=0 = v0(x) (3)

where t ∈ R+, x = (x1, x2, x3) ∈ R
3, v(t, x) = (v1, v2, v3) is the velocity vector

field of fluid flow,∇p is the gradient of pressure,∆ is Laplace operator, (v,∇)v =∑3
j=1 vj∂xj

v. Periodic boundary conditions (2) mean in fact that Navier-Stokes

equations (1) and initial conditions (3) are defined on torus T3 = (R/2πZ)
3
.

We transform problem (1)-(3) for velocity to the problem for curl of velocity
as unknown function:

ω(t, x) = curl v(t, x) = (∂x2
v3 − ∂x3

v2, ∂x3
v1 − ∂x1

v3, ∂x1
v2 − ∂x2

v1) (4)

Recall the following well-known formulas of vectorial analysis:

(v,∇)v = ω × v +∇
|v|2

2
, (5)

curl (ω × v) = (v,∇)ω − (ω,∇)v, if div v = 0, divω = 0 (6)

where ω × v = (ω2v3 − ω3v2, ω3v1 − ω1v3, ω1v2 − ω2v3) is vector product and
|v|2 = v21 + v22 + v23 . Let substitute (5) into the first equality of (1) and apply
to both parts of obtained equality operator curl. Then in virtue of (4),(6), and
formula curl∇F = 0 we obtain the Helmholtz equations

∂tω(t, x)−∆ω + (v,∇)ω − (ω,∇)v = 0 (7)

We add these equations with initial conditions

ω(t, x)|t=0 = ω0(x) (8)

where ω0 = curl v0.
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2.2 Normal Parabolic Equations (NPE) and Their Derivation

For each m ∈ Z+ = {j ∈ Z : j ≥ 0} we define the space

V m = V m(T3) = {v(x) ∈ (Hm(T3))3 : divv = 0,

∫

T3

v(x)dx = 0} (9)

where Hm(T3) is Sobolev space.
Multiplying Navier-Stokes system (1) on v scalarly in L2(T

3) we obtain after
integration by parts (on x) and integration on t well-known energy estimate

∫

T3

|v(t, x)|2dx+ 2

∫ t

0

∫

T3

|∇xv(τ, x)|
2dxdτ ≤

∫

T3

|v0(x)|
2dx (10)

that gives opportunity to prove existence of weak solutions to problem (1)-(3).
Unfortunately, this solution is not smooth enough to establish its uniqueness. If
in a hope to get existence of smooth solution to (1) we would try to get analog
of energy estimate in phase space V 1, multiplying (1) on v scalarly in V 1(T3)
we will not get analog of bound (10). Let try to understand situation passing
from Navier-Stokes to Helmholtz equations.

Using decomposition in Fourier series

v(x) =
∑

k∈Z3

v̂(k)eix·k, where v̂(k) = (2π)−3

∫

T3

v(x)e−ix·kdx,

x · k =
∑3

j=1 xjkj , k = (k1, k2, k3), and well-known formula curl curl v = −∆v
if div v = 0, we see that on space V m inverse operator to curl is well-defined and
is determined by the formula

curl−1ω(x) = i
∑

k∈Z3

k × ω̂(k)

|k|2
eix·k (11)

That is why operator
curl : V 1 −→ V 0

realized isomorphism of the spaces. Therefore sphere in V 1 for problem (1), (3)
is equivalent to sphere in V 0 for problem (7), (8).

Let denote nonlinear term of Helmholtz equation by B:

B(ω) = (v,∇)ω − (ω,∇)v (12)

(we did not indicate dependence B on v because it can be expressed via ω by
(11)).

Multiplying equality (12) on ω = (ω1, ω2, ω3) scalarly in V 0 and integrating
by parts we get

(B(ω), ω)V 0 = −

∫

T3

3∑

j,k=1

ωj∂jvkωkdx (13)
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that, generally saying, is not equal to zero. Just because of this 3D Helmholtz
equations do not possess energy estimate. In other words, operator B admits the
decomposition

B(ω) = Bn(ω) +Bτ (ω) (14)

where vector Bn(ω) is orthogonal to the sphere Σω = {u ∈ V 0 : ‖u‖V 0 = ‖ω‖V 0}
at the point ω, and vector Bτ (ω) is tangential to Σω at ω. Generally saying, both
operators Bn, Bτ in (14) are not equal to zero. Note that just the component
Bn 6= 0 prevents to derivation of energy bound and therefore it is quite possible
that the main difficulties obstructing to investigation of Navier-Stokes equations
are connected just with this operator. That is why there is reason to omit in
Helmholtz equations the component Bτ and to study on the first stage analog
of equations (7) in which nonlinear operator B(ω) is changed on its normal
component Bn(ω). Such equations we call Normal Parabolic Equations (NPE).

Let construct now normal parabolic equations with respect to sphere in V 0,
corresponding to problem (7), (8).

Since summand (v,∇)ω from (7) is tangential operator:
∫

T3

(v,∇)ω · ωdx = 0,

normal part of nonlinear operator from (7) is defined by nonlinear term (ω,∇)v.
We look it for in the form Φ(ω)ω where Φ is unknown functional that is found
by equation

∫

T3

Φ(ω)ω(x) · ω(x)dx =

∫

T3

(ω(x),∇)v(x) · ω(x)dx (15)

Relation (15) implies desired formula for Φ:

Φ(ω) =

{∫
T3(ω(x),∇)curl −1ω(x) · ω(x)dx

/∫
T3 |ω(x)|

2dx, ω 6= 0,
0, ω ≡ 0

(16)

where curl −1ω(x) is defined in (11).
So, normal parabolic equations corresponding to system (7) are defined as

follows:
∂tω(t, x)−∆ω − Φ(ω)ω = 0, divω = 0 (17)

where functional Φ is defined in (16). These equations supplied with initial con-
ditions (8) and periodic boundary conditions are the main object of our investi-
gation in this paper.

3 Properties of Normal Parabolic Equations

3.1 Explicit Formula for Solution of NPE

In this subsection we derive explicit formula for NPE solution. This is the key
result because it gives the possibility to establish many important properties
on NPE. Some of them will be obtained below in next sections. The following
assertion is true:
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Lemma 1. Let S(t, x, y0) be resolving operator of the following Stokes system
with periodic boundary conditions:

∂ty(t, x)−∆y(t, x) = 0, div y = 0, y(t, x)|t=0 = y0(x), (18)

i.e. S(t, x, y0) = y(t, x) (we assume, of course, that div y0 = 0). The solution of
problem (17),(8) has the form

ω(t, x;ω0) =
S(t, x;ω0)

1−
∫ t

0
Φ(S(τ, x;ω0))dτ

(19)

The proof of this lemma is reduced to substitution (19) into (17) and direct
checking of obtained equality.

3.2 Properties of Functional Φ

Let s ∈ R. Recall that Sobolev space Hs(T3) is the space of periodic real-valued
distributions z(x) possessing with the finite norm

‖z‖2Hs(T3) ≡ ‖z‖2s =
∑

k∈Z3\{0}

|k|2s|ẑ(k)|2 < ∞ (20)

where ẑ(k) are Fourier coefficients of z.
We will use the following generalization of spaces (9) of solenoidal vector

fields:

V s ≡ V s(T3) = {v(x) ∈ (Hs(T3))3 : divv(x) = 0,

∫

T3

v(x)dx = 0}, s ∈ R

(21)

Lemma 2. Let Φ(u) be functional (16). There exists a constant c > 0 such that
for each u ∈ V 3/2

|Φ(u)| ≤ c‖u‖3/2 (22)

This lemma is proved similarly to analogous bound from [3].

Lemma 3. Let Φ be functional (16). For each β < 1/2 there exists a constant
c1 > 0 such that for each y0 ∈ V −β(T3), t > 0

∣∣∣∣
∫ t

0

Φ(S(τ, ·, y0))dτ

∣∣∣∣ ≤ c1‖y0‖−β (23)

where S(t, ·, y0) is resolving operator of problem (18).

Proof. Using (22) we get

∣∣∣∣
∫ t

0

Φ(S(τ, ·, y0))dτ

∣∣∣∣ ≤ c

∫ t

0

e−τ/2


∑

k 6=0

(|ŷ0(k)|
2|k|−2β)|k|3+2βe−(k2−1)τ




1/2

dτ

(24)
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where ŷ0(k) are Fourier coefficients of y0. Solution ρ̂ = ρ(t) of extremal problem

f(t, ρ) = ρ3+2βe−(ρ2−1)t → max, ρ ≥ 1

is defined with expression ρ(t) =
√

3+2β
2t , and

f(t, ρ(t)) =





(
3+2β
2t

) 3+2β
2

e−(3+2β−2t)/2, t ≤ 3+2β
2 ,

1, t ≥ 3+2β
2

(25)

Substitution (25) into (24) implies (23).

Remark 1. Lemma 3 implies that the functional from left side of bound (23)
is well defined for y0 ∈ V −β(T3) with β < 1/2. In particular, in virtue of this
Lemma and (19) solution of problem (17),(8) is well defined for each initial
condition ω0 ∈ V 0, and therefore our choice V 0 as phase space for corresponding
dynamical system is correct. Note also that simple modification of Lemma 3
proof gives continuity of the functional from left side in (23) with respect to
y0 ∈ V −β , β < 1/2.

4 The Structure of NPE Dynamics

The aim of this section is to find out the main feature of dynamical flow corre-
sponding to NPE. We decompose the phase space of the dynamical system on
three sets with different behavior of dynamical flow inside each of them.

4.1 Distinctive Sets of Phase Space

Let give definitions of three subsets of phase space for NPE. Recall that we take
V 0(T3) ≡ V 0 as the phase space for problem (17),(8).

Definition 1. The set M− ≡ M−(α) ⊂ V 0 of initial conditions ω0 such that
the solution ω(t, x;ω0) of problem (17),(8) exists and satisfies inequality

‖ω(t, ·;ω0)‖0 ≤ α‖ω0‖0e
−t ∀t > 0 (26)

is called the set of stability. Here α > 1 is a certain fixed number.

The following simple sufficient condition for belonging to M−(α) is true in
virtue of (19): If ω0 ∈ V 0 satisfies the bound

sup
t∈R+

∫ t

0

Φ(S(τ, ·;ω0))dτ ≤
α− 1

α
(27)

then ω0 ∈ M−(α).
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Definition 2. The set M+ ⊂ V 0 of initial conditions ω0 from (17),(8) such that
corresponding solution ω(t, x;ω0) exists only on a finite interval t ∈ (0, t0) with
t0 > 0 depending on ω0, and blows up at t = t0 is called the set of explosions.

In virtue of formula (19) for solution ω(t, x;ω0)

M+ = {ω0 ∈ V 0 : ∃t0 > 0

∫ t0

0

Φ(S(τ, ·;ω0))dτ = 1} (28)

The minimal magnitude from the set {t0} for which equality in (28) holds is
called the time of explosion.

Definition 3. The collection

MI(α) = V 0 \ {M−(α) ∪M+} (29)

is called intermediate set.

Remark 2. Definitions of stability and intermediate sets include parameter α > 1
and from this point of view they are not absolute. Nevertheless they are conve-
nient for using.

We study below the properties of these sets and, in particular, we show that
all these sets are nonempty. We begin from the set of stability. This set is the
most important for us.

4.2 Subsets Belonging to the Set of Stability

Let ρ > 0, β < 1/2. Introduce the set

Elβρ = {v ∈ V 0(T3) : ‖v‖2−β =
∑

k∈Z3\{0}

|v̂(k)|2

|k|2β
≤ ρ2}

= {v ∈ V 0(T3) :

∞∑

k∈Z3\{0}

|v̂(k)|2

ρ2|k|2β
≤ 1}, (30)

which we can interpret as ellipsoid in V 0(T3) with length of axes directed along
functions eik·x, e−ik·x equal to ρ|k|β . Since ρ|k|β → ∞ as |k| → ∞, this ellipsoid
is unbounded in V 0.

Lemma 4. Let c1ρ < 1 and ρ ≤ (α − 1)/(αc1) where c1 is the constant from
(23). Then

Elβρ ⊂ M−(α) (31)

where the set Elβρ is defined in (30).
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Proof. Note that solution S(t, x, ω0) of problem (18) with y0 = ω0 satisfies in-
equality:

‖S(t, ·, ω0)‖
2
0 =

∑

k 6=0

e−2|k|2t|ω̂0(k)|
2 = e−2t

∑

k 6=0

e−2(|k|2−1)t|ω̂0(k)|
2 ≤ e−2t‖ω0‖

2
0

(32)
Let ω0 ∈ Elβρ , i.e. ‖ω0‖−β ≤ ρ. Formula (19) and inequalities (32), (23) imply
(26) if α ≥ 1/(1−c1ρ). But the last inequality is equivalent to ρ ≤ (α−1)/(αc1).

This Lemma is analog of local existence theorem for 3D Navier-Stokes equa-
tions obtained in [4] with help of Fujita-Kato approach [5] and of local existence
theorem for NPE connected with Burgers equation (see [3]). The proof of Lemma
4 is essentially easier then proofs of aforementioned results because here we use
explicit formula (19) for solutions.

We show in this subsection that, actually, M−(α) is essentially wider than
Elβρ . For this goal we consider one infinite-dimensional subspace and show that
it belongs to M−(α)

Let introduce the following subset UL of Z3 \ {0}:

UL = {ξ ∈ Z
3 \ {0} : ξ + η − ζ 6= 0 ∀ξ, η, ζ ∈ UL} (33)

An example of the subset belonging to UL is the following set:

{k = (k1, k2, k3) ∈ Z
3 \ {0} : k1 + k2 + k3 is odd number }

Lemma 5. The subspace

L = {ω0 =
∑

k∈UL

(zke
ik·x + zke

−ik·x), zk ∈ C
3, zk · k = 0} ⊂ V 0(T3) (34)

belongs to M−(α) if UL is the set (33). Moreover

∀ω0 ∈ L Φ(S(t, ·, ω0)) ≡ 0 ∀t ≥ 0 (35)

The proof of this Lemma is similar to analogous Lemma from [3].
Lemmas 4, 5 imply that M−(α) 6= ∅.

4.3 Certain Sets of Unit Sphere of V 0

Let denote the unit sphere of the phase space V 0 as follows:

Σ = {v ∈ V 0 : ‖v‖0 = 1} (36)

To understand better the structure of phase flow corresponding to problem
(17),(8) we introduce on Σ several sets. Define

A−(t) = {v ∈ Σ :

∫ t

0

Φ(S(τ, ·, v))dτ ≤ 0},

A+(t) = {v ∈ Σ :

∫ t

0

Φ(S(τ, ·, v))dτ ≥ 0},

A0(t) = {v ∈ Σ :

∫ t

0

Φ(S(τ, ·, v))dτ = 0},
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and
A− = ∩t≥0A−(t), A+ = ∩t≥0A+(t), A0 = ∩t≥0A0(t) (37)

All these sets are closed and nonempty. For instance, A0 6= ∅ in virtue of Lemma
5. Sets A±(t), A± possess nonempty interior in topology of Σ, i.e. in the topology
induced on Σ by topology of the space V 0. This assertion follows from continuity
of the functional V −β ∋ v →

∫ t

0
Φ(S(τ, ·, v))dτ with β < 1/2 and in particular

for β = 0 (see Remark 1). Evidently, A0 = A− ∩A+.
Linearity on v of operator S(t, x, v) and oddness of Φ(v) with respect to v

imply

Lemma 6.
v ∈ A− if and only if − v ∈ A+

Introduce also the sets

B+ = Σ \A− ≡ {v ∈ Σ : ∃t0 > 0

∫ t0

0

Φ(S(τ, ·, v))dτ > 0}, B− = Σ \A+

(38)
It is easy to see that the set B+ is open in topology of Σ. Moreover, the boundary
∂B+ of set B+ is defined by the relation

∂B+ = {v ∈ Σ : ∀t > 0

∫ t

0

Φ(S(τ, ·, v))dτ ≤ 0, ∃t0 > 0 :

∫ t0

0

Φ(S(τ, ·, v))dτ = 0}

It is clear that A0 ⊂ ∂B+ and ∂B+ \A0 6= ∅.

4.4 On Structure of Phase Space V
0

Let us introduce the following function defined on the set B+ of sphere Σ:

B+ ∋ v → b(v) = max
t≥0

∫ t

0

Φ(S(τ, v))dτ (39)

Evidently, b(v) > 0 and b(v) → 0 as v → ∂B+. Let ρ ∈ (0, 1]. We define the
following map Γρ(v) that plays the key role in description of structure of phase
flow generated by boundary value problem (17),(8):

B+ ∋ v → Γρ(v) =
ρ

b(v)
v ∈ V 0 (40)

where b(v) is function (39). Note that ‖Γρ(v)‖0 → ∞ as v → ∂B+.

Theorem 1. Let α > 1 be a parameter from definition of the stability set M−(α)
and ρ = (α − 1)/α. Then the image Γρ(v), v ∈ B+ of the map Γρ divides the
space V 0 on two separate parts. The part containing origin coincides with the set
of stability M−(α). The part of V 0 between Γρ(v), v ∈ B+ and Γ1(v), v ∈ B+

coincides with intermediate space MI(α), and the rest part of V 0 coincides with
the set of explosions M+.

The proof of this theorem will be given in some other place.
Theorem 1 implies that M+ 6= ∅ and MI(α) 6= ∅.



10 Normal Parabolic Equations

References

[1] Ladyzhenskaya, O.A.: The Mathematical Theory of Viscous Incompressible Flow.
Gordon and Breach, New York (1969)

[2] Temam, R.: Navier-Stokes Equations – Theory and Numerical Analysis. AMS
Chelsea Publishing, Providence (2001)

[3] Fursikov, A.V.: On one semilinear parabolic equation of normal type. Mathematics
and life sciences: Proceedings of International Humbold Kolleg Conference, August
05-08, 2010, Kyiv, Ukraine, De Gruyter (to appear in 2012)

[4] Fursikov, A.V.: Local Existence Theorems with Unbounded Set of Input Data and
Unboundedness of Stable Invariant Manifolds for 3D Navier-Stokes Equations. J.
Discr. and Cont. Dyn. Syst. Series S, 3(2), 269-290 (2010)

[5] Fujita, H., T. Kato, T.: On the Navier-Stokes initial value problem. J. Arch. for
Rat. Mech. and Anal., 16, 269-315 (1964)


