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Abstract. The electric market regulation in Spain (MIBEL) establishes
the rules for bilateral and futures contracts in the day-ahead optimal bid
problem. Our model allows a price-taker generation company to decide
the unit commitment of the thermal units, the economic dispatch of the
bilateral and futures contracts between the thermal units and the opti-
mal sale bids for the thermal units observing the MIBEL regulation. The
uncertainty of the spot prices is represented through scenario sets. We
solve this model on the framework of the Branch and Fix Coordination
metodology as a quadratic two-stage stochastic problem. In order to gain
computational efficiency, we use scenario clusters and propose to use
perspective cuts. Numerical results are reported.

Keywords: Liberalized Electricity Market, Optimal Bid, Stochastic Pro-
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1 Introduction

This work is applied to the Iberian Electricity Market (MIBEL) comprising the
Spanish and Portuguese electricity systems. The MIBEL market includes in the
short-term: the day-ahead market (DAM) and a set of balancing, reserve and
adjustment markets (intraday markets); these markets are complemented with
the medium- and long-term mechanisms: a derivatives market and different kinds
of bilateral contracts. This structure is similar to other European electricity
markets and explains why generation companies can no longer optimize their
short-term generation planning decisions, i.e. their bidding strategies, without
considering the relationship between the short-term bid and the medium-term
physical products. The MIBEL’s directives dictate specific rules describing how
these medium-term mechanisms should be included into the DAM bid. This
work deals with the most relevant medium-term mechanisms in the MIBEL:
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the national bilateral contracts (BC) and the future physical contracts (FC).
Stochastic programming techniques are applied to maximize the expected value
of the utility’s profit coming from the day-ahead market, where the significative
random variable is the auction clearing price of the day-ahead electricity market.
This random variable is modeled through a set of scenarios of the forecasted
prices. The set of scenarios is used to feed a two-stage stochastic optimization
model that finds the optimal day-ahead bid of a price-taker GenCo (an electrical
utility without influence over the market prices) operating in the MIBEL and
holding bilateral and physical futures contracts.

The extensive form of the deterministic equivalent of this stochastic program-
ming problem will be a mixed integer quadratic programming problem (MIQP),
which is difficult to solve efficiently, particularly for large-scale instances. Sev-
eral algorithmic approaches can be adopted to overcome this difficulty. In [2] the
quadratic objective function of this problem is approximated by a polyhedral
outer approximation by means of perspective cuts so that we can exploit the
efficiency of general-purpose solvers for mixed integer linear problems (MILP).
An alternative to the perspective cuts methodology is the Second-Order Cone
Program reformulation (SOCP, [9]), but for quadratic problems the perspective
cuts reformulation was reported to be more efficient [6]. Finally, the Branch-and-
Fix Coordination (BFC) method has been used successfully to solve two-stage
stochastic mixed integer linear problems [3] to solve the day-ahead optimal bid
problem. In this work we propose an combination between BFC and PC to
efficiently solve the optimal day-ahead bid problem.

2 Day-ahead electricity market bid with futures and
bilateral contracts model (DAMB-FBC)

In this section the model (DAMB-FBC) is formulated as a two-stage stochastic
programming problem that allows a price-taker generation company to opti-
mally decide the unit commitment of its thermal units, the economic dispatch of
the bilateral and futures contracts between the thermal units, and the optimal
generation bid of the committed units to the MIBEL’s day-ahead market. The
objective function of the model represents the expected profits of the GenCo’s
participation in the day-Ahead market. The constraints assure that the MIBEL’s
rules and the operational restrictions of the units are respected. The main deci-
sion variables are the ones that model the start-up and shut-down of the units,
the quantity that will be bid at instrumental price and the scheduled energy
committed to the bilateral and the futures contracts settlement.

2.1 Parameters

The (DAMB-FBC) model considers a price-taker GenCo owning a set of thermal
generation units I that bid to the t ∈ T = {1, 2, .., 24} hourly auctions of the
DAM. The parameters for the ith thermal unit are:
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– cbi , c
l
i and cqi , generation costs with constant, linear and quadratic coefficients

(e, e/MWh and e/MWh2 respectively).

– P i and P i, upper and lower bounds on the hourly energy generation (MWh).

– coni and coffi , start-up and shut-down costs (e).

– toni and toffi , minimum operation and minimum idle time (h).

A base load physical futures contract j ∈ F is defined by:

– Uj , the set of generation units allowed to cover the FC j.

– LF
j , the amount of energy (MWh) to be procured each interval of the delivery

period by the set Uj of generation units to cover contract j.

– λF
j , the price of contract j (e/MWh).

A base load bilateral contract k ∈ B is defined by:

– LB
k , the amount of energy (MWh) to be procured at each interval of the

delivery period by the set of available generation units to cover the BCs.

– λB
k , the price of the contract k (e/MWh).

The random variable λD
t , the clearing price of the tth hourly auction of the DAM,

is represented in the two-stage stochastic model by a set of scenarios s ∈ S, each
one with its associated clearing price for each DAM auction t ∈ T :

– λD,s
t clearing price for auction t at scenario s (e/MWh).

– P s probability of scenario s.

2.2 Variables

Those decision variables that doesn’t depend on the scenarios are called first
stage (or here-and-now) variables and in our formulation are, for each t ∈ T and
i ∈ I:

– uti, the unit commitment (binary)

– cuti, cdti, the start-up/shut-down costs variables.

– qti, the instrumental price offer bid.

– ftij , the scheduled energy for FC j ∈ F .

– bti, the scheduled energy for the pool of BCs .

Decision variables that can adopt different values depending on the scenario are
called second stage variables and in our formulation are, for each t ∈ T , i ∈ I
and scenario s ∈ S:

– gsti, the total generation.

– psti, the matched energy in the day-ahead market.
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2.3 Contraints

Bilateral and futures contracts constraints The coverage of both the phys-
ical futures contracts and the bilateral contracts must be guaranteed. The con-
straints for each futures contract are:

∑

i∈Uj

ftij = LF
j t ∈ T , j ∈ F (1)

ftij ≥ 0 t ∈ T , j ∈ F , i ∈ I (2)

and the bilateral contract constraints are:
∑

i∈I

bti =
∑

k∈B

LB
k t ∈ T (3)

0 ≤ bti ≤ P iuti i ∈ I, t ∈ T (4)

where LB
k is the energy that has to be settled for contract k ∈ B

Day-ahead market and total generation constraints As we have intro-
duced, we will use the value of the matched energy in our formulation. The
matched energy is the accepted energy in the clearing process, that is, the en-
ergy generated that will be rewarded at the clearing price. This matched energy
is uniquely determined by the sale bid and the clearing price and it will play a
central role in the presented model [2].

The MIBEL’s rules affecting the day-ahead market establishes the relation
between the variables representing the matched energy psti, the energy of the
bilateral contracts bti, the energy of the futures contracts ftij , the instrumental
price offer bid qti, and the commitment binary variables uti. The energies L

F
j and

LB
k must be integrated in the MIBEL’s DAM bid observing the two following

rules:

1. If generator i contributes with ftij MWh at period t to the coverage of the
FC j, then the energy ftij must be offered to the pool for free (instrumental

price bid).
2. If generator i contributes with bti MWh at period t to the coverage of any

of the BCs, then the remaining production capacity P i − bti must be bid to
the DAM.

These rules can be included in the model by means of the following set of con-
straints:

psti ≥ qti i ∈ I, t ∈ T , s ∈ S (5)

psti ≤ P iuti − bti i ∈ I, t ∈ T , s ∈ S (6)

qti ≥ P iuti − bti i ∈ I, t ∈ T , s ∈ S (7)

qti ≥
∑

j | i∈Uj

ftij i ∈ I, t ∈ T , s ∈ S (8)

where:
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(5) and (6) ensure respectively that the matched energy psti will be greater
than the instrumental price bid qti and less than the total available energy
not allocated to BC.
(7) and (8) guarantee respectively that the instrumental price bid will be
greater than the minimum generation output of the unit and greater than
the contribution of the unit to the FC coverage.

Please note that (2) together with (8) assures that qti will be always non-
negative. The total generation level of a given unit i, gsti, is defined as the addition
of the allocated energy to the BC plus the matched energy of the DAM:

gsti = bti + pstii ∈ I, t ∈ T , s ∈ S (9)

Contraints (1)-(9) assure that gsti will be always either zero or gsti ∈ [P i, P i],
that is:

P iuti ≤ gsti ≤ P iuti, i ∈ I, t ∈ T , s ∈ S (10)

Unit commitment constraints This section includes the formulation for the
unit commitment of the thermal units [2]. The first two sets of constraints model
the start-up and shut-down costs and the next ones control minimum operation
and idle time for each unit. First, the start-up and shut-down costs are modeled:

cuti ≥ coni [uti − u(t−1)i] i ∈ I, t ∈ T \ {1} (11)

cdti ≥ coffi [u(t−1)i − uti] i ∈ I, t ∈ T \ {1} (12)

cuti, c
d
ti ≥ 0 i ∈ I, t ∈ T (13)

uti ∈ {0, 1} i ∈ I, t ∈ T (14)

The initial state of each thermal unit i can be taken into account through the
parameters Gi and Hi that represent, respectively, the number of the initial time
periods along which the thermal unit must remain on (Gi) or off (Hi). These
conditions are imposed by the following set of constraints:

Gi∑

j=1

(1− uji) = 0 and

Hi∑

j=1

uji = 0, i ∈ I (15)

Finally, the minimum up and down time, toni and toffi are imposed, up to the

periods |T |−(toni −1) and |T |−(toffi −1), through the following set of constraints:

t+toni −1∑

n=t

uin ≥ toni [uti − u(t−1)i] t = Gi + 1, . . . , |T | − toni + 1, i ∈ I

(16)

t+t
off
i −1∑

n=t

(1− uni) ≥ toffi [u(t−1)i − uti] t = Hi + 1, . . . , |T | − toffi + 1 i ∈ I

(17)
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and for the last toni − 1 and toffi − 1 time periods:

|T |∑

n=t

(uni − [uti − u(t−1)i]) ≥ 0 t = |T | − toni + 2, . . . , |T |, i ∈ I (18)

|T |∑

n=t

(1− uni − [u(t−1)i − uti]) ≥ 0 t = |T | − toffi + 2, . . . , |T |, i ∈ I (19)

2.4 Objective function

The quadratic function that gives the long-run expected profits of the GenCo
after the participation in the DAM is:

minEλD

[
C(u, cu, cd, g, p;λD)

]
=

∑

t∈T

∑

i∈I

(
cuti + cdti + cbiuti + (20)

+
∑

s∈S

P s
[
(clig

s
ti + cqi (g

s
ti)

2)− λD,s
t psti

] )
, (21)

where the right hand side of (20) is the on/off fixed cost of the unit commitment
of the thermal units, deterministic and independent of the realization of the
random variable λD,s

t and (21) represents the expected value of the benefits
from the DAM. The term between parenthesis corresponds to the expression of
the quadratic generation costs associated to the total generation of the unit gsti
while the last term, λD,s

t psti computes the incomes from the DAM due to a value
psti of the matched energy.

Please note that the constant incomes from the BC and FC, i.e.
∑

k∈B

λBC
k LBC

k

and
∑

t∈T , j∈J

(λFC
j − λ̄D

t )LFC
j , have been dropped from the objective function.

2.5 Model (DAMB-FBC)

The model defined so far can be represented as:

(DAMB-FBC)





min EλD

[
C(u, cu, cd, g, p ;λD)

]

s.t.
Eq. (1)− (4) BC and FC constraints
Eq. (5)− (9) DAM and total gen. constraints
Eq. (11)− (19) Unit commitment constraints

Model (DAMB-FBC) is the optimization problem associated with the two-
stage stochastic programming problem with a set S of scenarios for the spot
price λD

t , where t ∈ T . This optimization problem is a convex MIQP with a well
defined global optimal solution.
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3 QBFC method

Model (DAMB-FBC) can be rewritten as the so-called Deterministic Equivalent
Model (DEM)

minimize ctδ +
∑

s∈S

P sqs(x, ys)

subject to : la ≤ A

[
δ
x

]
≤ ua,

lst ≤ T s



δ
x
ys


 ≤ us

t , s ∈ S,

x ≥ 0, y ≤ ys ≤ y, s ∈ S,

δ ∈ {0, 1}nδ ,

where δ = u, x = (cu, cd), y = (g, p), q(x, y) = btxx + btyy+ +ytQyyy, and
Qyy being a diagonal matrix.

As is showed by [3] the compact representation (DEM) can be written as a
splitting variable representation; i.e., δ and x are respectively replaced by δs and
xs, for s ∈ S. So, we have

(MIQP) minimize
∑

s∈S

P s(ctδs + qs(xs, ys))

subject to : la ≤ A

[
δs

xs

]
≤ ua, s ∈ S,

lst ≤ T s



δs

xs

ys


 ≤ us

t , s ∈ S,

xs ≥ 0, y ≤ ys ≤ y, δs ∈ {0, 1}nδ , s ∈ S,

(NACδ) δs − δs
′

= 0, ∀s, s′ ∈ S : s 6= s′,

(NACx) xs − xs′ = 0, ∀s, s′ ∈ S : s 6= s′,

where NACδ and NACx are the nonanticipativity constraints.
In this method (DEM) is solved by using a Branch-and-Fix-Coordination

scheme (BFC) for each scenario s ∈ S to fulfill the integrality condition (IC)
on the variables δ, so that the NACδ are also satisfied when selecting branching
nodes and branching variables by the Twin-Node-Families concept (TNF), which
was introduced by [1].

A similar approach to that suggested in [3] is used in this work to coordinate
the selection of the branching node and branching variable for each scenario-
related BF tree, such that the NACδ are satisfied when fixing δs, for all s ∈ S,
either to 1 or to 0. A TNF integer set is a set of integer BF nodes (i.e. they
verify IC), one per BF tree, in which the NACδ are verified. More details about
this metodology can be found in [8].
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When the number of scenarios is very hight, in order to gain computational
efficiency we can take scenario clusters; i.e., instead a submodel for each scenario
s ∈ S we can use a submodel (MIQPp) for each scenario cluster Sp ⊂ S with

p = 1, . . . , p̂, where Sp ∩ Sp′

= ∅, for all p 6= p′, and ∪p̂
p=1S

p = S,

(MIQPp) minimize
∑

s∈Sp

P s(ctδp + qs(xp, ys)), (22)

subject to : la ≤ A

[
δp

xp

]
≤ ua, (23)

lst ≤ T s



δp

xp

ys


 ≤ us

t , s ∈ Sp, (24)

xp ≥ 0, y ≤ ys ≤ y, s ∈ Sp, δp ∈ {0, 1}nδ , (25)

These submodels are linked by the NACs δp − δp
′

= 0 and xp − xp′

= 0, for
all p, p′ ∈ {1, . . . , p̂} such that p 6= p′.

In order to gain computational efficiency we propose to use perspective cuts
(PC) [5, 2] to solve the quadratic subproblems in each node of the TNF. Then
MIQPp becomes:

min
∑

s∈Sp

P s

{(
btxx+ xtQxxx

)
+

( n∑

i=1

vsi

)}

s.t.: vsi ≥ (2qsiiyi + bsi )y
s
i + (ci − qsiiy

2
i
)δsi , i ∈ {1, . . . , n}, s ∈ Sp,

vsi ≥ (2qsiiyi + bsi )y
s
i + (ci − qsiiy

2
i )δ

s
i , i ∈ {1, . . . , n}, s ∈ Sp,

Eq. (23)− (25).

These methods have been implemented in C++ with the help of Cplex 12.1 to
solve only the quadratic subproblems. In this work two algorithmic alternatives
have been considered:

⊲ QBFC: coordination of δ in the TNF of the BF trees for clusters p ∈
{1, . . . , p̂} without using PCs.

⊲ QBFC-PC: coordination of δ in the TNF of the BF trees for clusters p ∈
{1, . . . , p̂} using PCs.

For our instances the number of scenarios in each cluster is the same, |Sp| =
|S|/p̂. Each cluster contains |Sp| consecutive scenarios, starting from the first
one and following in natural order.

4 Numerical Tests

These instances are based on the liberalized electricity market model suggested
in [2]. In these problems Qxx is the zero matrix, as a result, when we use per-
spective cuts the subproblem to solve in each node is linear. The tests have been
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performed on HP with Intel(R) Core(TM)2 Quad CPU Q8300 2.50GHz 4 CPU
under SUSE Linux Enterprise Desktop 11 (x86 64).

In Table 1 |S| means the number of scenarios, |T | the number of periods, “#
var” the number of continuous variables, “# varPCF ” the number of continuous
variables for the PC formulation, “# bin” the number of binary variables, and
“# constr” the number of constraints for (DEM).

Table 1. Test problems

Prob. |S| |T | # var # varPCF # bin # constr

P01 10 12 1296 1776 48 1788
P02 20 12 2256 3216 48 3228
P03 30 12 3216 4656 48 4668
P04 40 12 4176 6096 48 6108
P05 50 12 5136 7536 48 7548
P11 10 24 2592 3552 96 3600
P12 20 24 4512 6432 96 6480
P13 30 24 6432 9312 96 9360
P14 40 24 8352 12192 96 12240
P15 50 24 10272 15072 96 15120

For every problem |F| = |B| = 2 and |I| = 4. If we use the PC formulation,
the problem increases the number of variables in m = |T | · |I| · |S| and the
number of constraints in 2 ·m.

Table 2. Computational results: CPU-times

Prob. p̂ QBFC QBFC-PC ratio # PC

P01 2 10.1 3.4 0.34 280
P02 4 18.7 8.7 0.47 825
P03 5 2153.0 39.8 0.02 1685
P04 5 50.0 45.1 0.90 1491
P05 5 113.7 19.5 0.17 1276
P11 2 86.8 27.4 0.32 513
P12 4 469.7 50.3 0.11 1821
P13 5 687.3 176.6 0.26 3454
P14 5 1198.0 276.7 0.23 4239
P15 5 1190.9 246.3 0.21 2592

In Table 2 below the headings QBFC are the times in CPU-seconds used for
solving problems with the number of scenario cluster given below the heading
p̂ and by solving the quadratic subproblem QPp for each node using Cplex.
Column QBFC-PC gives us the CPU-seconds and indicates that the quadratic
subproblems QPp have been solved by using perspective cuts, which means that
instead of solving a quadratic problem QPp in each node of a TNF for p ∈
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{1, 2, . . . , p̂}, a linear problem is solved. Also, “ratio”=QBFC−PC
QBFC gives us the

ratio of CPU-times. Note that the running time with PC is a 30% of the running
time without PC (average). The last column, “# PC”, means the number of
perspective cuts generated in each test.

5 Conclusions

We have presented an Optimal Bidding Model for a price-taker generation com-
pany operating both in the MIBEL Derivatives and Day-Ahead Electricity Mar-
ket (DAMB-FBC). The model developed finds the optimal bid for the spot mar-
ket, the optimal allocation of the physical futures and bilateral contracts among
the thermal units and the unit commitment following in detail the MIBEL rules.
The (DAMB-FBC) has been solved both with the standard BFC method and
with a PC variation which reduces the running time to a 30% on the average.
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4. Escudero L.F., Gaŕın M., Merino M., Pérez G. (2012). An algorithmic framework
for solving large-scale multistage stochastic mixed 0-1 problems with nonsymmetric
scenario trees. Computers & Operations Research 39(5):1133–1144.

5. Frangioni A., Gentile C. (2006) Perspective cuts for a class of convex 0-1 mixed
integer programs. Mathematical Programming 106:225–236.

6. Frangioni A., Gentile C. (2009) A computational comparison of reformulations of
the perspective relaxation: SOCP vs. cutting planes, Operations Research Letters
37:206-210.

7. Hull J.C. (2002) Options, futures and other derivatives, 5th edn. Prentice-Hall
International, Englewood Cliffs.

8. Mijangos E. (2011) An algorithm for two-stage stochastic quadratic problems. Pro-
ceedings of the 25th IFIP TC7 Conference, Berlin.

9. Tawarmalani M., Sahinidis N. (2001) Semidefinite relaxations of fractional pro-
grams via novel convexification techniques. Journal of Global Optimization 20:137–
158.


