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Abstract. We present a nonlinear model predictive framework for closed-
loop control of two-phase flows governed by the Cahn-Hilliard Navier-
Stokes system. We adapt the concept for instantaneous control from [6,
12, 16] to construct distributed closed-loop control strategies for two-
phase flows. It is well known that distributed instantaneous control is
able to stabilize the Burger’s equation [16] and also the Navier-Stokes
system [6, 12]. In the present work we provide numerical investigations
which indicate that distributed instantaneous control also is well suited
to stabilize the Cahn-Hilliard Navier-Stokes system.
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1 Introduction

The aim of this work is the development of numerical methods for closed-loop
control of two-phase flows governed by the Cahn-Hilliard Navier-Stokes system.
The approach is based on an inexact variant of model predictive control called
instantaneous control. Instantaneous control in the context of flow control is
proposed in e.g. [5, 6, 14], and for distributed control of the Navier-Stokes system
is analyzed in [12], where among other things it is shown that the method is
able to exponentially stabilize given solution states supposing certain smallness
assumptions on the initial conditions. For an overview in the field of nonlinear
model predicitve control we refer to [20, 21] and also to the monograph [9], where
also further references can be found.

The outline of this paper is as follows. In section 2 we describe the concept
of nonlinear model predictive control as it is used in the present work, and also
introduce instantaneous control. In section 3 we present a brief introduction
to the Cahn-Hilliard Navier-Stokes system, including its numerical treatment.
In section 4 we discribe the instantaneous control strategy for the Cahn-Hilliard
Navier-Stokes system and demonstrate its performance at morphing a circle into
a square in section 5. We end with some conclusions formulated in section 6
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2 Nonlinear Model Predictive Control

The aim of model predictive control consist in steering or keeping the state of a
dynamical system to or at a given desired trajectory. To fix the concept, we are
going to apply it to the Cahn-Hilliard Navier-Stokes system. Let us first consider
an abstract dynamical system with initial condition x0, state x(t), observation
y(t) and control u(t):

ẋ(t) +Ax(t) = b(x, t) + Bu(t), (t > 0) state,

y(t) = Cx(t) observation,

x(0) = x0 initial condition.

(1)

Our aim consists in constructing a nonlinear feedback control law K with
Bu(t) = K(x(t)) which steers the dynamical system to the desired trajectory

x̄(t), i.e. x(t)
!
→ x̄(t) (t → ∞). To simplify notations we from here onwards use

B = id and C = id, i.e. we do not distinguish between state and observation and
we allow fully distributed controls.

To prepare for model predicitve control, system (1) is discretized in time using
the semi-implicit Euler method on an equidistant time grid 0 = t0 ≤ t1 ≤ . . .
with tk+1 − tk = τ for k = 0, 1, . . . . Here xk denotes the state at time tk and bk

denotes the nonlinearity b(xk, tk). We obtain the time discrete model

(I + τA)xk+1 = xk + τbk + uk+1, k = 0, 1, . . . . (2)

For L ∈ N and xj given, we consider the optimal control problem

min J(xj+1, . . . , xj+L, uj+1, . . . , uj+L)

s.t. (2) for j = k, . . . , k + L− 1,
(Pk)

where

J(xj+1, . . . , xj+L, uj+1, . . . , uj+L) :=

L
∑

i=1

(

1

2
‖xk+i − x̄k+i‖2 +

α

2
‖uk+i‖2

)

Let us note that for L = 1 problem (Pk) admits a unique solution. However, in
the case L > 1 the solution might not be unique due to the nonlinear character
of the transition constraints (2). In this case we assume that (Pk) admits a
solution.

Now we define the abstract model predictive control strategy using a com-
puting oracle called RECIPE.

Model Predicitve Control:

1. Initialization: Specify time grid (tj) and discrete state x̄, set k = 0 and
specify L0 > 0.

2. Given uk, xk, set
uk+1 = RECIPE(uk, xk, Lk).
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3. Solve (2) with uk+1, i.e. compute xk+1 according to
(I + τA)xk+1 = xk + τb(xk, tk) + uk+1.

4. Set k = k + 1, goto 2.

In the classical model predictive control context [20, 21] the oracleRECIPE(u, x, L),
for given u, x, L, solves the optimal control problem (Pk) with xk ≡ x, uk ≡ u and
L the length of the control horizon. From the solution (xk+1, . . . , xk+L,uk+1, . . . , uk+L)
only xk+1 and uk+1 are actually used to steer the discrete system to the next
time instance tk+1.

In practical applications often quick response to system changes is necessary.
In such cases it may be too time consuming to solve problem (Pk) exactly. In-
stead, an approximate solution could be used. This leads to the so called concept
of instantaneous control [6, 12], whose oracle is described next.

Instantaneous Control:

Given L, x, v, then u = RECIPE(v, x, L) iff u = uk+1, where (xk+1, . . . , xk+L, uk+1, . . . , uk+L)
is the result of a steepest descent step applied to the solution of (Pk) with xk ≡ x
and uk ≡ v.

In the case L = 1, instantaneous control realizes the steps:

– Solve (I + τA)z = x+ τb(x, tk) + v,
– solve (I + τA∗)λ = −(x− z),
– set d = αv − λ,
– determine ρ > 0 (step size for steepest descent),
– set RECIPE = v − ρd,

where we have used the adjoint calculus to expose the derivations of the
functional J , see e.g. [15].

Instantaneous control with L = 1 is analytically investigated in [16] for the
control of Burger’s equation and in [12] for control of the two-dimensional Navier-
Stokes system. Among other things it is shown in [12, Thm. 4.4,4.5] that

‖xk − x̄k‖H1(Ω) ≤ cκk for some κ ∈ (0, 1),

and also that instantaneous control may be regarded as the discrete realization
of a nonlinear feedback operator K which is able to steer x(t) exponentially fast
to the desired trajectory x̄(t), i.e. with u(t) = K(x(t)) in (1) there holds

‖x(t)− x̄(t)‖H1(Ω) ≤ c exp
(

−
ρ

τ
t
)

,

where ρ denotes the step size in the steepest descent algorithm and τ is the time
step in the discretization, see [12, Thm. 4.1,4.2] for the details.

3 The Cahn-Hilliard Navier-Stokes System

The Cahn-Hilliard Navier-Stokes equations are a diffuse interface model for de-
scribing two-phase flows. In comparison to sharp interface models (see e.g. [8])
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which model the interface between the two components as a sharp line, diffuse
interface models allow a partial mixing of the components yielding a small dif-
fuse interface. A derivation of the model used here can be found e.g. in [1]. It
is related to the model ’H’ for two-phase flows in the classification of Hohen-
berg and Halperin [17]. We note that there are also models for flows with three
components, see e.g [3].

For Ω ⊂ R
n, (n = 2, 3) and T > 0 we here consider the following weak

form of the Cahn-Hilliard Navier-Stokes system with double-obstacle free energy
according to [2].

Find (c(t), w(t), y(t), p(t)) in K ×H1(Ω) ×H1
0 (Ω)× L2

(0)(Ω) such that

(∂ty, v) +
1

Re
(∇y : ∇v)

+((y · ∇)y, v)− (p, div v) + (c∇w, v) = 0 ∀v ∈ H1
0 (Ω), a.e. t ∈ (0, T ], (3)

(−div y, v) = 0 ∀v ∈ L2
(0)(Ω), a.e. t ∈ (0, T ], (4)

c(t) ∈ K a.e. t ∈ (0, T ], (5)

(∂tc, v)+
1

Pe
(∇w,∇v)−(cy,∇v)=0 ∀v ∈ H1(Ω), a.e. t ∈ (0, T ], (6)

γ2(∇c,∇(v − c))−(w + c, v − c)≥0 ∀v ∈ K, a.e. t ∈ (0, T ], (7)

c(x, 0) = c0(x) ∀x ∈ Ω, (8)

∂νc = 0, ∂νw = 0 on ∂Ω × (0, T ], (9)

y(x, 0) = y0(x) ∀x ∈ Ω, (10)

y = 0 on ∂Ω × (0, T ]. (11)

Here, for v, w ∈ H1(Ω)

(∇v : ∇w) :=

∫

Ω

∇v : ∇w dx =

∫

Ω

n
∑

i,j=1

(∇v)ij(∇w)ij dx,

and c0 ∈ K := {v ∈ H1(Ω) | |v| ≤ 1 a.e. in Ω}), y0 ∈ H1
0 (Ω).

The function c is called order parameter and satisfies c = c(t, x) ∈ [−1, 1],
with c ≡ 1 on the pure A-phase and c ≡ −1 on the pure B-phase region,
respectively, where A and B are the two components of the fluid. Initially, i.e.
for t = 0, we assume that the concentration equals c0. The quantity w represents
the chemical potential, y denotes the mean flow velocity field, i.e. y = 1+c

2 yA +
1−c
2 yB, where yA and yB denote the fluid velocities in the fluid phases A and B,

respectively, and p ∈ L2
(0)(Ω) = {v ∈ L2(Ω) | (v, 1) = 0} denotes the mean free

pressure of the fluid. The flow profile at t = 0 is given by y0. The Péclet number
Pe and the Reynolds number Re are given physical constants. The parameter γ
is related to the width of the diffuse interface region which is of size O(γ2) [4].

For an analytical treatment of the above system we refer to [1, Chapter 6.5].
Especially in two space dimensions there exists a unique solution (c, w, y, p) to
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this system and we have

y ∈ C0([0, T ],H1
0(Ω)), c ∈ BCω([0, T ], H

1(Ω)), ∇w ∈ L2(0, T ;L2(Ω)).

Here, BCω([0, T ], H
1(Ω)) is the space of bounded and weakly continuous func-

tions from [0, T ] with values in H1(Ω).

3.1 Time discretization and treatment of the variational inequality

in (7)

For the discretization of (3)–(11) we use the semi-implicit approach proposed
in e.g. [7, 19] with constant step size τ > 0. The variational inequality in (7)
according to [10] is relaxed using Moreau-Yosida regularization. At time instance
t this results in finding (y, p, c, w) ∈ H1(Ω)n × L2

(0)(Ω) ×H1(Ω) ×H1(Ω) such
that

(y − yold, v) +
τ

Re
(∇y : ∇v) + τ((yold · ∇)yold, v)

+τ(cold∇wold, v)− τ(p, div v) = 0 ∀v ∈ H1
0 (Ω), (12)

(−div y, v) = 0 ∀v ∈ L2
(0)(Ω), (13)

(c, v) +
τ

Pe
(∇w,∇v) − τ(coldy,∇v)− (cold, v) = 0 ∀v ∈ H1(Ω), (14)

γ2(∇c,∇v)− (w, v) + (λs(c), v) − (cold, v) = 0 ∀v ∈ H1(Ω). (15)

is satisfied. Here the subscript old refers to the value of the respective function
at time told = t− τ and λs(c) = λ+

s (c)+λ−

s (c) = s(max(0, c− 1)+min(0, c+1))
stems from Moreau-Yosida regularization of (7), see e.g. [10, 11] for details. Let
us emphasize that (12)–(15) is decoupled in the sense that using yold, cold and
wold, the flow y and the pressure p at time t can be computed from (12)–(13),
and then using this flow vector y, the concentration c and the chemical potential
w are obtained from (14)–(15). Furthermore, normalizing p by (p, 1) = 0, it
can be shown that (12)–(15) admits a unique solution (y, p, c, w), compare [11,
Thm 4.1]. The system (14)–(15) is nonlinear and can be treated by semi-smooth
Newton methods, see [11].

3.2 Spatial Discretization

The spatial discretization is performed by linear finite elements for both the
concentration and the chemical potential to obtain finite element approximations
ch, wh. For the flowfield and the pressure we use the LBB-stable Taylor-Hood
P 2−P 1 finite elements, see e.g. [18, 22], to obtain finite element approximations
yh, ph. For the spatial treatment of the Cahn-Hilliard part (14)–(15) we use
the adaptive approach presented in [10, 11]. We emphasize that we use different
spatial meshes for the Cahn-Hilliard and the Navier-Stokes part.
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4 Instantaneous Control of the Cahn-Hilliard

Navier-Stokes System

The aim of this section is to develop a simple distributed closed-loop control
strategy for the Cahn-Hilliard Navier-Stokes system. It uses instantaneous con-
trol with L = 1 on a control horizon which coincides with the time interval of
one time step. We consider the idealized situation that the flow can be controlled
by a vector field which is distributed over the whole spatial domain and that
the concentration c can be measured in the whole spatial domain. The control
goal consists in steering the concentration c towards a prescribed concentration
trajectory cd by applying volume forces to the flow field.

Now let t0 = 0 and k ∈ N. At time instance t = tk, for α > 0, we consider
the minimization problem

min Jk(u) :=
1

2
‖c− cd‖

2
L2(Ω) +

α

2
‖u‖2L2(Ω) (Pk)

s.t.

(y − yold, v) +
τ

Re
(∇y : ∇v) + τ((yold · ∇)yold, v)

+τ(cold∇wold, v)− τ(p, div v) = u ∀v ∈ H1
0 (Ω), (16)

(−div y, v) = 0 ∀v ∈ L2
(0)(Ω), (17)

(c, v) +
τ

Pe
(∇w,∇v) − τ(coldy,∇v)− (cold, v) = 0 ∀v ∈ H1(Ω), (18)

γ2(∇c,∇v)− (w, v) + (λs(cold), v) − (cold, v) = 0 ∀v ∈ H1(Ω). (19)

where now old refers to the time instance tk−1.
It is not hard to show that problem (Pk) admits a unique solution u ∈ L2(Ω)n,

which together with (y, p, c, w) satisfies the adjoint system

(p1, v) + γ2(∇p2,∇v) = (c− cd, v) ∀v ∈ H1(Ω), (20)

(p2, v) =
τ

Pe
(∇p1,∇v) ∀v ∈ H1(Ω), (21)

(p3, v) +
τ

Re
(∇p3,∇v)− τ(p4, div v) = τ(p1∇cold, v) ∀v ∈ (H1

0 (Ω))n, (22)

(div p3, v) = 0 ∀v ∈ L2
(0)(Ω), (23)

αu+ p3 = 0. (24)

i.e. there exists a uniquely determined adjoint (p1, p2, p3, p4) ∈ H1(Ω)×H1(Ω)×
H1(Ω)n×L2

(0)(Ω) which solves (20)–(24). The gradient of Jk is given by∇Jk(v) =

αv+p3. Its evaluation for a given v ∈ L2(Ω)n amounts to first solving (16)–(19)
for (y, p, c, w) and then solving (20)–(23) for (p1, p2, p3, p4).

Let us note that (16)–(19) differ from (12)–(15) in the explicit treatment of
the nonlinearity λs, which in (19) is frozen at told. We emphasize that (16)–
(19) is not used to simulate the controlled Cahn-Hilliard Navier-Stokes system,
but to construct a feedback operator K such that u = K(y, p, c, w). With this
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feedback operator available, system (3)–(11) then is controlled through inserting
u = K(y, p, c, w)) as right hand in (3). The resulting system then is treated on
the time discrete level as in (12)–(15), where K is evaluated at told, i.e.

u = K(yold, pold, cold, wold).

Next we describe the construction of K from (16)–(24). For this pupose let us
denote by B the solution operator associated to the quasi-Stokes problem (12)–
(13) and by C the linear, fourth order solution operator of the Cahn-Hilliard
system (18)–(19). Then the system to obtain p3 can be written in the form

y = B (yold − τ(yold∇yold))− τcold∇wold + u) ,

c = C
(

cold − τy∇cold +
τ

Pe
∆(λs(cold)− cold)

)

,

p1 = C(c− cd), and

p3 = −τB(p1∇cold).

Using these abbreviations, the control u obtained by the instantaneous con-
trol strategy for uk

0 = 0 is given by

ỹ = B(yold + τb(yold)− τcold∇wold),

c̃ = C
(

cold − τ∇coldỹ +
τ

Pe
∆(λs(cold)− cold)

)

,

u = ρτB∇coldC (c̃− cd) =: K(yold, pold, wold, wold)

(25)

and is inserted in (12).
Note that this system does not depend on α since uk

0 = 0.
The spatially discrete treatment of (12)–(15) with this control is similar

as in the uncontrolled case. We note that (24) motivates to use Taylor-Hood
finite elements for the discretization of the control, see the concept of variational
discretization proposed in [13].

5 Numerical Results - Circle2Square

To demonstrate the effectiveness of our control method we now morph a circle
into a square with the following setup. As domain we use Ω := (0, 1)2, the
initial concentration c0 is chosen as 1 in B 1

4

(12 ,
1
2 ) and as −1 in Ω \ B 1

4

(12 ,
1
2 ),

see Fig. 1 (left). Control is applied to the flow field with control gain of steering
c to the desired state cd with values 1 in the square centered at ( 7

20 ,
7
20 ), see

Fig. 1 (right), with edge length such that (c0, 1) = (cd, 1). This requirement is
meaningful, since our time discretization scheme is mass-conserving. We choose
Re = 10, Pe = 100, γ = 1/(40π), α = 1e − 4, τ = 0.01 and use ρ = 1 as step
size in the steepest descent method.

Fig. 2 presents snapshots of the concentration after 40 time steps (left) and
after 500 time steps (right, where also the controlled flow is depicted). Clearly,
the corners formed in cd cannot be reached by the controlled concentration, since
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Fig. 1. Initial state c0 (left) and desired state cd (right). Black indicates −1, white
indicates +1.

the phasefield approach used here always delivers a smooth diffuse interface in
the present situation. Fig. 3 presents the evaluation of d(t) := ‖c(t)−cd(t)‖L2(Ω)

for various Reynolds numbers ranging in the interval [10, 200]. We observe a clear
decrease in d(t), till a certain value around 1e− 1 is reached. The method is not
able to further reduce d(t) due to the unreachability of cd. The oscillations of
d for larger Reynolds numbers can be explained by the indirect control method
(flow is controlled, concentration should be steerd to cd), which becomes more
sensible with increasing Reynolds number.

Fig. 2. Controlled state at t = 40τ and t = 500τ .
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Fig. 3. The reduction of ‖c− cd‖ for various Reynolds numbers.

6 Conclusion

We have presented a general inexact model predictive control concept called
instantaneous control and sketched its interpretation as closed loop controller.
For the Cahn-Hilliard Navier-Stokes system we have derived a nonlinear feedback
u = K(y, p, c, w) which realizes instantaneous control on the continuous level.
With morphing the circle into a square we have numerically demonstrated the
scope and effectiveness of our approach in control of two-phase flows.
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