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Abstract Optimization is applied in numerous areas of chemical engineering includ-
ing the development of process models from experimental data, design of process
flowsheets and equipment, planning and scheduling of chemical process operations,
and the analysis of chemical processes under uncertainty and adverse conditions.
These off-line tasks require the solution of nonlinear programs (NLPs) with de-
tailed, large-scale process models. Recently, these tasks have been complemented
by time-critical, on-line optimization problems with differential-algebraic equation
(DAE) process models that describe process behavior over a wide range of operat-
ing conditions, and must be solved sufficiently quickly. This paper describes recent
advances in this area especially with dynamic models. We outline large-scale NLP
formulations and algorithms as well as NLP sensitivity for on-line applications, and
illustrate these advances on a commercial-scale low density polyethylene (LDPE)
process.

1 Introduction

Manufacturing processes for petroleum products, basic chemicals, pharmaceuticals,
specialty chemicals, consumer products, agricultural chemicals and fertilizers form
essential and irreplaceable components of our day-to-day existence. In the US alone,
these products lead to revenues of over $10'%/yr. Their manufacture is dominated by
raw material and energy costs and a strong competitive market, which drives down
operating margins. These factors emphasize the need for systematic, model-based
process optimization strategies, both in the original design of the process and in
day-to-day operations.
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Mathematical models for process optimization reflect processing tasks such as
mixing, reaction and separation at appropriate conditions, through calculation of
state variables, e.g., stream flowrates, temperature, pressure and composition. Mod-
eling equations include conservation laws for mass, energy, and momentum along
with constitutive relations and equilibrium conditions (such as physical properties,
hydraulics, rate laws and interface behavior). Moreover, with advances in comput-
ing hardware and numerical algorithms there has been a steady evolution of model
sophistication from steady state to dynamic behavior and from lumped to spatially
distributed systems.

Nonlinear programming strategies have been used for process optimization for
almost 50 years. These have been essential for plant and equipment design, retro-
fitting and operations planning. Over the past 25 years real-time optimization has
also evolved as a standard practice in the chemical and petroleum industry. In partic-
ular, the ability to optimize predictive models provides a major step towards linking
on-line performance to higher-level corporate planning decisions. As described in
[11, 15], these tasks form a well-known pyramidal hierarchy with levels of decision-
making including planning at the top, followed by scheduling, site-wide and real-
time optimization, model predictive control and regulatory control at the bottom.
In this pyramid, the frequency of decision-making increases from top to bottom,
while the impact and importance of decision-making increases from bottom to top.
Moreover, while planning and scheduling decision models are often characterized
by linear models with many discrete decisions, site-wide and real-time optimization
require detailed nonlinear process models which usually reflect steady-state perfor-
mance of the plant. On the other hand, model predictive control (MPC) is often
formulated with linear dynamic models.

Interaction among decision-making levels requires that higher-level actions be
feasible at lower levels. Moreover, the performance described by lower level models
must be reflected accurately in decisions made at higher levels. A particularly close
integration is needed for real-time optimization and control, especially for nonlinear
processes that may never really be in steady state. Examples of these include batch
processes, processes with load changes and grade transitions, such as power plants
and polymerization processes, and production units that operate in a periodic man-
ner, such as Simulated Moving Beds (SMBs) [17] and Pressure Swing Adsorption
(PSA) [14]. Treating these nonlinear processes requires on-line optimization with
nonlinear dynamic models, including strategies such as nonlinear model predictive
control (NMPC) [2]. Research in this direction includes development and applica-
tion of detailed and accurate first-principle differential-algebraic equation (DAE)
models for off-line dynamic optimization [5, 15, 23]. A comprehensive research
effort on real-time dynamic optimization is described in [12] and, more recently,
large-scale industrial NMPC applications have been reported at ExxonMobil [2],
BASF [21] and ABB [10]. Moreover, in addition to enabling NLP solvers, there is
a much better understanding of NMPC stability properties and associated dynamic
optimization problem formulations that provide them (see [20]). Along with these
theoretical developments, NMPC robustness properties have also been developed
and analyzed [19]. From the comprehensive treatment of dynamic real-time opti-
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mization in [12], it is clear that with improved optimization formulations and algo-
rithms, the role of on-line dynamic optimization can be greatly expanded to consider
economic objectives directly, allow longer time horizons with additional constraints
and degrees of freedom to improve the objective, and incorporate multiple operating
stages over the predictive horizon, including transitions in the predictive horizon due
to product change-overs, nonstandard cyclic operations, or anticipated shutdowns
[24, 12].

The next section provides a background of dynamic optimization strategies and
their application to process optimization. An LDPE (low density polyethylene) pro-
cess case study is also introduced to illustrate the application of these strategies.
Sect. 3 then considers simultaneous collocation methods for off-line dynamic opti-
mization. A parameter estimation for the LDPE reactor is presented to demonstrate
the effectiveness of this approach. Sect. 4 then discusses methods for dynamic op-
timization for on-line, time-critical applications and introduces an NLP sensitivity-
based nonlinear model predictive controller, which relies on a “background solu-
tion” of the NLP optimization. This is illustrated on a grade transition optimization
for the LDPE process. Finally, Sect. 5 concludes the paper and outlines areas for
future work.

2 Background

To develop the NLP formulation and solution strategy we consider the dynamic
optimization problem in the following form:

min ¢ (z(tr)) ey
st BO a0, 50,00,p), 20) =29 @
g(z(t),y(t),u l),p) =0, t¢e [Ovtf] (3)

z(tr)) =0 “4)
up <u(t) <uy, yp <y@t) <yu, 7z <z(t) <zv )

where t € [to,tf] (e.g., time) is the independent variable, z(z) € R™ is the vector
of differential state variables, u(z) € R™ is the vector of control variables, y(¢) €
R™ is a vector of algebraic state variables, and p is a set of optimization variables
independent of time. The process model is described by semi-explicit differential
and algebraic equations (DAEs) (2),(3) which we assume without loss of generality,
are index one.

A number of approaches can be taken to solve (1)-(5). Until the 1970s, these
problems were solved using an indirect or variational approach, based on the first
order necessary conditions for optimality obtained from Pontryagin’s Maximum
Principle; a review of these approaches can be found in [12]. However, if the prob-
lem requires the handling of active inequality constraints, finding the correct switch-
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ing structure as well as suitable initial guesses for state and adjoint variables may
be difficult. This limitation has made the indirect approach less popular for NMPC
applications and can be overcome by direct methods that apply NLP solvers.

Sequential methods with NLP solvers, also known as control vector parameter-
ization, represent the control variables as piecewise polynomials [26] and perform
the optimization with respect to the coefficients of these polynomials. Given ini-
tial conditions and a set of control parameters, the DAE model is solved over time
within an inner loop of the NLP iteration; the control variables are then updated by
the NLP solver itself. Gradients of the objective function with respect to the con-
trol coefficients and parameters are calculated either from direct DAE sensitivity
equations or by integration of the adjoint equations. Sequential strategies are rel-
atively easy to construct and to apply as they contain the components of reliable
DAE solvers (e.g., DASSL, DASOLV, DAEPACK) and NLP solvers (e.g., NPSOL,
SNOPT). On the other hand, repeated numerical integration of the DAE model is re-
quired, which may become time consuming for large problems. Moreover, sequen-
tial approaches may fail with unstable dynamics [1]. Instead, for unstable systems
Multiple Shooting, which inherits many of the advantages of sequential approaches
should be applied. Here, the time domain is partitioned into N time elements, i. e.,
t € [ty_1,8]),k = 1,...N, and the DAE models are integrated separately in each el-
ement [4, 8]. Control variables are parameterized as in the sequential approach and
gradient information is obtained for both control variables as well as the initial con-
ditions of the state variables in each element. Finally, equality constraints are added
in the NLP to link the elements and ensure that the states are continuous across each
element. As with the sequential approach, bound constraints for states and controls
are normally imposed only at the grid points 7.

In the simultaneous collocation approach, also known as direct transcription, we
represent both the state and control profiles as piecewise polynomials in time using
collocation on finite elements ¢ € [t;_1,#],k = 1,...N. This approach corresponds
to a fully implicit Runge-Kutta method with high order accuracy and excellent sta-
bility properties. It is also a desirable way to obtain accurate solutions for boundary
value problems and related optimal control problems. On the other hand, simul-
taneous approaches also require efficient, large-scale optimization strategies [7, 3]
because they directly couple the solution of the DAE system with the optimization
problem. The DAE system is solved only once, at the optimal point, and therefore
can avoid intermediate solutions that require excessive computational effort or may
not even exist. Moreover, in the simultaneous approach the control variables can be
discretized at the same level as the state variables and, under mild conditions, (see
[13, 16]) the Karush-Kuhn-Tucker (KKT) conditions of the simultaneous NLP are
consistent with the optimality conditions of the discretized variational problem, and
fast convergence rates to the solution of the variational problem have been shown.
Moreover, simultaneous approaches can deal with unstable systems and allow the
direct enforcement of state and control variable constraints, at the same level of
discretization as the state variables of the DAE system.
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Fig. 1 High-pressure LDPE Process Flowsheet

2.1 LDPE Case Study

Low density polyethylene (LDPE) is currently the most widely produced poly-
mer. Its uses span many packaging applications including plastic bags, food wrap,
squeeze bottles, and plastic films in construction; different polymer grades are pro-
duced to ensure the best material properties for each of these applications. The high-
pressure process for LDPE manufacture is described in [6, 30] and serves as a case
study for dynamic optimization. As seen in Fig. 1, ethylene is polymerized in a
long tubular reactor at high pressures (1500-3000 atm) and temperatures (130-300
°C) through a free-radical mechanism. Accordingly, many compression stages are
required to obtain these extreme operating conditions. The LDPE product is recov-
ered after several stages of vapor-liquid separation. These flexible processes obtain
several different polymer grades by adjusting the reactor operating conditions. The
process model contains a number of challenges for optimization. In the next section
we will focus on parameter estimation of a detailed LDPE reactor model, while in
Sect. 4, we deal with the important on-line problem of grade changes.

3 Simultaneous Collocation Approach

The DAE optimization problem can be converted into an NLP by approximating
state and control profiles by piecewise polynomials on finite elements (fp < t; <
. <ty = ty). Using a monomial basis representation for the differential profiles,



8 Lorenz T. Biegler

which is popular for Runge-Kutta discretizations, leads to:

s t—ti1) dz
=z +h ) Q =
A== 1+hlq:1 q( h; )dti,q (©)

where z;_| is the value of the differential variable at the beginning of element i, /; is
the length of element i, dz/ dt; 4 is the value of its first derivative in element 7 at the
collocation point g, and £, is a polynomial of order K, satisfying

Qq(o) :0’ Q;(pr) :66[-,1’7 Qar: 17"'aKa (7)

where p, € [0, 1] is the normalized location of the r-th collocation point within each
element. Continuity of the differential profiles is enforced by

L dz
zi:zi71+h,’ZQq(l)d—‘ . (8)
g=1 tl,‘]

From a number of studies (see [1, 16]), we prefer Radau collocation points (with
Pk = 1) as it has a stronger stability property. In addition, the control and algebraic
profiles are approximated using a Lagrange basis representation of the form:

K

X t—ti t—tiy
0= Y v (S P w0 =L v (S O
q=1 !

i g=1

where y; , and u; 4, represent the values of the algebraic and control variables, re-
spectively, in element i at collocation point g. V, is the Lagrange polynomial of
degree K — 1 satisfying y,(p,) = 9, for g,r = 1,...,K. From (6), the differential
variables are required to be continuous throughout the time horizon, while the con-
trol and algebraic variables are allowed to have discontinuities at the boundaries of
the elements. Substitution of (9) into (1)-(5) leads to the following NLP:

. min ?(zv) 1o
diigtiaYiaP
dz
N Z = f(Zig>Yig:Uig: D), &(ZigYig>tig>P) =0

Uiq € [ML;MU]a Yig € [yLva]a Ziq € [ZLaZUL = 13"'N7 q= vi
and (6)3 (8)7 gf(ZN) =0

This NLP can be rewritten as:

min @(x), s.t.¢(x) =0, x, <x<xy (11)
xeR"

T
where x = (%ilq,zi,ynq,ui,q,p) , iR — R and c¢: R" — R™. To address the
resulting large-scale NLP, we apply a full space, interior point (or barrier) solver,
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embodied in a code called IPOPT. IPOPT applies a Newton strategy to the optimal-
ity conditions that result from the primal-dual barrier subproblem,

[In(x") —X(Li)) —|—ln(xg> —xD)], st e(x) =0. (12)

=

min Q(x) — p

i=1

Problem (12) is solved for a sequence of decreasing values of the barrier parameter
U; under typical regularity conditions this sequence of solutions x(1t) converges to
the solution of (11) [9].

The IPOPT code [27] includes a novel filter based line-search strategy and also
allows the use of exact second derivatives. Under mild assumptions, the filter-
based barrier algorithm has global and superlinear convergence properties; corre-
spondingly the IPOPT code performs very well when compared to state-of-the-art
NLP solvers. Originally developed in FORTRAN, the IPOPT code was recently
redesigned to allow for structure dependent specialization of all linear algebra oper-
ations. Implemented in C++ and freely available through the COIN-OR foundation,
IPOPT can be obtained from the following website:
http://projects.coin-or.org/Ipopt.

A key step in the IPOPT algorithm is the solution of linear systems derived from
the linearization of the first order optimality conditions (in primal-dual form) of the
barrier subproblem. The linear KKT system can be solved with any direct linear
solver configured with IPOPT. However, as the problem size grows, the time and
memory requirements can make this approach expensive. Instead, specialized de-
compositions such as Schur complements lead to efficient (and often parallizable)
solution strategies. This allows the efficient solution of very large NLPs on the or-
der of several million variables, constraints and degrees of freedom [22]. A detailed
description of IPOPT’s internal decomposition features and their implementation in
the IPOPT software environment is given in [18, 25].

Because of these features, the simultaneous collocation approach has lower com-
plexity bounds than competing dynamic optimization strategies, especially since ex-
act second derivatives can be obtained very cheaply and expensive DAE integration
and direct sensitivity steps are avoided. This comparison and complexity analysis
can be found in [31].

3.1 Parameter Estimation for LDPE Reactor

An important off-line optimization problem is the estimation of reactor parameters
from experimental data. The LDPE tubular reactor seen in Fig. 1 can be described
as a jacketed, multi-zone device with a predefined sequence of reaction and cooling
zones. Different configurations of monomer and initiator mixtures enter in feed and
multiple sidestreams, and are selected to maximize the reactor productivity and ob-
tain desired polymer properties. The total reactor length ranges between 0.5 to 2 km,
while its internal diameter does not exceed 70-80 mm. Models of this reactor typ-
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ically comprise detailed polymerization kinetic mechanisms and reacting mixture
thermodynamic and transport properties at extreme conditions. A first-principles
model describing the gas-phase free-radical homopolymerization of ethylene in the
presence of several different initiators and chain-transfer agents at supercritical con-
ditions is considered in [30]. The reaction mechanism consists of 35 reactions with
100 kinetic parameters for each polymer chain of a given length. Here, the method
of moments is used to describe macromolecular properties of the copolymer includ-
ing number- and weight-average molecular weights and polydispersity as described
in [25, 30]. The steady-state evolution of the reacting mixture along the multiple
reactor zones can be formulated as a multi-stage DAE system of the form,

de./'(t)
| = 7 (t (t . “ —O
k,j 1t »de( )vaﬁj( )vpkw (13)

Zk,j(O) = ¢(Zk,j71(th_j,1)7Wk,jfl)a k=1,...,NS, j=1,...,NZ

where the stage index j denotes a particular reactor zone and index k pertains to
a product grade or operating scenario; this formulation allows estimation over dif-
ferent reactor configurations. At zone boundaries, these DAE models are coupled
through material and energy balances ¢(-) while additional inputs, wy ;, are intro-
duced for monomer, initiator, and cooling water. Also, 1 denotes the total length
of zone j in scenario k, py ; denotes local parameters (such as heat transfer coeffi-
cients and initiator efficiencies) in each zone j and scenario k and II corresponds
to the kinetic rate constants which apply to all stages. The reactor model contains
around 130 ordinary differential equations and 500 algebraic equations for each in-
stance k. Because of significant coupling among the state variables and parametric
sensitivity, the reactor DAE model is also highly nonlinear and stiff.

Using (13), we estimate kinetic parameters, I1, to match the plant reactor operat-
ing conditions and polymer properties. However, due to the uncertainty associated
to the fouling and initiator decomposition mechanisms, it is also necessary to in-
clude the local parameters as well. To capture the interaction of py ; and IT and to
account for the measurement errors in the multiple of flow rates, concentrations,
temperatures and pressures around the reactor, we consider a multi-scenario estima-
tion problem of the form:

NS NZ NMy

1 Pk,];Wk,j Z Z Z Vi,j (i) yk,;z) Vy_l (yk,j(fi)*)_’k,j.i)

NS NZ, ) y (14)
—i—ZZ Wi j— wk] Vw (wk7j—wk7j)

s.t. (13), Hk,j (2, (1), vk, (t), Pr,j, T <0

where the output variables are matched to the corresponding available plant mea-
surements for each operating scenario or data set k. The vector of outputs contains
the reactor temperature profile, jacket inlet and outlet temperatures in each zone, as
well as macromolecular properties and product quality at the reactor outlet.
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To formulate the estimation problem (14) as a multi-scenario NLP, we perform a
full discretization of the differential and algebraic variables and group the resulting
set of variables by data sets or scenarios k. For each data set, we use a total of 16
finite elements for the reaction zones, 2 finite elements for the cooling zones and
3 collocation points for the discretization in (14), so that each scenario has around
12,000 constraints and 92 degrees of freedom (corresponding to 32 local parameters
Dk, j» 25 global parameters I1 and 35 input variables wy ;). In order to obtain exact
first and second derivative information, the NLP instances are implemented as NS
separate AMPL models that internally indicate the set of variables corresponding to
the global parameters I1.
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Fig. 2 Comparison of reactor temperature profiles for using simultaneous and “zone-by-zone”
parameter estimation.

Using the internal decomposition strategy in optimization strategy we consider
the solution of multi-scenario NLPs with NS < 32 data sets. A result of the model
fit to two typical product grade data sets can be seen in Fig. 2, where the dashed
line depicts a suboptimal “zone-by-zone” estimation with global parameters fixed.
The results were obtained in a Beowulf type cluster using standard Intel Pentium
IV Xeon 2.4GHz, 2GB RAM processors running under Linux. These are compared
against serial solutions of the multi-scenario problems on a single processor with
similar characteristics. Fig. 3 presents both computational results. The serial solu-
tion of the multi-scenario NLPs exhausts the available memory when the number of
data sets exceeds nine, while the parallel implementation overcomes this memory
bottleneck and solves problems with up to 32 data sets. For the parallel approach,
notice that the effect of parallelism is reflected less in the time required per iteration
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than in the time per factorization of the KKT matrix. Nevertheless, we see that the
time per iteration can be consistently kept below 5 seconds, while the factorization
in the serial approach can take as much as 35 seconds before running out of memory.
More information on this application and details of the optimization strategy can be
found in [25, 30].
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Fig. 3 Wall clock time per iteration and per KKT matrix factorization for multi-scenario parameter
estimation with IPOPT. Serial and parallel implementations.

4 Fast NMPC based on IPOPT Sensitivity

As described in the previous section, efficient dynamic optimization solvers enable
fast solution times even for large-scale models. However, on-line optimization de-
mands time-limited, robust calculations that may exceed the capabilities of current
solvers. To address this issue, we now explore the concept of sensitivity-based real-
time dynamic optimization with rigorous, first principle process models. To address
these concepts, consider the moving time horizon shown in Fig. 4, with sampling
times fz47,/ = 0,...N. For chemical processes we note that sampling intervals are
usually on the order of minutes. On the other hand, once the current plant state x(k)
is known, the appropriate control action u(k) must be available to the plant. Any
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computational delay in determining u(k) will lead to a deterioration of performance
and even destabilization of the on-line optimization.

To satisfy these restrictions, we partition the optimization calculations into back-
ground and on-line steps. We assume the NLP can be solved within only a few sam-
pling intervals in “background” for an initial condition “close” to the measured (or
estimated) state. Once this state is obtained, a perturbed problem is solved quickly
to update the NLP solution, using a particular NLP sensitivity formulation.

To describe this approach, we consider the dynamic optimization problem written
over the moving time horizon shown in Fig. 4. After temporal discretization, the
dynamic optimization problem can be written as the following simplified NLP,

N-1
Py(x(k)): min D(zyp)+ Y Wz vig) (15)
1=0

o Vilk

s-tozg = flapovig), 1=0,...N—1

(16)
2o = x(k), zpk € X, v € Xy, v € U,

where z;; and vy are the states and controls, respectively, over the prediction hori-
zon. From the solution of this problem for current time ;, we obtain u(k) = vy, and
inject it into the plant. In the nominal case, this drives the state of the plant towards
x(k+1) = zy = f(x(k),u(k)). Once x(k+ 1) is known, the prediction horizon is
shifted forward by one sampling interval and problem Zy(x(k+ 1)) is solved to
find u(k + 1). This recursive strategy gives rise to the ideal NMPC controller (ne-
glecting computational delay).

201k
Voik Vi Vair V3ik Vaik Vsik VN-TIk
x(k

I 739} ks [79%] leva levs leang  leeN

Fig. 4 NMPC moving horizon problem

Now consider the state of the plant at the previous sampling time, x(k— 1), where
we already have the control u(k — 1). In the nominal case the system evolves ac-
cording to the dynamic model (16), and we can predict the future state by solving
PN(f(x(k—1),u(k—1))) in advance. For instance, if this problem can be solved
between 7, and f;, then u(k) will already be available at #;. For this, we define the
equivalent NLP of the form,
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P (x(k—1),u(k—1)): Z”kf?ivrll‘k 1¢(ZN|k—l)+W(x(k_ 1), u(k—1))
N—1
+ Z Y (Zije—15Vijk—1)
i=0 (17)
stz k-1 = f(@k—1,Vijk—1), 1=0,...N—1

200k—1 = flx(k—1),u(k—1)),
k-1 €X, v €Xp v €U

In the nominal case, it is clear that the solution of this problem is equivalent to
Py(x(k)) and that Py (x(k—1),u(k—1)) can be solved in advance to obtain
u(k) = v(*)‘k_l without computational delay. Moreover, under the NMPC assump-
tions posed in [20], it is easy to see that such a controller has the same nominal
stability properties as the ideal NMPC controller [28].

On the other hand, a realistic controller must also be robust to model mismatch,
unmeasured disturbances and measurement noise. As noted in [19], ideal NMPC
provides a mechanism to react to these features along with some inherent robustness.
In particular, tolerance to mismatch and disturbances can be characterized by input-
to-state stability [19, 28]. In [28] we focus on sensitivity-based NMPC schemes
and show their inherent robustness properties through input-to-state stability con-
cepts. The key to this extension comes by noting that problem Py (x(k),u(k)) is
parametric in its initial conditions so we can define the dummy parameter vector
po = x(k). Here we rewrite Py 1(x(k),u(k)) as the following NLP,

min@(x, po), s.t. ¢(x,po) =0, x, <x <xy (18)

and we define x as the vector of all variables in Py (x(k),u(k)). From the optimal-
ity conditions of (18), and under mild regularity conditions of the NLP [9], we obtain
a first order estimate of the perturbed solution of (18), i.e., Ax = x,(p) — x.(po)-
This can be calculated very cheaply in IPOPT from the factorization of the KKT
matrix in the final NLP iteration. Therefore in the presence of uncertainty, we apply
the sensitivity equations of Py (x(k),u(k)) to find the approximate solution of
Py(x(k+1)).

Moreover, to maintain a consistent active set for the solution of Py (x(k+ 1)),
we modify the sensitivity calculation to determine the value of p that enforces the
relation zg, = x(k+ 1) in the perturbed Py .1 (x(k), u(k)), instead of a direct change
(Ap =x(k+ 1) —x(k)) in the initial conditions. Coupled to the linearized optimality
conditions, the added constraint, Az0| c=x(k+1)— ZS\ i gives rise to an extended set
of linear sensitivity equations, which can be solved efficiently through a Schur com-
plement approach. This approach takes advantage of the already factorized KKT
matrix at the solution of Py (x(k),u(k)) with IPOPT. Therefore, once the next
state is known, the desired approximate solution can be obtained from the back-
ground Schur decomposition and a single on-line backsolve [31]. As described in
[31, 28], the on-line step requires less than 1% of the (already fast) dynamic opti-
mization calculation. We denote this sensitivity-based approach the Advanced Step
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NMPC (as-NMPC) controller. This controller can be viewed as a fast linear model
predictive controller linearized about the optimal nonlinear model at the previous
measurement. Moreover, it inherits the stability and robustness properties of ideal
NMPC while avoiding the difficulties of computational delay.

4.1 NMPC for LDPE Process

To demonstrate the advantages of the sensitivity-based NMPC strategy, we return
to the LDPE case study. The process represents a difficult dynamic system; reac-
tor dynamics are much faster than responses in the recycle loops and long time
delays are present throughout the compression and separation systems. Due to the
complex, exothermic nature of the polymerization, the reactor temperature and pres-
sure are enforced strictly along the operating horizon following fixed recipes. The
main operational problem in these processes consists of providing fast adjustments
to the butane feed and purge stream to keep the melt index at a desired reference
value. This is especially important during transitions (switching between two differ-
ent operating points). As shown in [6], dynamic optimization can lead to significant
reduction in the grade transition time; in one case, it was reduced from about 5 h to
no more than 2.8 h, leading to reduction of at least 23 tons of off-spec product.

The resulting DAE model of the LDPE process (with a simplified reactor model)
contains 289 differential and 64 algebraic state variables. We now consider an ap-
propriate optimal feedback policy that minimizes the switching time between steady
states corresponding to the production of different polymer grades. This poses a se-
vere test of the NMPC algorithm as it needs to optimize over a large dynamic tran-
sition. The following moving horizon problem is solved on-line at every sampling
time fy.:

Tk+N
min /t (wey (1) =i, )+ (Fey (1) — FE ) + (Fru(t) — Fp,) 2 dr )
k

s.t. DAEs for LDPE Model

where the inputs are the flowrates of butane and purge streams, F¢, and Fp,, respec-
tively, the output is the butane weight fraction in the recycle stream, wc,, and su-
perscript r denotes a reference value. Using the simultaneous collocation approach,
problem (19) is converted into a large-scale NLP with 15 finite elements with 3 col-
location points in each element. The resulting NLP contains 27,135 constraints, and
30 degrees of freedom. For the dynamic optimization, we set N = 15 and sampling
interval to 6 min.

To compare ideal and as-NMPC strategies, we ignore the effect of computational
delay in the closed-loop response. To assess robust performance, the plant response
is also subjected to strong, random disturbances in the transportation delays in the
recycle loops. Performance of both NMPC approaches is presented in Fig. 5. Note
that the optimal feedback policy involves the saturation of both control valves for
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the first 2500 seconds of operation, with the final flowrates set to values correspond-
ing to the new operating point. It is interesting to observe that the output profile
for as-NMPC is indistinguishable from the full optimal solution, with only small
differences in the input profiles.

o8 | . i LT i ! !
— I | I I I | | | |
= 26 | 1 I I I I I I I i
= | | | | | | | | |
S 24 | 1 | | | | | | | _
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Fig. 5 Closed-loop performance of the ideal NMPC (solid) and as-NMPC (dashed) approaches
with output wc, and inputs Fg, and Fp,

The on-line and background computational times are especially worth compar-
ing. Ideal NMPC requires around 351 CPU seconds and about 10 IPOPT iterations
of on-line computation while as-NMPC requires a negligible on-line time (1.04 CPU
seconds) for the solution of the Schur complement system and a final backsolve to
obtain the updated solution vector. As a result, as-NMPC reduces the on-line com-
putation time (and associated computational delay) by over two orders of magnitude
with virtually no loss in performance. Moreover, as-NMPC also serves as an excel-
lent basis for effective initialization of the next NLP problem solved in background.
From the perturbed solution provided by the sensitivity calculation, as-NMPC pro-
vides very accurate NLP initializations at all sampling times. Leading to only 2-3
IPOPT iterations, as-NMPC also reduces the background NLP computation by up
to a factor of five.

5 Conclusions

This paper addresses the increasing value of dynamic optimization for chemical
process operations. Both off-line and on-line optimization tasks demand fast and ro-
bust optimization strategies, often for challenging large-scale applications. Current
dynamic optimization formulations and algorithms are reviewed with an emphasis
on the simultaneous collocation approach. This strategy has advantages for unsta-
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ble systems, and with the suitable application of large-scale NLP solvers (such as
IPOPT), it is especially effective for time-critical applications. Moreover, for on-line
applications, NLP sensitivity can be calculated very cheaply from IPOPT; this leads
to a nonlinear model predictive control strategy with fast on-line performance and
minimal computational delay. All of these aspects are demonstrated on a case study
for a large-scale polymerization process.

Nevertheless, this summary represents only a beginning in addressing dynamic
real-time optimization. Future challenges include effective off-line solution strate-
gies for large, multi-stage dynamic optimization problems along with a tighter in-
tegration of planning and scheduling decisions. On-line strategies can also bene-
fit from moving horizon estimation (MHE) which incorporates nonlinear dynamic
models. A sensitivity-based MHE strategy was developed recently and exhibited
very fast performance as well as accurate state estimates [29]. In addition, more
robust on-line dynamic optimization problem formulations are needed to include
model uncertainty and disturbance models. Finally, further significant impacts can
be made through dynamic optimization on challenging large-scale process applica-
tions, such as the LDPE process.
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