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Abstract Hard systems of nanocoatings deposited using PVD (physical vapor de-
position) are used in the artificial heart prosthesis. Correct determination of nano-
material parameters is crucial for accuracy of simulation. The objective of this work
is identification of material parameters of nanocoatings in hard system using the
inverse analysis based on the artificial neural network metamodeling. The inverse
analysis was preceded by the development of the Finite Element Method (FEM)
model dedicated to the nanoindentation test of the hard nanocoatings system. The
performed sensitivity analysis is focused on determination of parameters, having
the highest influence on FEM model response. The obtained, reliable FEM model
was used next in the inverse analysis. The objective of that analysis was evaluation
of the parameters of the individual layers of the nanocoating system. In order to
decrease the computation time connected with the inverse analysis, the metamodel-
ing approach was proposed. The used metamodel was based on the artificial neural
network technique. The obtained results confirm the usefulness of the presented
method in the identification of the material properties of the complex, nanocoating
systems.

1 Introduction

Thin hard nanocoating systems exhibit interesting tribological and functional prop-
erties, which are difficult to achieve in conventional, homogenous materials. On the
other hand, due to very small scale and contrasting physical properties in adjacent,
very thin layers, physical and numerical modeling of these systems face essential
difficulties. Hard nanocoatings and their systems are usually investigated in exper-
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imental nanoindentation tests, because other, standard experimental methods per-
formed in macro and micro scale are not suitable for such case [12]. Analytical
methods for nanoindentation tests, which lead to evaluation of mechanical prop-
erties, were developed by Oliver and Pharr [12]. However, all these solutions are
dedicated to monolayer materials. Therefore, the authors of the present work have
undertaken some attempts towards the numerical FEM modeling of multilayer sys-
tem [7]. FEM modeling of nanoindentation test appears difficult, because of the
small thickness of layers, which involves necessity of mesh regeneration. Accuracy
of the FEM simulation of the layered, multimaterial system depends on adequate
evaluation of the properties of every single layer, which is crucial in modeling of
nanocoatings. As the result of mentioned above difficulties, the direct numerical
model for nanoindentation test is computationally expensive. Therefore, develop-
ment of the alternative, computationally effective method, based on the metamodel
principle, is the main objective of the present work.

The first part of work describes the nanoindentation test of hard nanocoatings and
explains how hardness in nanoscale is measured. The next part of the paper is dedi-
cated to the development of the efficient and robust FEM model of nanoindentation
test. FEM modeling was preceded by the sensitivity analysis oriented towards the
determination of material model parameters and nanotest settings, which have the
greatest influence on a response of generated FEM model of nanocoatings system.

The main objective of the present work is the inverse analysis, which allows
the identification of material parameters of inner nanocoating in system of hard
nanocoatings composed of various nanomaterial layers. The metamodel approach [9]
based on the FEM modeling and artificial neural network techniques [6, 10] is pro-
posed in the paper.

2 Nanoindentation Tests

The first objective of the work was investigation of properties of tribological hard
nanocoatings system, which is composed of TiAIN [3] and TiN [2]. These materials
are deposited on the elastic substrate like carbide using PVD technique. Titanium
nitride is used for some particular and the most demanding applications, because
it increases the biocompatibility of the material. An artificial left blood chamber
and its constructional element, which is an aortic valve, are the good examples of
biotechnological application [11] of these materials, especially of TiN. The proper-
ties (hardness and Young’s modulus) of a specimen are examined in the experimen-
tal nanoindentation tests.
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2.1 Examined Material

The specimen (technical material) of titanium nitride basis and thin mixed hard
elasticplastic nanolayers deposited on elastic substrate was investigated. The ma-
terial system of eleven PVD, thin material layers on carbide (infinite thickness) is
shown in Fig. 1. Two different coatings are deposited periodically. Coating 2 (TiN,
an elastic material) is 40 nm thick and is repeated three times. Coating 1 (TiAIN, an
elasticplastic material) is 400 nm thick and is repeated four times.

Fig. 1 Analyzed system of
nanocoatings
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Coating 1

Coating 1
L —

Coating 1

2.2 Experiment

The objective of the nanoindentation test is to evaluate the mechanical properties
of indented material like hardness and Young’s modulus. The experimental nanoin-
dentation test is performed in load or depth controlled mode using a Nano Test
System [3, 2]. Diamond (E = 1141 MPa, v = 0.07), Berkovich pyramid (tip radius
R =150 nm, pyramid angle & = 70.32°) penetrates into the specimen. The schematic
illustration of experiment and the top view of Berkovich indent is shown in Fig. 2.

The multistage process of deformation in nanoindentation test is performed in the
case of testing the multicoating material. This procedure is necessary for specimen
composed of nanocoatings to eliminate the effect of scatter in results and to create
a possibility to achieve the response of bottom layers during long term deformation
process. The indentation test supplies force versus indentation depth (tool displace-
ment) data. The load is the main output from the experiment and the Martens hard-
ness for deformed material is calculated on the basis of force/displacement or depth
data [12, 3, 2].



6 Magdalena Kopernik, Andrzej Stanistawczyk, Jan Kusiak, and Maciej Pietrzyk

piezoelectric
positioning

force sensor ||

deflection
sensor

diamond tip

film

(@) (b)

Fig. 2 a Schematic illustration of nanoindentation test [S] b The real view of Berkovich indent [5]

3 FEM Model

The earlier research of the authors [7, 9, 10, 8] is focused mainly on overcoming
numerical difficulties occurring in FEM simulation of deformation process of hard
nanocoatings, caused by the nanothickness of layers, necessity of remeshing and
scaling operations, as well as the multimaterial, multistage character of simulation
and efforts to decrease the computing costs.

The objective of the present work was the development of FEM model of nanoin-
dentation test accounting for different control parameters of the test, like indenter
shape and friction conditions, as well as sensitivity of the response of the specimen
with respect to material model parameters. The selected results, which are crucial
for the development of efficient FEM model of nanoindentation, are presented be-
low.

To decrease the computing costs, the simplified 2D axisymmetric model of the
nanoindentation test was considered and the Berkovich indenter was treated as a
conical one. Such simplified model does not cause a loss of important informa-
tion, which was validated through the full 3D FEM simulation of nanoindentation
tests [1, 4]. The results of comparison of 2D simulation and the full 3D model, ob-
tained by the authors of the present work are shown in Fig. 3 [8]. They confirm
that simplified 2D model can be used in the further research of the present work,
which allows decreasing the computation costs. The velocity of the indenter [3, 2]
in experimental nanoindentation test is constant and very small. According to the
experimental procedure, the value of the indenter constant velocity does not have an
effect on behavior of specimen’s material and in each simulation is equal to 1 nm/s.
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3.1 Sensitivity to Indenter Shape, Friction and Material Model
Parameters

The design of conditions of an effective nanoindentation test, as well as adequate
choice of the FEM model parameters, were preceded by the sensitivity analysis.
This method allows the estimation of the influence of the individual process param-
eters on the value of the analyzed one. The considered parameter was the total load
(force) of the nanoindentation test, therefore, its sensitivity with respect to the pro-
cess parameters was determined. The performed sensitivity analysis was based on
the finite difference approximation. The sensitivity coefficients ¢;,; were defined as:

~ Pj- Fa\’(p*+Apjej)_FaV(p*) (1)

o, | = Pj  OF,
Pl p*  Fa(p) Ap;

p* FaV(p*) aPj

where: p* = (R, a, i, E, K, n) - vector composed of considered parameters, e; - vec-
tor of the canonical basis, Ap - variation of the parameter p, F,, - average value of
the total load, calculated as follows:

1 t
Fy = " /0 F(t)dt )

where: F(7) - the load at the time 7, 7 - total time of the process.

The sensitivities of the total load of the nanoindentation test with respect to the
indenter shape parameters (R, @), friction coefficient (f1) and specimen’s material
parameters (E,K,n) were analyzed. Two different specimens were examined: an
elastic monocoating specimen - 400 nm thick and a specimen composed of 3 hard
nanocoatings.

For the first, monocoating specimen, twelve Berkovich indenters with four tip
radii equal to 100, 110, 150 and 160 nm, as well as three tip vertex angles: 65.3,
67.5 and 70.32°, all with round tip were investigated. The Coulomb friction law was
assumed with the following Coulomb friction coefficient values: u = 0.1, u = 0.15,
u=0.2and p =0.25. The Poisson ratio v = 0.177 and four elastic moduli: E; = 20,
Ey =22, E3 =28, and E4 = 30 GPa were used in the material model defined by:

o=Ee¢ 3)
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where: 0 - work-hardening stress, € - strain, E - Young’s modulus.

196 FEM simulations were performed. The obtained results of the sensitivity
analysis presented in Fig. 4a indicate that the nanoindentation test is the most sen-
sitive to the geometrical parameters of the tip, especially to the higher values of the
tip angle. The friction does not require special consideration, because very low val-
ues of sensitivity coefficients are observed and, therefore, it can be omitted in future
analysis.

The second examined specimen had the following 3 hard nanocoatings: coating 1
(elastic, 400 nm thick) was repeated twice and coating 2 (elasticplastic, 40 nm thick)
was a single interlayer. The coating 1 was considered as an elastic material defined
by Eq. 3. The elasticplastic material of the coating 2 was described by the following
relationship:

o =K¢" 4)

where: o - work-hardening stress, € - strain, K - hardening coefficient, n - hardening
exponent.

The considered values of the Young’s modulus of the material model Eq. 3 of
the coating 1 were: E = 330, 350, 370, 390 and 410 GPa. The chosen values of
parameters in material model Eq. 4 of the coating 2 were: K = 50, 60, 100, 110,
300 and 310 MPa, while n = 0.1, 0.15, 0.2 and 0.25. Diamond, Berkovich indenter
(radius R = 150 nm and pyramid angle o = 70.32°) penetrates into specimen. The
friction coefficient u is assumed 0. Finally, 144 FEM simulations were performed.

The obtained results of sensitivity calculations for the second, multicoating spec-
imen are presented in Fig.4b. They show that for chosen material models Eq. 3 and
Eq. 4, the load is the most sensitive to the parameters £ and n, as well as to the
parameter K. It means that each parameter of the material models Eqs. 3 and 4 is
important and has to be considered in future FEM models of nanoindentation test.

3.2 The Final FEM Model of Nanoindentation Test

The aim of research described in Sect. 3.1 was the analysis of the influence of the
deformation process and material model parameters on the total load (force), as
well as on the evaluation of optimal conditions and input settings for FEM model
of nanoindentation test of the hard nanocoatings system. The defined process and
material model parameters used in the developed FEM model of nanoindentation
test are:

 the angle of indenter o = 70.32° and tip radius R = 150 nm,

* the indenter velocity v = 1 nm/s and final displacement d = 100 nm,

 the parameters E, K, n in used material models Egs. 3 and 4, which are specified
in the last section of Sect. 3.1 and presented in Fig. 4b,

* the specimen has three coatings with material models are described by Egs. 3
and 4, respectively for elastic coating 1 and elasticplastic coating 2,

* the frictionless conditions between indenter and specimen (i = 0).
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Fig. 4 a Sensitivity of the load with respect to geometrical indenter tip parameters: R, o and fric-
tion coefficient 1 for monocoating specimen. b Sensitivity of the load with respect to the material
model parameters E, K and n for the specimen composed of 3 hard nanocoatings

The final, used in further calculations of the present work, FEM mesh has 7000
nodes and 13 000 elements (Fig. 5a).

The described FEM model was implemented into the FORGE 2 code. The ex-
ample of equivalent strain distribution is plotted in Fig. 5b. It can be seen that the
maximum of strain is located in the inner coating.

4 Inverse Analysis with Metamodel

Generally, the main goal of the inverse analysis is evaluation of the real parame-
ters of the model for the tested material. The aim of the present work is evaluation
of these parameters on the basis of the nanoindentation test for multi-nanocoating
systems. The known and described widely in [12] analytical methods used in exper-
imental nanoindentation test lead to evaluation of mechanical properties (hardness,
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Fig. 5 a The developed FEM model (specimen and indenter) of the nanoindentation test. b Distri-
butions of the equivalent strain of 3 hard nanocoatings

Young’s modulus) and they produce desired results, but only for monolayer speci-
men. It is impossible to extrapolate these solutions to the multilayered nanocoatings.

Therefore, the objective of this research is to evaluate the properties of the inner
layers of the multinanocoating system. The inverse analysis was suggested by the
authors to solve this problem. The load measured for the whole nanocoatings system
is the main output from the nanoindentation experiment, which is indirectly used in
the goal function of the classical inverse approach. Since the inverse analysis of
such complex nanomaterial system is very time-consuming procedure, the classical
inverse analysis was coupled with the artificial neural network (ANN). The ANN
approach allows significant reduction of the computational costs.

4.1 Classical Inverse Approach

The identification of material model can be done using the classical inverse ap-
proach. The objective of the inverse analysis is to find, using the optimization pro-
cedure, the material model parameters, which give the best matching between results
of the FEM simulation and the experiment. The discrepancy between these values
is the optimization goal function, which has to be minimized.

Unfortunately, in many cases, the evaluation of goal function requires numer-
ous time-consuming FEM simulations. It makes the computation time of the whole
inverse analysis unacceptable. In the analyzed problem one FEM simulation of
nanoindentation test, for conditions described above, is computed at least about
three hours and the whole inverse analysis for one simulation of experiment may
last many days.



Identification of Material Models of Nanocoatings with Metamodel 11

4.2 Metamodel and Results

The inverse method can be speeded up by using the fast metamodeling approach, in-
stead of running thousands FEM simulations. The idea of the metamodel approach
can be briefly defined as modeling of the existing model. Usually, in the metamodel-
ing procedure, various methods of approximation or artificial intelligence tools are
used to modeling of existing models of analyzed processes. The latter approach is
applied in the present work.

For the purpose of the inverse analysis of considered nanoindentation test the
proposed metamodel is based on the artificial neural network models. Obviously, the
ANN metamodel creation demands numerous time-consuming FEM simulations as
the input data. But this is done once, and later on, the whole inverse procedure may
be performed fast for many simulations of experiment. The idea of the metamodel
creation and its application in the inverse analysis are shown in Fig. 6.

As it was mentioned, the metamodel of the FEM output data of the nanoinden-
tation test, obtained in the FORGE 2 simulations, is based on the artificial neural
network approach. The Multi Layer Perceptron (MLP) of the 4-2-1 architecture is
used (logistic transfer functions in the first and second layers; linear activation func-
tion in the output layer - see Fig. 7).

The ANN input data are the parameters E, K and n of the material models Egs. 3
and 4 of the analyzed multinanocoating specimen, as well as the indenter displace-
ment d. The ANN output data corresponds to force F.

144 data sets for various n, K and E were used. Each set was composed of 25
values of force versus displacement data. 142 sets of data were training data, and
two sets were used as for ANN test. The network was trained using Levenberg-
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Fig. 6 The metamodel: a creation, b application in the inverse analysis
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Marquardt algorithm [6]. The network was tested for n = 0.15, E = 370GPa,
K = 100 MPa and the results are shown in Fig. 8. Root mean square error for the
two test sets is equal to 20 uN, which confirms good predictive capability of the
network.

The trained network was used next as the metamodel in the inverse analysis.
The analyzed goal function of the inverse problem was the root mean square error
between experimental data and the output of the network:

N
¢(n,E,K) = \/11, Y (Fexp(i) _FANN(n,EaKadi))z )
i=

where: Fgxp - force vs displacements simulated by FEM, Fyyy - ANN predicted
values of the force, d; - displacements, N - number of computing steps.

To find the minimum value of the goal function (Eq. 5) the hybrid optimization
procedure was applied. The genetic algorithm was used in the first phase to the
localization of the minimum, while the Quasi-Newton algorithm was used in the
final search. The whole algorithm of the inverse method with metamodel is shown
in Fig. 9.

The experimental data was generated by FEM simulation for the set of material
model parameters: n = 0.175, E = 400 GPa and K = 270 MPa. The results for exam-
ined case are presented in Fig. 10. Evaluated minimum of the goal function (Eq. 5)
is found at n = 0.17, E = 397 GPa and K = 331 MPa for analyzed case. The goal
function value is ¢ =21 uN.

e FEM simulation
ANN

force, mN
B [}

N

Fig. 8 Results of the artificial
neural network test for work-
hardening curves of multi-
nanocoating specimen

0 20 40 60 80 100
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Fig. 9 Algorithm of the inverse analysis with metamodel

It is shown in Fig. 10 that the experimental (simulated) points match very well
the found solution. Unfortunately, the problem is irreversible. It means that for one
set of force versus displacement many different solutions can be found. This state-
ment is also confirmed by the second plot, which is shown in Fig. 11. This plot
presents logarithm of goal function (Eq. 5) for the examined case. The chosen goal
function for simulated experimental data set takes minimal values in some area lo-
cated around experimental parameters. The minimum of goal function is shallow
and therefore, the optimization result depends on the starting point. The ambiguity
problem will be greater for the real experimental data (not simulated), because there
is a big scatter in experimental results. Thus, the future form of used material model
(Eq. 4) should be modified by adding more parameters or chosen the more complex
material model.

e output of FEM simulation
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—— ANN output
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force, mN
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Fig. 10 Results of the inverse

analysis for the analyzed case displacement, nm
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Fig. 11 Plot of the logarithm
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5 Conclusions

The presented research and reached results lead to the following conclusions:

Presented metamodeling approach is useful for considered optimization problem
when the evaluation of the goal function is time-consuming. The proposed al-
gorithm allows radical decrease of the number of long-term FEM calculations.
Despite of the initial computational efforts connected with the ANN training, the
final use of the network as the metamodel in the evaluation of material model
parameters lasts only a few seconds. So, the reached time-profit is very high.
The quality of results is very good. Trained ANN gives good compatibility with
the test set.

There is a certain disadvantage of presented approach - a weak ambiguity, be-
cause similar output curves can be obtained for different combination of cho-
sen input material model parameters. This observation is proved by the plot of
the used goal function (Eq. 5), which is shown in Fig. 11. The goal function
takes minimal values in some area located around chosen experimental parame-
ters. The minimum of goal function is shallow and vast. Therefore, the analyzed
problem is irreversible. The disadvantage of such approach appears, because it
is impossible to find out precisely, which combination of parameters in material
model is the best solution of the inverse problem. Therefore, the future research
of the authors will be focused on solving the uniqueness problem by modification
of the form of material model, by adding more parameters or choosing a more
complex material model.

The ANN based metamodel can be used together with another optimization pro-
cedure, for example the one defined by heuristic algorithms.

The key aspects of all the prospects and conclusions are important from the point
of view of the authors, because the examined system of nanocoatings will be used
for demanding biomedical application. These coatings will be also deposited on
polyurethane by PLD (Pulsed Laser Deposition) technique and are supposed to
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be used for artificial heart prosthesis as the constructional materials. Numerical
model of such artificial organ needs the exact material model parameters of all
its material layers.
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