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Abstract Bang-bang control problems subject to a state inequality constraint are
considered. It is shown that the control problem induces an optimization problem,
where the optimization vector assembles the switching and junction times for bang-
bang and boundary arcs. Second order sufficient conditions (SSC) for the state-
constrained control problem are given which require that SSC for the induced op-
timization problem are satisfied and a generalized strict bang-bang property holds
at switching and junction times. This type of SSC ensures solution differentiability
of optimal solutions under parameter perturbations and allows to compute paramet-
ric sensitivity derivatives. A numerical algorithm is presented that simultaneously
determines a solution candidate, performs the second-order test and computes para-
metric sensitivity derivatives. We illustrate the algorithm with two state-constrained
optimal control problems in biomedicine.

1 Introduction

Second-order sufficient optimality conditions (SSC) for bang-bang controls without
state constraints have been derived in Agrachev, Stefani and Zezza [1] on the basis
of an induced optimization problem where the control process is optimized with
respect to the unknown switching times of the bang-bang control. The equivalence
of this type of SSC with a different form of SSC obtained earlier in the literature
has recently been shown in [20, 21, 23]. Numerical methods for the verification of
optimization based SSC have been developed in Maurer, Büskens, Kim and Kaya
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[18] using the so-called arc-parameterization method where the arc-lengths of the
bang-bang arcs are optimized. Basic ideas for a sensitivity analysis of bang-bang
controls may be found in Kim, Maurer [11].

The purpose of this paper is to extend the results and techniques in [18, 11]
to bang-bang control problems with a state constraint. In Sect. 2, we review the
necessary conditions for an optimal control problem with a state constraint of order
one. The regularity conditions in assumptions (A1), (A2) allow to determine the
multiplier associated with the state constraint. In Sect. 3, we formulate an induced
optimization problem where the optimization vector assembles the switching times
of bang-bang arcs, resp., the entry- and exit-times (junction times) of boundary arcs,
and the free final time. The crucial point in this optimization approach is the fact that
the optimal control is given in feedback form along boundary arcs.

Based on second-order sufficient conditions (SSC) for the induced optimization
problem, we give SSC for the control problem which require the strict bang-bang
property in assumption (A4) and the strict complementarity in (A5). In Sect. 4, the
arc-parameterization method from [18] is extended to incorporate boundary arcs.
The main result on sensitivity analysis is given in Sect. 5. We include a formula for
the sensitivity derivatives of the switching and junction times which can be imple-
mented into the routine NUDOCCCS developed in [4]; cf. also [5, 6]. In Sect. 6,
we discuss the drug displacement problem in [22] in the light of the SSC presented
in Theorem 2. In Sect. 7, we determine the optimal control in a two-compartment
model for cancer therapy [12], when a state constraint on the number of tumor cells
is imposed.

2 Optimal Bang-bang Control Problems with a State Constraint

Let x(t) ∈ Rn denote the state variable and u(t) ∈ R the control variable at time
t ∈ [0, t f ], where the final time t f > 0 is either fixed or free. For simplicity, the control
is assumed to be scalar. The following autonomous optimal control problem with
control variable appearing linearly will be denoted by (OC): determine a measurable
control function u : [0, t f ] → R and a terminal time t f > 0 such that the pair of
functions (x(·),u(·)) minimizes the cost functional of Mayer type

J(x,u, t f ) := g(x(t f ), t f ) (1)

subject to the constraints in the interval [0, t f ],

ẋ(t) = f (x(t),u(t)) = f0(x(t))+ f1(x(t))u(t), (2)
x(0) = x0, ϕ(x(t f ), t f ) = 0, (3)

umin ≤ u(t)≤ umax , (4)

and the scalar state inequality constraint
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S(x(t))≤ 0 for 0≤ t ≤ t f . (5)

The functions g : Rn×R → R, f0, f1 : Rn → Rn,ϕ : Rn×R → Rr, 0 ≤ r ≤ n, and
S : Rn →R are assumed to be twice continuously differentiable. The state constraint
is assumed to be of order one [9, 16], i.e., the total time derivative of the function
S(x(t)) contains the control explicitly,

S1(x,u) := Sx(x)( f0(x)+ f1(x)u) = a(x)+b(x)u, (6)

where b(x) = Sx(x) f1(x) 6≡ 0. Here and in the sequel, partial derivatives are denoted
by subscripts. A subinterval [τ1,τ2] ⊂ [0, t f ] is called an interior arc if S(x(t)) < 0
holds on (τ1,τ2). The interval [τ1,τ2] is called a boundary arc if S(x(t)) ≡ 0 holds
for all t ∈ [τ1,τ2]. If [τ1,τ2] is maximal with this property, then τ1 is called entry-
time and τ2 is called exit-time of the boundary arc; τ1, τ2 are also called junction
times. The following assumption is a standard regularity condition for a boundary
arc [9, 15, 17].

(A1) b(x(t)) 6= 0 ∀ t ∈ [τ1,τ2] .

Under this assumption, the boundary control on a boundary arc is determined by the
equation S1(x,u) = a(x)+b(x)u = 0 as the feedback expression

ub(x) =−a(x)/b(x), u(t) = ub(x(t)) . (7)

The following assumption will be needed to determine the multiplier associated with
the state constraint explicitly.

(A2) The boundary control lies in the interior of the control region:

umin < u(t) = ub(x(t)) < umax ∀ t ∈ [τ1,τ2]. (8)

Assumptions (A1) and (A2) allow us to formulate first order necessary conditions
of Pontryagin’s minimum principle in a computationally convenient form. We recall
from [9, 17] that the Lagrange multiplier associated with the state constraint (5) is
a measure that is represented by a function µ of bounded variation. Using (A1) and
(A2), it has been shown in [16, 17, 15, 14] that the measure has a Radon-Nikodym
derivative η which allows to write the following adjoint equation (11) in differen-
tial form. In the direct adjoining approach [9, 17], the augmented Pontryagin or
Hamiltonian function is defined by

H(x,u,λ ,µ) = λ f (x,u)+ηS(x) = λ f0(x)+λ f1(x)u+ηS(x), (9)

where the adjoint variable λ ∈ Rn is a row vector and η is the multiplier associated
with the state constraint.

Suppose now that ū : [0, t̄ f ]→ [umin,umax] is an optimal control with optimal final
time t̄ f and corresponding trajectory x̄ : [0, t̄ f ] → Rn. Assume that (A1), (A2) hold
and the state constraint (5) is not active at t = 0 and t = t̄ f ,



6 Helmut Maurer and Georg Vossen

S(x̄(0)) < 0 and S(x̄(t̄ f )) < 0. (10)

In the sequel, we will use the junction theorem in [16], Corollary 5.2 (ii), where
it was shown that the adjoint variables are continuous at junction times provided
that the state constraint is of first order and the control is discontinuous at junc-
tions. Note that the latter property follows from (A2). Then there exist an absolutely
continuous (a.c.) adjoint function λ : [0, t̄ f ]→ Rn, a piecewise a.c. multiplier func-
tion η : [0, t̄ f ] → R and a multiplier ρ ∈ Rr (row vector) such that the following
conditions hold a.e. on [0, t̄ f ]:

λ̇ (t) =−Hx(x̄(t), ū(t),λ (t),η(t)), (11)
λ (t̄ f ) = lx(x̄(t̄ f ), t̄ f ,ρ), (12)
H(x̄(t), ū(t),λ (t),η(t))|t=t̄ f + lt f (x̄(t̄ f ), t̄ f ,ρ) = 0, if t f is free, (13)
H(x̄(t), ū(t),λ (t),η(t)) = min{H(x̄(t),u,λ (t),η(t)) |u ∈ [umin,umax]}, (14)
η(t)≥ 0, η(t) = 0, if S(x(t)) < 0, (15)

where l(x, t f ,ρ) := (g+ρϕ)(x, t f ) is the endpoint Lagrangian function. The switch-
ing function is defined by

σ(x,λ ) := Hu = λ f1(x), σ(t) = σ(x(t),λ (t)). (16)

On interior arcs with S(x(t)) < 0 the minimum condition (14) yields the control law

u(t) =

{
umin, if σ(t) > 0,

umax, if σ(t) < 0.
(17)

The switching times of the control are zeroes of the switching function. A singular
arc occurs if the switching function σ(t) vanishes identically on an interval Ising ⊂
[0, t̄ f ]. In this paper, we assume that the optimal control does not contain singular
arcs.

Along a boundary arc [τ1,τ2], assumption (A2) requires that the control takes
values in the interior of the control set. Hence, the minimum condition (14) implies

σ(t) = λ (t) f1(x(t)) = 0 ∀ t ∈ [τ1,τ2]. (18)

This relation can be interpreted as the property that a boundary control behaves
formally like a singular control, a fact that was exploited in [16] to obtain junction
theorems. By differentiating (18) and using the adjoint equation (11) we find the
following explicit representation of the multiplier η = η(x,λ ) in (11) (cf. [17, 14]),

η(x,λ ) = λ [( f1)x(x) f (x,ub(x))− fx(x,ub(x)) f1(x)]/b(x), (19)

where ub(x(t)) is the boundary control (7). In short, the multiplier is given by the
Lie bracket η(x,λ ) = λ [ f1, f ]; we then set η(t) = η(x(t),λ (t)).



Sufficient Conditions and Sensitivity Analysis for Optimal... 7

3 Induced Optimization Problem and Second Order Sufficient
Conditions

In order to transcribe the control problem into a finite-dimensional optimization
problem, we make the following assumption:

(A3) The optimal control has finitely many bang-bang and boundary arcs.

Under assumptions (A1)-(A3), the optimal control problem can be transcribed into
an optimization problem in the following way. We assume that the structure of the
optimal control, i.e., the sequence of finitely many bang-bang and boundary arcs, is
known. Let t j, j = 1, . . . ,s, be the switching and junction times which are ordered as

0 =: t0 < t1 < .. . < t j < .. . < ts < ts+1 := t f . (20)

For simplicity, assume that there exists only a single boundary arc [τ1,τ2] =
[tk, tk+1] with an index 1 ≤ k ≤ s. Then [0, tk] and [tk+1, t f ] are the interior arcs.
By assumption, in every interval I j := [t j−1, t j] there exists a function u j(x) with the
property that the optimal control is given by

u(t) = u j(x(t)), t j−1 ≤ t ≤ t j, ( j = 1, . . . ,s,s+1). (21)

The interval Ik+1 then represents the boundary arc. The function u j(x) is either the
constant value of the bang-bang control on interior arcs or the boundary control
uk+1(x) = ub(x) =−a(x)/b(x).

Consider now the optimization variable z := (t1, . . . , ts+1)∗ ∈Rs+1 with ts+1 := t f
in case of a free final time, resp., z := (t1, . . . , ts)∗ ∈ Rs for fixed final time t f ,
where the asterisk denotes the transpose. Denote by x(t;z) the absolutely continuous
solution of the ODE system

ẋ(t) = f (x(t),u j(x(t))), t j−1 ≤ t ≤ t j, (22)

with initial condition x(0) = x0. Then the control problem (OC) can be reformu-
lated as the following finite-dimensional optimization problem (OP) with equality
constraints:

Min G(z) := g(x(ts+1;z), ts+1)

s.t. Φ(z) := ϕ(x(ts+1;z), ts+1) = 0,

S (z) := S(x(tk;z)) = 0 .

(23)

The last equation arises from the entry-condition for the boundary arc. We consider
the Lagrangian for the induced optimization problem (OP) in normal form,

L (z,ρ,β ) = G(z)+ρΦ(z)+βS (z), (24)

with multipliers ρ ∈ Rr (row vector) and β ∈ R. First order necessary and second
order sufficient conditions (SSC) for (23) are well known in the literature. In the
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following theorem, we consider control problems with free final time which involve
the optimization vector z ∈ Rs+1.

Theorem 1. SSC FOR THE INDUCED OPTIMIZATION PROBLEM.
Let z̄ be feasible for the optimization problem (23). Suppose there exist multipliers
ρ ∈ Rr and β ∈ R such that the following three conditions hold:

(a) rank [Φz(z̄) |Sz(z̄) ] = r +1,
(b) Lz(z̄,ρ,β ) = 0,
(c) v∗Lzz(z̄,ρ,β )v > 0 for all v ∈ Rs+1 \{0} with Φz(z̄)v = 0, Sz(z̄)v = 0.

Then z̄ is a strict local minimizer of the optimization problem (OP).

Arguments similar to those in [18, 23] reveal that the first order conditions in
part (a) and (b) of Theorem 1 are closely related to those in (11)-(13) involving
the adjoint function λ (t). Namely, using the multiplier ρ in the Lagrangian (24),
we define the adjoint function λ (t) through the transversality condition λ (t̄ f ) =
(g + ρϕ)x(x̄(t̄ f ), t̄ f ) in (12) and the adjoint equation (11) where the multiplier
η is given in (19). However, on the boundary arc [tk, tk+1] there exists another
multiplier η1 and an adjoint function λ 1(t) which correspond to the so-called
indirect adjoining approach [9, 17]. Here, the Hamiltonian is defined by H1 =
λ 1 f (x,u)+η1S1(x,u) with the function S1(x,u) given in (6). Then the adjoint equa-
tion is λ̇ 1 = −H1

x and the multiplier η1 is determined via the equation H1
u = 0 as

η1(x,λ 1) = −λ 1 fu(x,ub(x))/b(x). The multiplier β in the Lagrangian (24) yields
the jump condition λ 1(tk+) = λ 1(tk−)−βSx(x(tk)) at the entry-time tk. Moreover,
one can show the relation β =

∫ tk+1
tk η(t)dt ≥ 0.

For bang-bang control problems without state constraints, it was shown in
[1, 20, 21, 23] that one further needs the so-called strict bang-bang property to
obtain SSC for the bang-bang control problem. The following assumption gives an
extension of the strict bang-bang property to control problems with state constraints.

(A4) (a) on interior arcs for j = 1, ...,k−1,k +2, ...,s :
σ(t j) = 0, σ̇(t j)(u(t−j )−u(t+j )) > 0, σ(t) 6= 0 for t 6= t j .

(b) at the entry-time tk and exit-time tk+1 of the boundary arc:
σ̇(tk−)(u(t−k )−u(t+k )) > 0 , σ̇(t+k+1)(u(t−k+1)−u(t+k+1)) > 0 .

Finally, we need the following strict complementarity condition:

(A5) The multiplier η(t) satisfies η(t) > 0 ∀ t ∈ [tk, tk+1].

Note that assumptions (A4) and (A5) have also been used in [13, 14] to construct
a local field of extremals near boundary arcs. This has enabled the authors to prove
sufficient conditions (SSC) which correspond to the following form of SSC. De-
tailed proofs will be given elsewhere.

Theorem 2. SSC FOR THE STATE-CONSTRAINED CONTROL PROBLEM.
Let ū be a feasible control for the control problem (1)-(5) which has finitely many
switching and junction times t̄ j, j = 1, . . . ,s, and let x̄ be the corresponding trajec-
tory. Suppose there exists an adjoint function λ : [0, t f ]→Rn and a multiplier ρ ∈Rr
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such that assumptions (A1)-(A5) hold with multiplier function η : [0, t f ]→R defined
by (19). Suppose further that the vector z̄ = (t̄1, . . . , t̄s, t̄s+1)∗ ∈ Rs+1, t̄s+1 = t̄ f , sat-
isfies the SSC in Theorem 1. Then the control ū provides a strict strong minimum for
the control problem (OC).

4 Numerical Methods for Solving the Induced Optimization
Problem

In this section, we shall extend the arc-parameterization method in [10, 18] to solve
state-constrained control problems. Instead of directly optimizing the switching and
junction times t j, j = 1, . . . ,s, one determines the arc-lengths (arc durations)

ξ j := t j − t j−1, j = 1, . . . ,s,s+1, (25)

of bang-bang and boundary arcs. Therefore, the optimization variable z = (t1,
. . . , ts, ts+1)∗ is replaced by the optimization variable

ξ := (ξ1, . . . ,ξs,ξs+1)∗ ∈ Rs+1, ξ j := t j − t j−1. (26)

The variables z and ξ are related by a linear transformation involving the regular
(s+1)× (s+1)-matrix R,

ξ = Rz, z = R−1
ξ , R =


1 0 . . . 0

−1 1
. . .

...

. . .
. . . 0

0 −1 1

 . (27)

In the arc-parameterization method, the time interval [t j−1, t j] is mapped to the fixed

interval I j :=
[

j−1
s+1 , j

s+1

]
by the linear transformation

t = a j +b jτ, τ ∈ I j =
[

j−1
s+1

,
j

s+1

]
, (28)

where a j = t j−1− ( j−1)ξ j, b j = (s+1)ξ j . Identifying x(τ)∼= x(a j +b jτ) = x(t)
in the relevant intervals, we obtain the ODE system

ẋ(τ) = (s+1)ξ j f (x(τ),u j(x(τ))) for τ ∈ I j. (29)

By concatenating the solutions in the intervals I j we get the continuous solution
x(t) = x(t;ξ ) in the normalized interval [0,1]. When expressed via the new op-
timization variable ξ , the optimization problem (OP) in (23) is equivalent to the
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following optimization problem (ÕP) with t f =
s+1
∑
j=1

ξ j :

Min G̃(ξ ) := g(x(1;ξ ), t f ),

s.t. Φ̃(ξ ) := ϕ(x(1;ξ ), t f ) = 0 ,

S̃ (ξ ) := S(x( k
s+1 ;ξ )) = 0 .

(30)

The Lagrangian function is given by

L̃ (ξ ,ρ,β ) = G̃(ξ )+ρΦ̃(ξ )+βS̃ (ξ ). (31)

Using the linear transformation (27), it can easily be seen that the SSC for the
optimization problems (OP) and (ÕP) are equivalent; cf. similar arguments in [18].
To solve this optimization problem, we use a suitable adaptation of the control pack-
age NUDOCCCS in Büskens [4, 6]. Then we can take advantage of the fact that this
routine also provides the Jacobian of the equality constraints and the Hessian of the
Lagrangian which are needed to check the second order condition in Theorem 1.

5 Sensitivity Analysis for Bang-bang Control Problems
with a State Constraint

The SSC given in Theorem 2 pave the way to stability and sensitivity analysis for
parametric bang-bang control problems with a state constraint. Suppose that the
control problem (OC) in (1)-(5) depends as well on a parameter p ∈ P ⊂ Rq in the
following way: Minimize

J(x,u, t f , p) := g(x(t f ), t f , p) (32)

subject to the constraints on the interval [0, t f ],

ẋ(t) = f (x(t),u(t), p) = f0(x(t), p)+ f1(x(t), p)u(t), (33)
x(0) = x0, ϕ(x(t f ), t f , p) = 0, (34)
umin ≤ u(t)≤ umax, (35)

S(x(t), p)≤ 0. (36)

All functions are supposed to be sufficiently smooth. This parametric control prob-
lem will be denoted by (OC(p)). For a fixed parameter p0 ∈ P, the problem
(OC(p0)) is considered as the nominal control problem.

We shall assume that the state constraint is of order one uniformly in the param-
eter p, i.e., for

S1(x,u, p) = Sx(x, p)( f0(x, p)+ f1(x, p)u) = a(x, p)+b(x, p)u (37)
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we have b(x, p) 6≡ 0 for all p ∈ P. Then the boundary control is given by

ub(x, p) =−a(x, p)/b(x, p). (38)

Assuming (A1)-(A5) for the nominal control problem (OC(p0)), we arrive at an
induced optimization problem (23) in parametric form upon inserting the parametric
boundary control (38). The Lagrangian function (24) becomes

L (z,ρ,β , p) = G(z, p)+ρΦ(z, p)+βS (z, p). (39)

Using a well-known sensitivity result for finite-dimensional parametric optimization
problems (cf. [7, 5, 6]) we arrive at the following sensitivity result for the parametric
control problem.

Theorem 3. SENSITIVITY ANALYSIS OF THE CONTROL PROBLEM (OC(p)).
Suppose that ū(t) =: u(t, p0) is a feasible control for the nominal control problem
(OC(p0)). Assume that u(t, p0) has switching and junction times t̄ j, j = 1, ...,s, and
a final time t̄ f = t̄s+1 such that the SSC in Theorem 2 are satisfied. Then there exists
a neighborhood P0 ⊂ P of the nominal parameter p0 and functions t j : P0 →R ( j =
1, ...,s,s+1), ρ : P0 → Rr and β : P0 → R with the following properties:

(1) t j(p0) = t̄ j, j = 1, ...,s,s+1,
(2) for every p∈ P0, the control u(t, p) with switching and junction times t j(p), j =

1, ...,s, and final time t f (p) = ts+1(p) is a strict strong local minimum for
(OC(p)). The values of u(t, p) agree with those of the nominal control ū(t)
on every interior bang-bang interval and are determined on boundary arcs by
u(t, p) = ub(x(t), p) in view of (38).

The parametric sensitivity derivatives of z(p) := (t1(p), ..., ts(p), ts+1(p))∗ ∈ Rs+1

and of ρ(p), β (p) are given by the formula dz/d p

dρ∗/d p

dβ/d p

=−

(
Lzz (Ψz)∗

Ψz 0

)−1(
Lzp

Ψzp

)
, (40)

where we have put

Ψ(z, p) =

(
Φ(z, p)
S (z, p)

)
. (41)

The right hand side in (40) is evaluated for the argument (z(p),ρ(p),β (p)).

Proof. We sketch the main ideas of the proof. Since SSC hold for the nominal in-
duced optimization problem (OC(p0)), the sensitivity theorem in [7, 5, 6] tells us
that there exist a neighborhood P0 ⊂ P of p0 and, for every p ∈ P0, an optimal solu-
tion and multipliers

z(p) = (t1(p), ..., ts(p), t f (p)), ρ(p), β (p), (42)
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for the parametric problem (OC(p)). The triple (z(p),ρ(p),β (p)) satisfies the as-
sumptions of Theorem 1 and is a C1-function with respect to p ∈ P0. We define the
parametric control u(t, p) in the following way. On bang-bang arcs [t j(p), t j+1(p)], j 6=
k, the control u(t, p) takes the values of the nominal control on the corresponding
nominal arcs [t̄ j, t̄ j+1]. On the boundary arc [tk(p), tk+1(p)], the parametric control is
defined by u(t, p) = ub(x(t), p) using the boundary control (38). Then corresponding
trajectory x(t, p) is determined by

ẋ = f (x,u(t, p)), x(0, p) = x0. (43)

Then the adjoint function λ (t, p) is defined by the transversality condition

λ (t f (p), p) := (g+ρ(p)ϕ)x(x(t f (p), p), t f (p)) (44)

and the solution to the adjoint equation

λ̇ (t, p) =−Hx(x(t, p),λ (t, p),u(t, p),η(t, p)), (45)

where the multiplier η(t, p) is given by the Lie-bracket

η(t, p) = λ (t, p) [ f1, f ](x(t, p),u(t, p), p). (46)

By shrinking the set P0 if necessary, it is easy to verify that assumptions (A1)-(A5)
hold for all p ∈ P0. This proves the optimality of the triple (x(t, p),u(t, p),λ (t, p)).
The sensitivity formula (40) follows from standard results in [7, 5, 6]. Note that The-
orem 3 represents an extension of a sensitivity result for bang-bang control problems
without state constraints; cf. Kim, Maurer [11]. ut

We point out that the code NUDOCCCS [4] provides also the numerical evalua-
tion of sensitivity formula (40).

6 Numerical Example: Time-optimal Drug Displacement
Problem

We consider the time-optimal control problem discussed in Bell, Katusiime [3] and
Maurer, Wiegand [22]. The model simulates the interaction of the two drugs, war-
farin and phenylbutazone in the human blood stream. The state variables x1 and x2
represent the concentration of warfarin and phenylbutazone, respectively. The prob-
lem is to control the rate of infusion (control u) of the pain-killing drug phenylbu-
tazone such that both drugs reach a stable steady-state in minimal time while the
concentration of warfarin is bounded by a given toxic level:
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Minimize t f (47)

subject to ẋ1 = D2(C2(0.02− x1)+46.4x1(u−2x2))/C3, (48)

ẋ2 = D2(C1(u−2x2)+46.4x2(0.02− x1))/C3, (49)
x1(0) = 0.02, x2(0) = 0, (50)
x1(t f ) = 0.02, x2(t f ) = 2, (51)
0 = umin ≤ u(t)≤ umax = 8 ∀ t ∈ [0, t f ], (52)

and the state constraint

S(x(t)) = x1(t)−α ≤ 0 ∀ t ∈ [0, t f ], (53)

where

D = D(x) = 1+0.2x1 +0.2x2, (54)
C1 = C1(x) = D2 +232+46.4x2, (55)
C2 = C2(x) = D2 +232+46.4x1, (56)
C3 = C3(x) = C1C2− (46.4)2x1x2. (57)

The augmented Hamiltonian associated with the state constraint (53) is given by

H(x,u,λ ,η) = λ f (x,u)+ηS(x) =
D2

C3
·K +η(x1−α), (58)

where

K : = λ1(C2(0.02− x1)+46.4x1(u−2x2))
+λ2(C1(u−2x2)+46.4x2(0.02− x1)).

(59)

Then the adjoint equations (11) are

λ̇1 =−Hx1 =−
(D2)x1C3− (C3)x1D2

C2
3

·K− D2

C3
·Kx1 −η , (60)

λ̇2 =−Hx2 =−
(D2)x2C3− (C3)x2D2

C2
3

·K− D2

C3
·Kx2 , (61)

with the following partial derivatives of K:

Kx1 = 0.02λ1(C2)x1 −λ1(C2 +(C2)x1x1)+46.4λ1u−92.8x2λ1 (62)
+λ2u(C1)x1 −2x2λ2(C1)x1 −46.4x2λ2, (63)

Kx2 = 0.02λ1(C2)x2 − x1λ1(C2)x2 −92.8x1λ1 +λ2u(C1)x2 (64)
−2λ2(C1 +(C1)x2 x2)+0.928λ2−46.4x1λ2. (65)

The switching function (16) is given by



14 Helmut Maurer and Georg Vossen

σ(x,λ ) = Hu =
D2

C3
(46.4x1λ1 +C1λ2). (66)

The state constraint (53) is of order one, as the function S1(x,u) in (6) contains the
control explicitly:

S1(x,u) = Sx(x) f (x,u) =
D2

C3
(C2(0.02− x1)+46.4x1(u−2x2)). (67)

The boundary control ub(x) in (7) is determined by the feedback expression

ub(x) =
α−0.02

46.4α
C2(x)+2x2 . (68)

Using boundary value methods it was shown in [22] that for toxic levels 0 < α ≤
0.0246 the control has the following structure with two bang-bang arcs encompass-
ing a boundary arc:

u(t) =


8, for t ∈ [0, t1),

ub(x(t)) = α−0.02
46.4α

C2(x(t))+2x2(t), for t ∈ [t1, t2],
0, for t ∈ (t2, t f ].

(69)

We choose the toxic level α = 0.024 and compute the numerical solution using the
routine IPOPT by Wächter and Biegler [27]. Using 1000 discretization points and
the method of Heun for the approximation of the differential equations, IPOPT pro-
vides the solution depicted in Figs. 1-3. The final time is computed as t f = 358.731
and the entry- and exit-time are t1 = 29.7747 and t2 = 333.261.

0 100 200 300 400
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0.021

0.022

0.023

0.024

0 100 200 300 400
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1.5
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2.5

3

3.5

Fig. 1 Concentration of warfarin (left) and phenylbutazone (right)

Now we solve the induced optimization problem (23) with optimization vari-
ables z = (t1, t2, t3), resp., problem (30) with variables ξ = (ξ1,ξ2,ξ3), where
ξ1 = t1, ξ2 = t2 − t1, ξ3 = t f − t2. The routine NUDOCCCS [4] yields the entry-
time t1 = 29.90806, the exit-time t2 = 333.1561 and the final time t f = 358.7085.
NUDOCCCS also provides the Hessian L̃ξ ξ and Jacobian Φ̃ξ ,
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Fig. 3 Optimal control and switching function

L̃ξ ξ =

−0.046251 −0.014521 0.026232
−0.014521 −0.0011993 0.0052637

0.026232 0.0052637 0.054240

 , (70)

Φ̃ξ =

 0.0000000 0.0000000 −0.0000954
0.0298122 0.0043075 −0.0336047
0.0001245 0.0000000 0.0000000

 . (71)

Since rank(Φ̃ξ ) = 3 holds, condition (a) of Theorem 1 is fulfilled with s = r = 2.
Furthermore, it is clear that the first order necessary conditions hold in the induced
problem, i.e., condition (b) in Theorem 1, is fulfilled. Finally, the second order con-
dition (c) is trivially satisfied, since the matrix Φ̃ξ is regular. Next, we check the
regularity assumption (A1). The data provided by IPOPT give the following esti-
mate:

b(x(t)) = 46.4
D(x(t))2

C3(x(t))
x1(t) ≥ 0.23 ·10−3. (72)

Hence, (A1) is satisfied. It can be seen in Fig. 3 that also the assumptions (A2) and
(A4) hold.
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Fig. 4 Multiplier η(t) from
(73) 0 100 200 300 400

8.967

8.9675

8.968

8.9685x 10
4

For the verification of assumption (A5), we compute the multiplier η(t) =
η(x(t),λ (t)) via formula (19),

η(x,λ ) =
2ḊC3−DĊ3

46.4DC3x1
(46.4x1λ1 +C1λ2)+

1
46.4x1

(Ċ1λ2 +C1λ̇2)+
1
x1

ẋ1λ1

− x3 ·
(

(D2)x1C3− (C3)x1D2

C2
3

·K +
D2

C3
·Kx1

)
,

(73)

and insert the values of x(t), λ (t) provided by IPOPT. Note that η(t) ≡ 0 for t /∈
[t1, t2]. Then Fig. 4 shows that the strict complementarity condition (A5) holds. It is
noteworthy that the Lagrange multiplier for the discretized state constraint, which
is provided directly by IPOPT, has the same values as the multiplier η(t). Finally,
we may conclude from Theorem 2 that the control (69) provides a strict strong
minimum for the problem (47)-(53).

7 Optimal Control for a Two-compartment Model in Cancer
Chemotherapy

Ledzewicz, Schättler [12] considered a two-compartment model in cancer chemothe-
rapy and established optimality using extremal field theory [13]. The state constraint
(77) below has been studied in de Pinho, Ferreira, Ledzewicz, Schättler [24] using
the methods developed in [13, 14]. Here, we prove optimality on the basis of the
SSC in Theorem 2 which allows us to apply the sensitivity result in Theorem 3. The
description of the control model is taken from [12]: “The cell cycle is broken into
two compartments of which the first combines the first growth phase G1 and the
synthesis phase S while the second contains the second growth phase G2 and mito-
sis M. Let xi(t), i = 1,2, denote the number of cancer cells in the i-th compartment
at time t.” The control u is the drug treatment which is measured by its cell-killing
effect. The control problem is to minimize the cost functional with fixed final time
t f ,
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J(x,u) = r1x1(t f )+ r2x2(t f )+
∫ t f

0
u(t)dt, (74)

subject to
ẋ1 =−a1x1 +2(1−u)a2x2, x1(0) = x10,

ẋ2 = a1x1−a2x2, x2(0) = x20,

0≤ u(t)≤ 1 ∀ t ∈ [0, t f ].

(75)

The cost functional (74) can be transformed to a functional (1) of Mayer type by
introducing the equation ẋ3 = u, x3(0) = 0, which yields

J(x,u) = g(x(t f )) = r1x1(t f )+ r2x2(t f )+ x3(t f ). (76)

In addition, we consider the state constraint of order one:

S(x(t)) := x1(t)+ x2(t)−α ≤ 0 ∀ t ∈ [0, t f ], (77)

which imposes an upper bound on the total number of tumor cells in both compart-
ments. The first total time derivative (6) of S(x) is given by

S1(x,u) = a2x2−2a2x2u. (78)

Obviously, assumption (A1) is satisfied since b(x(t)) = −2a2x2(t) 6= 0 holds on
[0, t f ]. Data for (74) and (75) are taken from [12]:

r1 = 6.94, r2 = 3.94, a1 = 0.197, a2 = 0.356, t f = 10. (79)

We choose the initial conditions x1(0) = x10 = 0.86, x2(0) = x20 = 0.55, which
match approximately the solution in [12], where the terminal state x(t f ), i = 1,2,
was fixed and the intial state was free. The parameter α in the state constraint (77)
will be assigned the value α = 1.7 for which the state constraint becomes active.
The augmented Hamiltonian (9) is given by

H = λ1(−a1x1 +2a2x2)+λ2(a1x1−a2x2)+σu+η(x1 + x2−α), (80)

with switching function

σ = σ(x,λ ) = 1−2a2x2λ1. (81)

The adjoint equation (11) and the transversality condition (12) yield

λ̇1 = a1(λ1−λ2)−η , λ1(t f ) = r1 ,

λ̇2 = a2(2(u−1)λ1 +λ2)−η , λ2(t f ) = r2 .
(82)

The boundary control ub(x) satisfies the equation S1(x,ub(x))≡ 0 which gives

ub(x)≡
1
2
. (83)
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Hence, the boundary control lies in the interior of the control set and satisfies as-
sumption (A2). The multiplier η for the state constraint (77) is determined by equa-
tion (19):

η(t) = a1λ1(t)
(

x1(t)
x2(t)

+1
)
−a2λ1(t)−a1λ2(t). (84)

To determine the structure of the optimal control we first discretize the control prob-
lem with 500 gridpoints and apply the program NUDOCCCS of Büskens [4]. We
find that the control has two bang-bang arcs and one boundary arc:

u(t) =


0, t ∈ [0, t1),

ub(x(t)) = 1
2 , t ∈ [t1, t2],

1, t ∈ (t2, t f ].
(85)

Fig. 5 (left) displays the optimal control and the switching function. It clearly shows
that the optimal control satisfies assumptions (A3) and (A4) since, in particular, for
k = 1 in (A4) we have σ̇(t1−) < 0 and σ̇(t2+) < 0. Fig. 5 (right) depicts the state
constrained function x1(t)+ x2(t) and the multiplier η(t), which is seen to satisfy
the strict complementarity condition (A5). State and adjoint variables are shown in
Fig. 6, resp., Fig. 7.
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Fig. 5 Left: control with switching function (dashed); right: state constrained function x1(t)+x2(t)
with multiplier η(t) (dashed)

It remains to verify the SSC in Theorem 1 for the optimization problem (30). The
optimization variable is defined by (25) as

ξ = (ξ1,ξ2) = (t1, t2− t1). (86)

Then the arc-length of the terminal time interval is given by t f −ξ1−ξ2 with t f =
10 . Since no terminal state boundary conditions are prescribed, the only equality
constraint is the entry-condition of the boundary arc,

x1(1/3;ξ )+ x2(1/3;ξ ) = α = 1.7. (87)
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Fig. 7 Adjoint variables λ1 and λ2

The code NUDOCCCS gives the following results:

t1 = 1.490713, t2 = 2.653005,

λ1(0) = 2.44417, λ2(0) = 2.82883,

x1(t f ) = 0.2635156, x2(t f ) = 0.2673589,

J(x,u) = 10.81033 .

(88)

The Hessian of the Lagrangian for (30) is computed as

L̃ξ ξ =

(
0.225319 0.128060
0.128060 0.099212

)
(89)

while the Jacobian of the equality constraint is given by S̃ξ = (0.1979670, 0).
Obviously, the Hessian L̃ξ ξ is positive definite and we have rank (S̃ξ ) = 1. Hence,
we may conclude that the control (85) with data (88) satisfies the SSC in Theorem
1 and provides a strict local minimum of the optimal control problem.

Using the sensitivity result in Theorem 3 and the sensitivity formula (38), we
obtain the following sensitivity derivatives for the arc-length of the first bang-bang
arc and the boundary arc:
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dξ1/da1 = −1.513 , dξ2/da1 = 11.99 ,

dξ1/da2 = −3.350 , dξ2/da2 = 0.5165 ,

dξ1/dx10 = −5.359 , dξ1/dx10 = 4.421 ,

dξ1/dx20 = −7.233 , dξ1/dx20 = 4.077 .

(90)

In particular, note the high sensitivity of the boundary arc-length with respect to a
variation in the parameter a1.
Remark. Similar numerical methods can be applied to the three-compartment model
for cancer chemotherapy presented in Swierniak, Ledzewicz and Schättler [25]. The
model involves two control variables, a blocking agent and a recruiting agent. In this
problem, it is also reasonable to consider a state constraint similar to (77). Though
the analogon to Theorem 2 for vector-valued control has not been fully established
in the literature, one can formulate an induced optimization problem of the type
(30) and check that SSC hold; cf. Goris [8]. A paper with detailed results is in
preparation.

Acknowledgements We are indebted to Inga Altrogge [2] and Nadine Goris [8] for their numeri-
cal assistance.
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