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Abstract Second order sufficient optimality conditions for bang-bang control prob-
lems in a very general form have been obtained in [15, 21, 13, 12, 1]. These con-
ditions require the positive definiteness (coercivity) of an associated quadratic form
on the finite-dimensional critical cone. In the present paper, we investigate similar
conditions for optimal control problems with a control variable having two compo-
nents: a continuous unconstrained control appearing nonlinearly and a bang-bang
control appearing linearly and belonging to a convex polyhedron. The coercivity of
the quadratic form can be verified by checking solvability of an associated matrix
Riccati equation. The results are applied to an economic control problem in optimal
production and maintenance, where existing sufficient conditions fail to hold.

1 Introduction

The classical sufficient second order optimality conditions for an optimization prob-
lem with constraints require that the second variation of the Lagrangian be positive
definite on the cone of critical directions. In this paper, we investigate sufficient
quadratic optimality conditions of such type for optimal control problems with a
vector control variable having two components: a continuous unconstrained control
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appearing nonlinearly in the control system and a bang-bang control appearing
linearly and belonging to a convex polyhedron.

In the pure bang-bang case, where all control components appear linearly, sec-
ond order necessary and sufficient optimality conditions in a very general form have
been obtained in Milyutin, Osmolovskii[15], Osmolovskii [21], Agrachev, Stefani,
Zezza [1], and Maurer, Osmolovskii [13, 12, 24]. Two alternative approaches were
developed to establish sufficiency: (1) check the positive definiteness of an associ-
ated quadratic form on the finite-dimensional critical cone; (2) verify second-order
sufficient conditions for an induced finite-dimensional optimization problem with
respect to switching times and free final time. Second order sufficient optimal-
ity conditions for control problems where the control variable appears nonlinearly,
more precisely, where the strict Legendre condition holds, have been given, e.g., in
Malanowski [8], Maurer [9], Maurer, Pickenhain [14], Milyutin, Osmolovskii [15],
and Zeidan [28]. Here, one way to check the positive definiteness of the quadratic
form is by means of the solvability of an associated Riccati equation.

In this paper, we investigate a class of control problems having two control com-
ponents, a continuous and a bang-bang component. Such control problems are fre-
quently encountered in practice. Our aim is to obtain second-order sufficient opti-
mality conditions for this class of control problems. It does not come as a surprise
that the proof techniques for obtaining sufficient conditions combine the above men-
tioned methods in the pure bang-bang case and the case where the strict Legendre
condition holds. For simplicity, we shall consider control problems on a fixed time
interval.

In Sect. 2, we give a statement of the control problem with continuous and bang-
bang control components (main problem), formulate the minimum principle (first
order necessary optimality condition) and introduce the notion of bounded-strong
local minimum. In Sect. 3, we present second-order sufficient optimality conditions
(SSC) for a bounded-strong minimum in the problem. The main result in Theorem 1
is stated without proof, which is very similar to the proof in the bang-bang case; cf.
Milyutin, Osmolovskii [15] and Osmolovskii, Maurer [24], Part 1. Details of the
proof will be published elsewhere. In Sect. 4, we give criteria for the positive defi-
niteness of the quadratic form on the critical cone in terms of solutions to a matrix
Riccati equation which may be discontinuous at the switching times. In Sect. 5, the
main result in Theorem 2 is applied to an economic control problem for optimal
production and maintenance which was introduced by Cho, Abad and Parlar [4].
We will show that the numerical solution obtained in Maurer, Kim, and Vossen [10]
satisfies the second order test derived in Sect. 4 while existing sufficiency results
fail to hold.
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2 Control Problem on a Fixed Time Interval

2.1 The Main Problem

Let x(t) ∈ Rd(x) denote the state variable and u(t) ∈ Rd(u), v(t) ∈ Rd(v) the control
variables in the time interval t ∈ [t0, t f ] with fixed initial time t0 and final time t f . We
shall refer to the following optimal control problem (1)-(4) as the main problem:

Minimize J (x(·),u(·),v(·)) = J(x(t0),x(t f )) (1)

subject to the constraints

ẋ(t) = f (t,x(t),u(t),v(t)), u(t) ∈U, (t,x(t),v(t)) ∈Q, (2)
F(x(t0),x(t f ))≤ 0, K(x(t0),x(t f )) = 0, (x(t0),x(t f )) ∈P, (3)

where the control variable u appears linearly in the system dynamics,

f (t,x,u,v) = a(t,x,v)+B(t,x,v)u. (4)

Here, F,K,a are column-vector functions, B is a d(x)×d(u) matrix function, P ⊂
R2d(x), Q ⊂ R1+d(x)+d(v) are open sets and U ⊂ Rd(u) is a convex polyhedron. The
functions J,F,K are assumed to be twice continuously differentiable on P and the
functions a,B are twice continuously differentiable on Q. The dimensions of F,K
are denoted by d(F), d(K). By ∆ = [t0, t f ] we shall denote the interval of control
and use the abbreviations

x0 = x(t0), x f = x(t f ), p = (x0,x f ). (5)

A process
Π = {(x(t),u(t),v(t)) | t ∈ [t0, t f ]} (6)

is said to be admissible, if x(·) is absolutely continuous, u(·), v(·) are measurable
and bounded on ∆ and the triple of functions (x(t),u(t),v(t)) together with the end-
points p = (x(t0),x(t f )) satisfies the constraints (2) and (3).

Definition 1. An admissible process Π affords a Pontryagin local minimum, if for
each compact set C ⊂ Q there exists ε > 0 such that J (Π̃) ≥ J (Π) for all ad-
missible processes Π̃ = {(x̃(t), ũ(t), ṽ(t)) | t ∈ [t0, t1]} such that:

(a) max
∆

|x̃(t)− x(t)|< ε;

(b)
∫
∆

|ũ(t)−u(t)|dt < ε;
∫
∆

|ṽ(t)− v(t)|dt < ε;

(c) (t, x̃(t), ṽ(t)) ∈ C a.e. on ∆ .
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2.2 First Order Necessary Optimality Conditions

Let
Π = {(x(t),u(t),v(t)) | t ∈ [t0, t f ]} (7)

be a fixed admissible process such that the control u(t) is a piecewise constant func-
tion and the control v(t) is a continuous function on the interval ∆ = [t0, t f ]. In order
to make the notations simpler, we do not use such symbols and indices as zero, hat
or asterisk to distinguish this trajectory from others. Denote by

θ = {t1, . . . , ts}, t0 < t1 < · · ·< ts < t f , (8)

the finite set of all discontinuity points (jump points) of the control u(t). Then ẋ(t) is
a piecewise continuous function whose discontinuity points belong to θ , and hence
x(t) is a piecewise smooth function on ∆ . Henceforth, we shall use the notation

[u]k = uk+−uk− (9)

to denote the jump of the function u(t) at the point tk ∈ θ , where

uk− = u(tk −0), uk+ = u(tk +0) (10)

are the left hand and the right hand values of the control u(t) at tk, respectively.
Similarly, we denote by [ẋ]k the jump of the function ẋ(t) at the point tk.

Let us formulate first-order necessary conditions of a Pontryagin minimum for
the process Π in the form of the Pontryagin minimum principle. To this end we
introduce the Pontryagin or Hamiltonian function

H(t,x,ψ,u,v) = ψ f (t,x,u,v) = ψ a(t,x,v)+ψ B(t,x,v)u, (11)

where ψ is a row vector of dimension d(ψ) = d(x), while x,u, f ,F and K are column
vectors. The row vector of dimension d(u),

σ(t,x,ψ,v) = ψB(t,x,v), (12)

will be called the switching function for the u-component of the control. Denote by
l the endpoint Lagrange function

l(α0,α,β , p) = α0J(p)+αF(p)+βK(p), p = (x0,x f ), (13)

where α and β are row-vectors with d(α) = d(F), d(β ) = d(K), and α0 is a number.
We introduce a tuple of Lagrange multipliers

λ = (α0,α,β ,ψ(·)) (14)

such that
ψ(·) : ∆ → Rd(x) (15)
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is continuous on ∆ and continuously differentiable on each interval of the set ∆ \θ .
In the sequel, we shall denote first or second order partial derivatives by subscripts
referring to the variables.

Denote by M0 the set of the normalized tuples λ satisfying the minimum principle
conditions for the process Π :

α0 ≥ 0, α ≥ 0, αF(p) = 0, α0 +∑αi +∑ |β j|= 1, (16)
ψ̇ =−Hx, ∀ t ∈ ∆ \θ , (17)

ψ(t0) =−lx0 , ψ(t f ) = lx f , (18)

H(t,x(t),ψ(t),u,v)≥ H(t,x(t),ψ(t),u(t),v(t))

for all t ∈ ∆ \θ , u ∈U, v ∈ Rd(v) such that (t,x(t),v) ∈Q. (19)

The derivatives lx0 and lx f are taken at the point (α0,α,β , p), where p =(x(t0),x(t f )),
and the derivative Hx is evaluated at the point

(t,x(t),ψ(t),u(t),v(t)), t ∈ ∆ \θ . (20)

The condition M0 6= /0 constitutes a first-order necessary condition of a Pontryagin
minimum for the process Π which is called the Pontryagin minimum principle, cf.,
Pontryagin et al. [25], Hestenes [7], Milyutin, Osmolovskii [15]. The set M0 is a
finite-dimensional compact set and the projector λ 7→ (α0,α,β ) is injective on M0.

In the sequel, it will be convenient to use the abbreviation (t) for indicating all
arguments (t,x(t),ψ(t),u(t),v(t)), e.g.,

H(t) = H(t,x(t),ψ(t),u(t),v(t)), σ(t) = σ(t,x(t),ψ(t),v(t)). (21)

Let λ = (α0,α,β ,ψ(·)) ∈ M0. It is well-known that H(t) is a continuous function.
In particular, [H]k = Hk+−Hk− = 0 holds for each tk ∈ θ , where Hk− := H(tk −0)
and Hk+ := H(tk +0). We shall denote by Hk the common value of Hk− and Hk+:

Hk := Hk− = Hk+. (22)

The relations
[H]k = 0, [ψ]k = 0, k = 1, . . . ,s, (23)

constitute the Weierstrass-Erdmann conditions for a broken extremal. We formulate
one more condition of this type which will be important for the statement of second
order conditions for extremal with jumps in the control. Namely, for λ ∈ M0 and
tk ∈ θ consider the function

(∆kH)(t) = H(t,x(t),ψ(t),uk+,v(tk))−H(t,x(t),ψ(t),uk−,v(tk))

= σ(t,x(t),ψ(t),v(tk)) [u]k.
(24)
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Proposition 1. For each λ ∈ M0 the following equalities hold

d
dt

(∆kH)
∣∣
t=tk−0 =

d
dt

(∆kH)
∣∣
t=tk+0, k = 1, . . . ,s. (25)

Consequently, for each λ ∈ M0 the function (∆kH)(t) has a derivative at the point
tk ∈ θ . In the sequel, we will consider the quantities

Dk(H) =− d
dt

(∆kH)(tk), k = 1, . . . ,s. (26)

Then the minimum condition (19) implies the following property:

Proposition 2. For each λ ∈ M0 the following conditions hold:

Dk(H)≥ 0, k = 1, . . . ,s. (27)

Note that the value Dk(H) also can be written in the form

Dk(H) =−Hk+
x Hk−

ψ +Hk−
x Hk+

ψ − [Ht ]k = ψ̇
k+ẋk−− ψ̇

k−ẋk+ +[ψ0]k (28)

where Hk−
x and Hk+

x are the left- and the right-hand values of the function Hx(t) at
tk, respectively, [Ht ]k is the jump of the function Ht(t) at tk, etc., and ψ0(t) =−H(t).

2.3 Integral Cost Function, Unessential Variables, Bounded-strong
Minimum

It is well-known that any control problem with a cost functional in integral form

J =

t f∫
t0

f0(t,x(t),u(t),v(t))dt (29)

can be reduced to the form (1) by introducing a new state variable y defined by the
state equation

ẏ = f0(t,x,u,v), y(t0) = 0. (30)

This yields the cost function J = y(t f ). The control variable u is assumed to appear
linearly in the function f0,

f0(t,x,u,v) = a0(t,x,v)+B0(t,x,v)u. (31)

The component y is called an unessential component in the augmented problem.
The general definition of an unessential component is as follows.
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Definition 2. The i-th component xi of the state vector x is called unessential if the
function f does not depend on xi and if the functions F,J,K are affine in xi0 = xi(t0)
and xi f = xi(t f ).

In the following, let x denote the vector of all essential components of state vector
x.

Definition 3. The process Π affords a bounded-strong minimum, if for each com-
pact set C ⊂ Q there exists ε > 0 such that J (Π̃) ≥ J (Π) for all admissible
processes Π̃ = {(x̃(t), ũ(t), ṽ(t)) | t ∈ [t0, t f ]} such that

(a) |x̃(t0)− x(t0)|< ε ,

(b) max
∆

|x̃(t)− x(t)|< ε ,

(c) (t, x̃(t), ṽ(t)) ∈ C a.e. on ∆ .

The strict bounded-strong minimum is defined in a similar way, with the non-strict
inequality J (Π̃) ≥ J (Π) replaced by the strict one and the process Π̃ required
to be different from Π .

3 Quadratic Sufficient Optimality Conditions

In this section, we shall formulate a quadratic sufficient optimality condition for a
bounded-strong minimum (Definition 3) for given control process. This quadratic
condition is based on the properties of a quadratic form on the so-called critical
cone, whose elements are first order variations along a given process Π .

3.1 Critical Cone

For a given process Π we introduce the space Z 2(θ) and the critical cone K ⊂
Z 2(θ). Denote by PθW 1,2(∆ ,Rd(x)) the space of piecewise continuous functions
x̄(·) : ∆ → Rd(x), which are absolutely continuous on each interval of the set ∆ \θ

and have a square integrable first derivative. By L2(∆ ,Rd(v)) we denote the space of
square integrable functions v̄(·) : ∆ → Rd(v). For each x̄ ∈ PθW 1,2(∆ ,Rd(x)) and for
tk ∈ θ we set

x̄k− = x̄(tk −0), x̄k+ = x̄(tk +0), [x̄]k = x̄k+− x̄k−. (32)

Let z̄ = (ξ , x̄, v̄), where ξ ∈ Rs, x̄ ∈ PθW 1,2(∆ ,Rd(x)), v̄ ∈ L2(∆ ,Rd(v)). Thus,

z̄ ∈Z 2(θ) := Rs×PθW 1,2(∆ ,Rd(x))×L2(∆ ,Rd(v)). (33)

For each z̄ we set
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x̄0 = x̄(t0), x̄ f = x̄(t f ), p̄ = (x̄0, x̄ f ). (34)

The vector p̄ is considered as a column vector. Denote by

IF(p) = {i ∈ {1, . . . ,d(F)} | Fi(p) = 0} (35)

the set of indices of all active endpoint inequalities Fi(p) ≤ 0 at the point p =
(x(t0),x(t f )). Denote by K the set of all z̄ ∈Z 2(θ) satisfying the following condi-
tions:

J′(p)p̄ ≤ 0, F ′
i (p)p̄ ≤ 0 ∀ i ∈ IF(p), K′(p)p̄ = 0, (36)

˙̄x(t) = fx(t)x̄(t)+ fv(t)v̄(t), (37)

[x̄]k = [ẋ]kξk, k = 1, . . . ,s, (38)

where p = (x(t0),x(t f )) and [ẋ]k = ẋ(tk + 0)− ẋ(tk − 0). It is obvious that K is a
convex cone in the Hilbert space Z 2(θ) with finitely many faces. We call K the
critical cone.

3.2 Quadratic Form

Let us introduce a quadratic form on the critical cone K defined by the conditions
(36)-(38). For each λ ∈ M0 and z̄ ∈K we set

Ω(λ , z̄) = 〈lpp(p)p̄, p̄〉+
s

∑
k=1

(Dk(H)ξ 2
k − [ψ̇]kx̄k

avξ̄k)

+

t f∫
t0

(
〈Hxx(t)x̄(t), x̄(t)〉+2〈Hxv(t)v̄(t), x̄(t)〉+ 〈Hvv(t)v̄(t), v̄(t)〉

)
dt,

(39)

where

lpp(p) = lpp(α0,α,β , p), p = (x(t0),x(t f )), x̄k
av =

1
2
(x̄k−+ x̄k+), (40)

Hxx(t) = Hxx(t,x(t),ψ(t),u(t),v(t)), etc. (41)

Note that the functional Ω(λ , z̄) is linear in λ and quadratic in z̄.

3.3 Quadratic Sufficient Optimality Conditions

Denote by M+
0 the set of all λ ∈ M0 satisfying the conditions:
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(a) H(t,x(t),ψ(t),u,v) > H(t,x(t),ψ(t),u(t),v(t)) for all t ∈ ∆ \θ , u ∈U ,
v ∈ Rd(v), such that (t,x(t),v) ∈Q and (u,v) 6= (u(t),v(t)) ;

(b) H(tk,x(tk),ψ(tk),u,v) > Hk for all tk ∈ θ , u ∈U, v ∈ Rd(v) such that
(tk,x(tk),v) ∈ Q, (u,v) 6= (u(tk − 0),v(tk)), (u,v) 6= (u(tk + 0),v(tk)), where
Hk := Hk− = Hk+.

Let Arg min
ũ∈U

σ(t)ũ be the set of points v ∈ U where the minimum of the linear

function σ(t)ũ is attained.

Definition 4. For a given admissible process Π with a piecewise constant control
u(t) and continuous control v(t) we say that u(t) is a strict bang-bang control, if the
set M0 is nonempty and there exists λ ∈ M0 such that

Argmin
ũ∈U

σ(t)ũ = [u(t−0),u(t +0)], (42)

where [u(t − 0),u(t + 0)] denotes the line segment spanned by the vectors u(t − 0)
and u(t +0).

If dim(u) = 1, then the strict bang-bang property is equivalent to σ(t) 6= 0 for all
t ∈ ∆ \ θ . For dim(u) > 1 the strict bang-bang property requires that two or more
control components do not switch simultaneously and the components of the switch-
ing vector function vanish only at the switching points. If the set M+

0 is nonempty,
then, obviously, u(t) is a strict bang-bang control.

Definition 5. An element λ ∈ M0 is said to be strictly Legendrian if the following
conditions are satisfied:

(a) for each t ∈ ∆ \θ the quadratic form 〈Hvv(t,x(t),ψ(t),u(t),v(t))v̄, v̄〉 is positive
definite on Rd(v);

(b) for each tk ∈ θ the quadratic form 〈Hvv(tk,x(tk),ψ(tk),u(tk − 0),v(tk))v̄, v̄〉 is
positive definite on Rd(v);

(c) for each tk ∈ θ the quadratic form 〈Hvv(tk,x(tk),ψ(tk),u(tk + 0),v(tk))v̄, v̄〉 is
positive definite on Rd(v);

(d) Dk(H) > 0 for all tk ∈ θ .

Let Leg+(M+
0 ) be the set of all strictly Legendrian elements λ ∈ M+

0 and put

γ̄(z̄) = 〈ξ ,ξ 〉+ 〈x̄(t0), x̄(t0)〉+
t f∫

t0

〈v̄(t), v̄(t)〉dt. (43)

Theorem 1. Let the following Condition B be fulfilled for the process Π :

(a) the set Leg+(M+
0 ) is nonempty, hence, in particular u(t) is a strict bang-bang

control;
(b) there exists a nonempty compact set M ⊂ Leg+(M+

0 ) and a number C > 0 such
that max

λ∈M
Ω(λ , z̄)≥Cγ̄(z̄) for all z̄ ∈K .
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Then Π is a strict bounded-strong minimum.

Remark. If the set Leg+(M+
0 ) is nonempty and K ={0}, then (b) is fulfilled auto-

matically. This case can be considered as a first order sufficient optimality condition
for a strict bounded-strong minimum.

The proof of Theorem 1 is very similar to the proof of the sufficient quadratic
optimality condition for the pure bang-bang case given in Milyutin, Osmolovskii
[15] Theorem 12.2, p. 302 and Osmolovskii, Maurer [24], Part 1. The proof is based
on the SSC for broken extremals in the general problem of calculus of variations;
see Osmolovskii [21].

4 Riccati Approach

The following question suggests itself from a numerical point of view: how does
the numerical check of the quadratic sufficient optimality conditions in Theorem 1
proceed? For simplicity, we shall assume that (a) the initial value x(t0) is fixed and
(b) there are no endpoint constraints of inequality type. Assumptions (a) and (b) will
simplify the boundary conditions for the solution of the associated Riccati equation.
Thus we consider a problem:

Minimize J(x(t f )) (44)

under the constraints

x(t0) = x0, K(x(t f )) = 0, ẋ = f (t,x,u,v), u ∈U, (45)

where
f (t,x,u,v) = a(t,x,v)+B(t,x,v)u, (46)

U ⊂ Rd(u) is a convex polyhedron and J,K,B are C2-functions. In the sequel, we
shall assume that there exists λ ∈ M0 such that α0 > 0.

4.1 Critical Cone K and Quadratic Form Ω

For this problem, the critical cone is a subspace which is defined by the relations

x̄(t0) = 0, Kx f (p)x̄(t f ) = 0, (47)

˙̄x(t) = fx(t)x̄(t)+ fv(t)v̄(t), [x̄]k = [ẋ]kξk, k = 1, . . . ,s. (48)

These relations imply that J′(p)p̄ = 0 since α0 > 0. Hence, the quadratic form is
given by
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Ω(λ , z̄) = 〈lx f x f (p)x̄ f , x̄ f 〉+
s

∑
k=1

(Dk(H)ξ 2
k −2[ψ̇]kx̄k

avξk)

+

t f∫
t0

(
〈Hxx(t)x̄(t), x̄(t)〉+2〈Hxv(t)v̄(t), x̄(t)〉+ 〈Hvv(t)v̄(t), v̄(t)〉

)
dt,

(49)

where, by definition, x̄ f = x̄(t f ). We assume that there exists λ ∈ M+
0 such that

Dk(H) > 0, k = 1, . . . ,s, (50)

and the strengthened Legendre condition is satisfied with respect to v:

〈Hvv(t)v̄, v̄〉 ≥ c〈v̄, v̄〉 ∀ v̄ ∈ Rd(v), ∀ t ∈ [t0, t f ]\θ (c > 0). (51)

From now on we shall fix λ ∈ M+
0 with these properties.

4.2 Q-transformation of Ω on K

Set n = d(x) and let Q(t) be a symmetric n× n matrix on [t0, t f ] with piecewise
continuous entries that are absolutely continuous on each interval of the set [t0, t f ]\
θ . For each z̄ ∈K we obviously have

t f∫
t0

d
dt
〈Qx̄, x̄〉dt = 〈Qx̄, x̄〉

∣∣∣∣t f

t0

−
s

∑
k=1

[〈Qx̄, x̄〉]k , (52)

where [〈Qx̄, x̄〉]k is the jump of the function 〈Qx̄, x̄〉 at the point tk ∈ θ . Using the
equation ˙̄x = fxx̄+ fvv̄ and the initial condition x̄(t0) = 0, we obtain

−〈Q(t f )x̄ f , x̄ f 〉+
s

∑
k=1

[〈Qx̄, x̄〉]k

+

t f∫
t0

(
〈Q̇x̄, x̄〉+ 〈Q( fxx̄+ fvv̄), x̄〉+ 〈Qx̄, fxx̄+ fvv̄〉

)
dt = 0.

(53)

Adding this zero term to the form Ω(λ , z̄) in (49) we get
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Ω(λ , z̄) = 〈
(
lx f x f −Q(t f )

)
x̄ f , x̄ f 〉+

s

∑
k=1

(
Dk(H)ξ 2

k −2[ψ̇]kx̄k
avξk +[〈Qx̄, x̄〉]k

)

+

t f∫
t0

(
〈(Hxx + Q̇+Q fx + f T

x Q)x̄, x̄〉+ 〈(Hxv +Q fv)v̄, x̄〉

+ 〈(Hvx + f T
v Q)x̄, v̄〉+ 〈Hvv(t)v̄(t), v̄(t)〉

)
dt .

(54)

We call this formula the Q-transformation of Ω on K .

4.3 Transformation of Ω on K to Perfect Squares

In order to transform the integral term in Ω(λ , z̄) to a perfect square we assume that
Q(t) satisfies the following matrix Riccati equation; cf. also [9, 14, 28]:

Q̇+Q fx + f T
x Q+Hxx− (Hxv +Q fv)H−1

vv (Hvx + f T
v Q) = 0. (55)

Then the integral term in Ω can be written as

t f∫
t0

〈H−1
vv h̄, h̄〉dt, where h̄ = (Hvx + f T

v Q)x̄+Hvvv̄. (56)

A remarkable fact is that the terms

ωk := Dk(H)ξ 2
k −2[ψ̇]kx̄k

avξk +[〈Qx̄, x̄〉]k (57)

can also be transformed to perfect squares if the matrix Q(t) satisfies a special jump
condition at each point tk ∈ θ . This jump condition was obtained in Osmolovskii,
Lempio [22]. Namely, for each k = 1, . . . ,s put

Qk− = Q(tk −0), Qk+ = Q(tk +0), [Q]k = Qk+−Qk−, (58)
qk− = ([ẋ]k)T Qk−− [ψ̇]k, bk− = Dk(H)− (qk−)[ẋ]k, (59)

where [ẋ]k is a column vector, while qk−, ([ẋ]k)T and [ψ̇]k are row vectors, and bk−
is a number. We shall assume that

bk− > 0, k = 1, . . . ,s, (60)

holds and that Q satisfies the following jump conditions

[Q]k = (bk−)−1(qk−)T (qk−), (61)
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where (qk−) is a row vector, (qk−)T is a column vector and hence (qk−)T (qk−) is a
symmetric n×n matrix. Then one can show (see [22]) that

ωk = (bk−)−1((bk−)ξk +(qk−)(x̄k+)
)2 = (bk−)−1(Dk(H)ξk +(qk−)(x̄k−)

)2
. (62)

Therefore, we obtain the following transformation of the quadratic form Ω =
Ω(λ , z̄) to perfect squares on the critical cone K :

Ω = 〈
(
lx f x f −Q(t f )

)
x̄ f , x̄ f 〉+

s

∑
k=1

(bk−)−1(Dk(H)ξk +(qk−)(x̄k−)
)2

+

t f∫
t0

〈H−1
vv h̄, h̄〉dt,

(63)

where
h̄ = (Hvx + f T

v Q)x̄+Hvvv̄. (64)

In addition, let us assume that

〈
(
lx f x f −Q(t f )

)
x̄ f , x̄ f 〉 ≥ 0 (65)

for all x̄ f ∈ Rd(x) such that
Kx f (x(t f ))x̄ f = 0. (66)

Then, obviously, Ω(λ , z̄) ≥ 0 on K . Let us show now that Ω(λ , z̄) > 0 for each
nonzero element z̄ ∈ K . This means that Ω(λ , z̄) is positive definite on the critical
cone K since Ω(λ , z̄) is a Legendrian quadratic form.

Assume that Ω(λ , z̄) = 0 for some element z̄ ∈ K . Then, for this element, the
following equations hold

x̄(t0) = 0, (67)
Dk(H)ξk +(qk−)(x̄k−) = 0, k = 1, . . . ,s, (68)
h̄(t) = 0 a.e. in ∆ . (69)

From the last equation we get

v̄ =−H−1
vv (Hvx + f T

v Q)x̄. (70)

Using this formula in the equation

˙̄x = fxx̄+ fvv̄,

we see that x̄ is a solution of the linear equation

˙̄x = ( fx− fvH−1
vv (Hvx + f T

v Q))x̄. (71)

This equation together with initial condition x̄(t0) = 0 implies that
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x̄(t) = 0 for all t ∈ [t0, t1). (72)

Consequently, x̄1− = 0, and then ξ1 = 0 by virtue of (68) with k = 1. The equality
ξ1 = 0 together with jump condition [x̄]1 = [ẋ]1ξ1 imply that [x̄]1 = 0, i.e., x̄ is con-
tinuous at t1. Consequently, x̄1+ = 0. From the last condition and equation (71) it
follows that

x̄(t) = 0 for all t ∈ (t1, t2). (73)

Repeating this argument we obtain

ξ1 = ξ2 = . . . = ξs = 0, x̄(t) = 0 ∀ t ∈ [t0, t f ]. (74)

Then from (70) it follows that v̄ = 0. Consequently, we have z̄ = 0 and thus have
proved the following theorem.

Theorem 2. Assume that there exists a symmetric matrix Q(t), defined on [t0, t f ],
such that

(a) Q(t) is piecewise continuous on [t0, t f ] and continuously differentiable on each
interval of the set [t0, t f ]\θ ;

(b) Q(t) satisfies the Riccati equation

Q̇+Q fx + f T
x Q+Hxx− (Hxv +Q fv)H−1

vv (Hvx + f T
v Q) = 0 (75)

on each interval of the set [t0, t f ]\θ ;
(c) at each point tk ∈ θ matrix Q(t) satisfies the jump condition

[Q]k = (bk−)−1(qk−)T (qk−), (76)

where

qk− = ([ẋ]k)T Qk−− [ψ̇]k, bk− = Dk(H)− (qk−)[ẋ]k > 0; (77)

(d) 〈
(
lx f x f −Q(t f )

)
x̄ f , x̄ f 〉 ≥ 0 for all x̄ f ∈ Rd(x) such that

Kx f (x(t f ))x̄ f = 0. (78)

Then Ω(λ , z̄) is positive definite on the subspace K .

Remark. No strict inequality is imposed in the boundary condition (d), since the
initial state is fixed. This property easily follows from a perturbation argument;
cf., e.g., [11]. When endpoint conditions include inequality constraints of the form
F(x(t f )) ≤ 0, then the inequality (d) has to be checked on the cone of elements
x̄ f ∈ Rd(x) satisfying Kx f (x(t f ))x̄ f = 0 and Fi,x f (x(t f ))x̄ f ≤ 0 if Fi(x(t f )) = 0.

In some problems, it is more convenient to integrate the Riccati equation (75)
backwards from t = t f . A similar proof shows that we can replace condition (c) in
Theorem 2 by the following condition:
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(c+) at each point tk ∈ θ the matrix Q(t) satisfies the jump condition

[Q]k = (bk+)−1(qk+)T (qk+),
where qk+ = ([ẋ]k)T Qk+− [ψ̇]k, bk+ = Dk(H)+(qk+)[ẋ]k > 0. (79)

In the next section, we shall discuss an optimal control problem in economics,
where all conditions in Theorem 2 can be verified numerically. Let us mention, how-
ever, that Theorem 2 is not applicable to the minimum-fuel orbit transfer problem
in Oberle, Taubert [16], since the strict Legendre condition (51) does not hold along
the zero thrust arc. Nevertheless, Rosendahl [26] has succeeded in deriving second-
order sufficient conditions for those controls that belong to a given control structure.
For that purpose, the Riccati approach in [11] is extended to multiprocess control
problems that are induced by the given control structures.

5 Numerical Example: Optimal Control of Production and
Maintenance

Cho, Abad and Parlar [4] have introduced an optimal control model where a dy-
namic maintenance problem is incorporated into a production control problem to si-
multaneously compute optimal production and maintenance policies. In this model,
the dynamics is linear with respect to both production and maintenance control,
whereas the cost functional is quadratic with respect to production control and lin-
ear with respect to maintenance control. Hence, the model fits into the more general
type of control problems considered in (1)-(4). Recently, a detailed numerical anal-
ysis for different final times and two types of cost functionals has been given in
Maurer, Kim, Vossen [10]. For a certain range of final times, the production control
is continuous while the maintenance control is bang-bang. The aim in this section
is to show that the sufficient conditions in Theorem 2 are satisfied for the computed
solutions.

The notations for state and control variables are different from [4, 10] and are
chosen in conformity with those in the preceding sections: x1(t): inventory level at
time t ∈ [0, t f ] with fixed final time t f > 0; x2(t): proportion of good units of end
items produced at time t; v(t): scheduled production rate (control); m(t): preventive
maintenance rate to reduce the proportion of defective units produced (control);
α(t): obsolescence rate of the process performance in the absence of maintenance;
s(t): demand rate; ρ > 0: discount rate. The dynamics of the process is given by

ẋ1(t) = x2(t)v(t)− s(t), x1(0) = x10 > 0,

ẋ2(t) =−α(t)x2(t)+(1− x2(t))m(t), x2(0) = x20 > 0,
(80)

with the following bounds on the control variables,
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0 ≤ v(t)≤V, 0 ≤ m(t)≤ M for 0 ≤ t ≤ t f . (81)

Since all demands must be satisfied, the following state constraint is imposed:

0 ≤ x1(t) for 0 ≤ t ≤ t f . (82)

Computations show that this state constraint is automatically satisfied if we impose
the boundary condition

x1(t f ) = 0. (83)

The optimal control problem then is to maximize the total discounted profit plus the
salvage value of x2(t f ),

J(x1,x2,m,v) =

t f∫
0

[ws−hx1(t)− rv(t)2− cm(t)]e−ρt dt +bx2(t f )e−ρt f , (84)

under the constraints (80)-(83). For later computations, the values of constants are
chosen as in Cho et al. [4]:

s(t)≡ 4, α(t)≡ 2, x10 = 3, x20 = 1, V = 3, M = 4,

ρ = 0.1, w = 8, h = 1, c = 2.5, b = 10, r = 2 .
(85)

In the discussion of the minimum principle (16)-(19), we will not use the cur-
rent value Hamiltonian function as in [4, 10] but will work with the Hamiltonian
(Pontryagin) function (11):

H(t,x1,x2,ψ1,ψ2,m,v) = e−ρt(−ws+hx1 + rv2 + cm)
+ψ1(x2v− s)+ψ2(−αx2 +(1− x2)m),

(86)

where ψ1,ψ2 denote the adjoint variables. The adjoint equations (17) and transver-
sality conditions (18) yield in view of x1(t f ) = 0 and the salvage term in the cost
functional:

ψ̇1 =−he−ρt , ψ1(t f ) = µ,

ψ̇2 =−ψ1v+ψ2(α +m), ψ2(t f ) =−be−ρt f .
(87)

The multiplier µ is not known a priori and will be computed later. We choose a
time horizon for which the control constraint 0 ≤ v(t) ≤ 3 does not become active.
Hence, the minimization in (19) leads to the equation 0 = Hv = 2re−ρtv + ψ1x2 ,
which yields the control

v =−ψ1x2eρt/2r. (88)

Since the maintenance control enters the Hamiltonian linearly, the control m is de-
termined by the sign of the switching function

σ
m(t) = Hm = e−ρtc+ψ2(t)(1− x2(t)) (89)
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as the policy

m(t) =


M, if σm(t) < 0
0, if σm(t) > 0
singular, if σm(t)≡ 0 for t ∈ Ising ⊂ [0, t f ]

 . (90)

For the final time t f = 1 which was considered in [4] and [10], the maintenance
control contains a singular arc. But the computations in [10] show that for final
times t f ∈ [0.15,0.98] the maintenance control has two bang-bang arcs:

m(t) =

{
0, for 0 ≤ t ≤ t1
M = 4, for t1 < t ≤ t f

}
. (91)

Let us study the control problem with final time t f = 0.9 in more detail. To compute
a solution candidate, we apply nonlinear programming methods to the discretized
control problem with a large number N of grid points τi = i · t f /N, i = 0,1, ...,N; cf.
[2, 3]. We use the modeling language AMPL of Fourer et al. [6], the interior point
optimization code IPOPT of Wächter et al. [27] and the integration method of Heun.

For N = 5000 grid points, the computed state, control and adjoint functions are
displayed in Fig. 1. We find the following values for the switching time, functional
value and some selected state and adjoint variables:

t1 = 0.65691, J = 26.705,

x1(t1) = 0.84924, x2(t1) = 0.226879,

x1(t f ) = 0., x2(t f ) = 0.574104,

ψ1(0) = −7.8617, ψ2(0) = −4.70437,

ψ1(t1) = −8.4975, ψ2(t1) = −3.2016,

ψ1(t f ) = −8.72313, ψ2(t f ) = −9.13931.

(92)

Let us apply now the second-order sufficient conditions in Theorem 2. Observe
first that the sufficiency theorem in Feichtinger and Hartl [5], p. 36, Satz 2.2, is
not applicable here. The assumptions in this theorem require that the minimized
Hamiltonian Hmin(t,x,ψ(t)) be convex in the state variable x = (x1,x2). However,
using the minimizing control v =−ψ1x2eρt/2r from (88), we obtain

Hmin(t,x,ψ(t)) =−eρt

4r
ψ1(t)2x2

2 +L(x), (93)

where L(x) denotes a linear function in the variable x. Since ψ1(t) 6= 0 for t ∈ [0, t f ],
the minimized Hamiltonian is strictly concave in the variable x2. Hence, the suffi-
ciency theorem in [5], Satz 2.2, cannot be used here.

Now we compute the quantities needed in Theorem 2 and (79). The derivative of
the switching function σm(t) = e−ρtc+ψ2(t)(1− x2(t)) in (89) is given by
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Fig. 1 From above: state variables x1(t) and x2(t); control variables v(t) and m(t); adjoint variables
ψ1(t) and ψ2(t)

σ̇
m =−ρe−ρtc−ψ1v(1− x2)+ψ2α, v =−ψ1x2eρt/2r. (94)

Inserting the values given in (92) we get

D1(H) =−4σ̇
m(t1) = 27.028 > 0, σ

m(t) 6= 0 ∀ t 6= t1. (95)

Hence, the maintenance control m(·) is a strict bang-bang control; see Fig 2.
Now we evaluate the Riccati equation

Q̇ =−Q fx− f T
x Q−Hxx +(Hxv +Q fv)(Hvv)−1(Hvx + f T

v Q) (96)
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Fig. 2 Switching function
σm(t)
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for the symmetric 2×2-matrix Q =

(
q11 q12

q12 q22

)
. Computing the expressions

fx =

(
0 v

0 −(α +m)

)
, fv =

(
x2

0

)
, Hxx = 0, Hxv = (0,ψ1)T , Hvv = 2re−ρt ,

(97)
the matrix Riccati equation (96) yields the following ODE system:

q̇11 = q2
11x2

2eρt/2r , (98)
q̇12 =−q11v+q12(α +m)+ eρtq11x2(ψ1 +q12x2)/2r , (99)
q̇22 =−2q12v+2q22(α +m)+ eρt(ψ1 +q12x2)2/2r . (100)

Since equations (98) and (99) are satisfied by zero functions q11 and q12, we can
try to find a solution to the Riccati system with q11(t) = q12(t) ≡ 0 on [0, t f ]. Then
(100) reduces to the linear equation

q̇22 = 2q22(α +m)+ eρt
ψ

2
1 /2r. (101)

Obviously, this linear equation has always a solution. The remaining difficulty is
to satisfy the jump and boundary conditions in Theorem 2 (c) and (d). Instead of
condition (c) we will verify conditions (c+) and (79) which are more convenient for
the backward integration of (100). The boundary conditions in Theorem 2 (d) show
that the initial value Q(0) can be chosen arbitrarily while the terminal condition im-
poses the sign condition q22(t f )≤ 0, since x2(t f ) is free. We shall take the boundary
condition

q22(t f ) = 0. (102)

Using the computed values in (92), we solve the linear equation (101) with terminal
condition (102). At the switching time t1 we obtain the value

q22(t1) =−1.5599. (103)

Next, we evaluate the jump in the state and adjoint variables and will check condi-
tions (79). We get
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([ẋ]1)T = (0, M(1− x2(t1))), [ψ̇]1 = (0, Mψ2(t1)), (104)

which yield the quantities

q1+ = ([ẋ]1)T Q1+− [ψ̇]1 = (0, M(1− x2(t1))q22(t1+)−Mψ2(t1))
= (0,8.2439), (105)

b1+ = D1(H)+(q1+)[ẋ]1

= D1(H)+M2(1− x2(t1))((1− x2(t1))q22(t1+)−ψ2(t1))
= 27.028+133.55 = 160.58 > 0. (106)

Then the jump condition in (79),

[Q]1 = (b1+)−1(q1+)T (q1+) =

(
0 0

0 [q22]1

)
, (107)

reduces to a jump condition for q22(t) at t1. However, we do not need to evaluate this
jump condition explicitly because the linear equation (101) has a solution regardless
of the value q22(t1−). Hence, we conclude from Theorem 2 that the numerical solu-
tion characterized by (92) and displayed in Fig. 1 provides a strict bounded-strong
minimum.

Acknowledgements We are indebted to Kazimierz Malanowski for helpful comments.
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