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Abstract We develop the framework for moving domain and geometry under mini-
mal regularity (of moving boundaries). This question arose in shape control analysis
and non cylindrical PDE analysis. We apply here this setting to the morphic measure
between shape or images. We consider both regular and non smooth situations and
we derive complete shape metric space with characterization of geodesic as being
solution to Euler fluid-like equation. By the way, this paper also addresses the varia-
tional formulation for solution to the coupled Euler-transport system involving only
condition on the convected terms. The analysis relies on compactness results which
are the parabolic version to the Helly compactness results for the BV embedding in
the linear space of integrable functions. This new compactness result is delicate but
supplies to the lack of convexity in the convection terms so that the vector speed as-
sociated with the optimal tube (or moving domain), here the shape geodesic, should
not be curl-free so that the Euler equation does not reduce to a classical Hamilton-
Jacobi one. For topological optimization this geodesic construction is developed by
level set description of the tube, and numerical algorithms are in the next paper of
this book.

1 Introduction to Shape Metrics

The shape analysis arose in the early 70’s from structural mechanics. The problem
was to find a best shape which would minimize the compliance (the work of ex-
ternal forces in some elasticity modeling). Later this problem extended to optimal
control-like situation in which the criteria to be extremized with respect to a geo-
metrical shape had a more general form which implied the study of the so called
material and shape derivatives for the solution of a partial differential equation with
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boundary conditions on the unknown part of boundary [8, 12, 16]. Very soon the
concepts of topology on general shape families were introduced. The easiest one
was the metric induced by the characteristic function of the shape (in this case the
shape is just defined up to a zero measure subset). Besides this the thinner one
was the Courant metric, see the book [6], which consists, very roughly speaking,
in minimizing ||T − Id ||+ ||T−1 − Id || for each application mapping a domain Ω0
onto another Ω1, the minimum being taken over the family of such invertible map-
pings T . Indeed this metric is not known to be differentiable and is very difficult
to be computed in this very abstract and non geometrical form. Also by the class
of the regularity imposed to the mappings T in the theory, it derives that the do-
mains Ωi, i = 0,1 should be homeomorphic to one another and then should have
the same topology. The aim of this work is to relax this metric definition in order
to solve these two difficulties (i.e. give a geometrical interpretation with computa-
tional algorithms using level set techniques and extend the metric to a larger class of
domains having different topologies) but also and mainly to construct the geodesics.
This last issue turns to have several applications in any kind of large deformation
process but also in image analysis. Through a Fully Eulerian equivalent definition
we shall characterize the geodesic tube as being built by solutions to a coupled in-
compressible Euler flow-transport equation (in case of given volume constraint);
meanwhile we furnish a full mathematical result for such variational solution to the
incompressible Euler flow which turns to be a new result concerning Euler equation.
The new metric we present here, which in some sense is an extension of the Courant
metric, is based on two main considerations: Shapes (or geometry) are elements of
some set, say F , and we consider all connecting tubes in F . Then the metric is
built on the shortest such tube which furnishes the geodesic, solution to some dif-
ferentiable variational problem. Also we shall derive complete metric spaces. The
concept of geodesic for usual metrics such as Hausdorff distance, or L1 metric on
characteristic functions makes no sense as there is obviously no hope to derive any
local uniqueness for a shortest path. Here also we still have none such result (nor
local stability for the geodesic) but this challenging question is hopeful as been for-
mulated in term of local uniqueness for flow Euler-like equation to which we can
add any viscosity perturbation. This paper follows [24, 23] and the book [13]. The
connecting tube concept arose in moving domain analysis and non cylindrical PDE
study in the 90’s, for example in [3, 7, 9, 12, 19, 4, 2, 11, 10, 14, 21, 17].

2 Connecting Tubes

We consider the time interval as being I = [0, 1] and D, a bounded domain in RN

with smooth boundary. We consider the set of characteristic functions

C = {ζ = ζ
2 ∈ L1(I×D)}. (1)

We consider the continuous elements



Complete Shape Metric and Geodesic 5

C 0 = C ∩C0(I,L1(D)). (2)

Being given two measurable subsets Ωi ⊂ D, i = 0,1, we consider the family of
connecting tubes

T 0(Ω0,Ω1) = {ζ ∈ C 0 s.t. ζ (i) = χΩi , i = 0,1}. (3)

2.1 Moving Domain

For any ζ ∈T 0(Ω0,Ω1) we consider the set Q = ∪0<t<1{t}×Ωt ⊂ RN+1 such that
ζ = χQ. This set Q is defined up to an N +1 dimensional zero measure set.

2.2 Generic Framework for Metric

The idea for constructing metrics is to consider in this set the infimum of some
norm for the time derivative term ∂

∂ t ζ . Indeed if such term is zero then ζ is not
time depending. The general setting is to consider families of admissible tubes such
that ∂

∂ t ζ ∈ Lp(I,H (D)) for some Banach space H (D) of distributions over D,
H (D)⊂D ′(D), and consider the following connecting tubes:

T 0,p
H (Ω0,Ω1) = {ζ ∈T 0(Ω0,Ω1), s.t.

∂

∂ t
ζ ∈ Lp(I,H (D))}, (4)

and for some p ≥ 1, the metric in the following form:

dp,H (Ω0,Ω1) = Inf
ζ∈T 0,p

H (Ω0,Ω1)

∫ 1

0
|| ∂

∂ t
ζ (t)||pH (D) dt. (5)

2.3 The Time Lp Regularity of ∂

∂ t ζ Implies ζ ∈ C 0

Let us define

C 0,p
H = {ζ ∈ C s.t.

∂

∂ t
ζ ∈ Lp(I,H (D))}. (6)

Proposition 1. Let p ≥ 1, then C 0,p
H ⊂ C 0.

Proof. Obviously we have

C 0,p
H ⊂W 1,p(I,H (D))⊂C0(I,H (D))⊂C0(I,D ′(D)). (7)
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So that from the following Lemma we get C 0,p
H ⊂C0(I,L1(D)); then we see that the

continuity property of the tube derives directly from ζ ∈ C (that is ζ = ζ 2) and the
weak regularity of the time derivative measure ∂

∂ t ζ . ut

Lemma 1. Let ζ = ζ 2 ∈ L1(I×D)∩C0(I,D ′(D)). Then ζ ∈C0(I,L1(D)).

Proof. Notice that

||ζ (t + s)−ζ (t)||L1(D) = ||ζ (t + s)−ζ (t)||2L2(D). (8)

Then it is enough to show that ζ ∈C0(I,L2(D)). We begin by establishing the weak
L2(D) continuity: for any element f ∈ L2(D) consider∫

D
(ζ (t + s)(x)−ζ (t)(x)) f (x)dx =

∫
D
(ζ (t + s,x)−ζ (t,x))φ(x)dx

+
∫

D
(ζ (t + s,x)−ζ (t,x))( f (x)−φ(x))dx.

(9)

Let be given ε > 0, by the choice of φ ∈D ′(D) (using here the density of D ′(D) in
L2(D)), we have

|
∫

D
(ζ (t + s,x)−ζ (t,x))( f (x)−φ(x))dx| ≤

∫
D
| f (x)−φ(x)|dx ≤ ε. (10)

So we derive the continuity for the weak L2(D) topology. To reach the strong topol-
ogy it is sufficient now to consider the continuity of the mapping

t →
∫

D
|ζ (t,x)|2dx =

∫
D

ζ (t,x)dx = ((ζ (t),1))L2(D). (11)

ut

2.4 Metric and Pseudo Metric

We consider a set Ω̄ ⊂ D and the family of all subsets in D which are reachable
in finite time from this Ω̄ by elements ζ , ζ describing the whole set C 0,p

H ; more
precisely:

O
Ω̄

= {Ω ⊂ D s.t. ∃ζ ∈ C 0,p
H with χΩ = ζ (1), χ

Ω̄
= ζ (0)}. (12)

Notice that by construction any pair of elements in this family is connected:

∀(Ω0,Ω1) ∈ (O
Ω̄

)2, the family T 0,p
H (Ω0,Ω1) is not empty. (13)

Proposition 2. For any p ≥ 1, dp,H is a quasi-metric in the following sense; for
any elements Ωi, i = 0,1,2 in O

Ω̄
we have:
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i) dp,H (Ω0,Ω1) = 0 iff χΩ0 = χΩ1 ,
ii) dp,H (Ω0,Ω1) = dp,H (Ω1,Ω0),

iii) dp,H (Ω0,Ω2)≤ 2p−1(dp,H (Ω0,Ω1)+dp,H (Ω1,Ω2)).

For p = 1, d1,H is a metric on O
Ω̄

.

Proof. 1a) When χΩ1 = χΩ2 as elements in L1(D), we may choose ζ (t,x) = χΩ0(x)
so that the evolution domain Q is the cylinder Q = I×Ω0 and ∂

∂ t ζ = 0 realizes the
minimum and leads to the null distance.

1b) Conversely for any ε > 0 there exists some admissible tube ζ ε with ζ ε(i) =
χΩi and realizing the infimum up to ε . Then

||ζ ε(0)−ζ
ε(1)||H (D) ≤

∫ 1

0
|| ∂

∂ t
ζ

ε ||H dt ≤ (
∫ 1

0
|| ∂

∂ t
ζ

ε ||pH dt)1/p ≤ ε
1/p. (14)

We conclude χΩ1 = χΩ0 as elements in H (D).
2) The symmetry is obviously realized by reversing the time variable. Indeed

if ζ ε realizes the infimum up to ε then we consider ζ̃ ε(t,x) := ζ ε(1− t,x) and∫ 1
0 || ∂

∂ t ζ̃ ε ||pH dt =
∫ 1

0 || ∂

∂ t ζ ε ||pH dt so that the element ζ̃ ε also approaches the infi-
mum up to ε .

3) The triangle property derives from the following obvious generic construction:
let us consider two connecting tubes ζ k,ε ∈T 0,p

H (D)(Ωk−1,Ωk),k = 1,2 and realizing
the infimum up to ε in the corresponding distances dH (D)(Ωk−1,Ωk).

We introduce the new element ζ̄ ε ∈ T 0,p
H (D)(Ω0,Ω1) piecewisely defined as fol-

lows:

∀t ∈ [0, 1/2], ζ̄
ε(t) = ζ

1,ε(2t); ∀t ∈ [1/2, 1], ζ̄
ε(t) = ζ

2,ε(2t−1)∫ 1

0
|| ∂

∂̄ t
ζ̄

ε ||pH dt =
∫ 1/2

0
|| ∂

∂ t
ζ̄

ε ||pH +
∫ 1

1/2
|| ∂

∂ t
ζ̄

ε ||pH dt.
(15)

Now

∀t ∈ [0, 1/2],
∂

∂ t
ζ̄

ε(t) = 2
∂

∂ t
ζ

1,ε(2t); ∀t ∈ [1/2, 1],
∂

∂ t
ζ̄

ε(t) = 2
∂

∂ t
ζ

2,ε(2t−1).
(16)

Then∫ 1

0
|| ∂

∂̄ t
ζ̄

ε ||pH dt = 2p
∫ 1/2

0
|| ∂

∂ t
ζ

1,ε(2t)||pH dt +2p
∫ 1

1/2
|| ∂

∂ t
ζ

2,ε(2t−1)||pH dt.

(17)
By respective changes of variables s = 2t and s = 2t−1 we get∫ 1

0
|| ∂

∂̄ t
ζ̄

ε ||pH dt = 2p−1
∫ 1

0
|| ∂

∂ t
ζ

1,ε(s)||pH ds+2p−1
∫ 1

0
|| ∂

∂ t
ζ

2,ε(s)||pH ds. (18)

So that ∀ε > 0 we have:
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dp,H (Ω0,Ω2)≤
∫ 1

0
|| ∂

∂̄ t
ζ̄

ε ||pH dt ≤ 2p−1(dp,H (Ω0,Ω1)+dp,H (Ω1,Ω2)+2ε).

(19)
ut

2.5 Banach Space of Bounded Measures

We make the choice, as Banach space of measures H (D), of the space of bounded
measure M1(D) and set

p ≥ 1, C p = {ζ ∈ C s.t.
∂

∂ t
ζ ∈ Lp(I,M1(D))} (20)

that is
C p = C ∩Lp(I,BV (D)). (21)

From the previous considerations we get C p ⊂C0(I,L1(D)), so that

p ≥ 1, C p = {ζ ∈ C 0 s.t.
∂

∂ t
ζ ∈ Lp(I,M1(D))}. (22)

The set of connecting tubes is then:

T p(Ω0,Ω1) = {ζ ∈ C p s.t. ζ (i) = χΩi , i = 0,1}. (23)

Corollary 1. Let p ≥ 1, then

dp(Ω0,Ω1) = Inf ζ∈T p(Ω0,Ω1)

∫ 1

0
|| ∂

∂ t
ζ (t)||pM1(D)dt (24)

is a quasi metric. When p = 1, d1 is a metric.

2.6 Smooth Domains

When a tube ζ = χQ is smooth, Q = ∪0<t<1{t}×Ωt , with lateral boundary Σ =
∪0<t<1{t}×∂Ωt being a Ck manifold in I×D⊂ RN+1, with the integer k ≥ 1, there
exists a vector field V ∈C0(Ī,Ck(D,RN)) with < V (t,x),n∂D >= 0 such that Ωt is
built by the flow mapping of V , that is Ωt = Tt(V )(Ω0).

For example, when k = 2 the oriented distance function bΩt = dΩt −dΩ c
t
∈C2(U )

where U is some tubular neighborhood of the boundary ∂Ωt , and we may choose
any extension of ∇bΩt (x)v(t)opt(x) as speed vector V (t,x), where the normal field
is nt(x) = ∇bΩt (x), x ∈ Γt = ∂Ωt , the projection pt onto Γt being defined in U by
pt(y) = y−bΩt (y)∇bΩt (y) (we recall that ∇bΩt opt(y) = ∇bΩt (y) for any y ∈U ).
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In the smooth situation the tube characteristic function ζ verifies the classical
convection problem (in weak sense):

ζ
2 = ζ ∈ L1(I×D),

∂

∂ t
ζ +∇ζ .V = 0, ζ (0) = χΩ0 . (25)

Then, without any restriction, we consider smooth domains generated from Ω0 by
the flow mapping Tt(V ) of smooth vector fields V (t,x), V ∈ Ek with:

Ek := {V ∈C0(Ī,Ck(D̄,RN)) s.t. ∀t ∈ Ī, 〈V (t),n∂D〉= 0}. (26)

The connecting condition is then: Ω1 = T1(V )(Ω0), where Tt(V ) is the flow mapping
of V at time t ∈ [0, 1]. We set Ωt := Tt(V )(Ω0) and ζ (t, .) = χΩt is an admissible
connecting tube, moreover we have:

|| ∂

∂ t
ζ (t)||M1(D) =

∫
∂Ωt

| 〈V (t,x)),nt(x)〉 |dΓt(x) (27)

and the metric would turn to be

dk,p(Ω0,Ω1) = Inf V∈Vk(Ω0,Ω1)

∫ 1

0
(
∫

∂Ωt (V )
| 〈V (t,x),nt(x)〉 |dΓt(x))pdt (28)

where Vk(Ω0,Ω1), defined below, stands for the family of connecting vector fields
in Ek, k ≥ 1. As the time regularity required for the classical flow analysis is just
time continuity (in the very definition of Ek) this connecting family turns to be stable
through the generic construction of connecting vector field V̄ similar to the point 3
in the proof of Proposition 2.

Proposition 3. Let k ≥ 1 and Ω̄ be open domain in D ⊂ RN whose boundary Γ̄ is a
Ck manifold. We consider the family of smooth domains

Ok = {Ω ⊂ D s.t. ∃V ∈ Ek, Ω = T1(V )(Ω̄)}. (29)

For any pair of elements Ωi, i = 0,1 in this family, the set of connecting fields

Vk := {V ∈ Ek s.t. T1(V )(Ω0) = Ω1} (30)

is never empty. Equipped with dp,k , the family Ok is a p-quasi-metric space (and a
metric space when p = 1).

An important point here is that in this family Ok, k ≥ 1, all domains are home-
omorphic to the domains Ω̄ so that we cannot evaluate distance between domains
with different topologies, even when they are smooth. In order to escape from that
classical difficulty we shall develop two classes of issues. The first one is based on
time piecewise regularity of domains leading to a good modeling for classical topo-
logical changes such as holes collapse or holes creation (at a given time t0), and
topological separations. The second one is based on completing different approach
relying on the fully eulerian description of tubes with non smooth vector fields V .
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2.6.1 The Piecewise Smooth Situation

In some applications we shall consider the situation in which the time interval can
be decomposed in a finite number of time intervals of smoothness for the lateral
boundaries: we consider tubes such that there exists an integer K (tube dependent)
and time partitions tk such that

I = ∪1≤k≤K Īk, Ik =]tk−1, tk[. (31)

We assume that for t ∈ Ik the lateral boundary Σk of the set Qk = ∪t∈Ik{t}×Ωt ,
Σk = ∪t∈Ik {t}× ∂Ωt , is a C1 manifold in RN+1. We consider the unit normal field
νk to Σk, out going to Qk on Σk. It can be uniquely written in the form

∀t ∈ Ik,∀x ∈ Γk, νk(t,x) =
1√

1+ vk(t,x)2
(−vk(t,x),nt(x)) ∈ Rt ×RN

x . (32)

The term vk(t, .) is called the normal speed of the moving boundary Γt . Obviously
we have

∀t ∈ Ik,∀φ ∈D(D),
〈

∂

∂ t
ζ , φ

〉
=

∫
Γt

vk(t,x)φ(x)dΓk(x). (33)

2.6.2 Behavior of the Normal Speed at t = ti

To discuss the global regularity of ∂

∂ t ζ we must choose the regularity of v at the
junction times tk. Consider〈

ζ ,− ∂

∂ t
Φ

〉
Lp(I,L2(D))×Lq(I)

=
∫ 1

0

∫
Ωt

− ∂

∂ t
Φ(t,x)dtdx

= Σk=1,...,K

∫ tk

tk−1

∫
Ωt

− ∂

∂ t
Φ(t,x)dtdx

(34)

But

∀t ∈ Ik,
∂

∂ t

∫
Ωt

Φ(t,x)dtdx =
∫

Γ k
t

Φ(t,x)vk(t,x)dΓ
k

t (x)+
∫

Ωt

∂

∂ t
Φ(t,x)dx. (35)

So that assume that vk ∈ L1(Σk) and as ζ ∈C0(I,L1(D)) we have
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tk−1+ε

∫
Ωt

∂

∂ t
Φ(t,x)dtdx =

∫ tk−ε

tk−1+ε

∫
Γt

|vk(t,x)|dΓk(x)dt

+
∫

D
(ζ (tk−1 + ε,x)Φ(tk−1 + ε,x)−ζ (tk − ε,x)Φ(tk − ε,x))dx

→ε→0

∫ tk

tk−1

∫
Γt

|vk(t,x)|dΓk(x)dt +
∫

D
(ζ (tk−1,x)Φ(tk−1,x)−ζ (tk,x))Φ(tk,x))dx

(36)

Finally we get ∀Φ ∈D(I×D),〈
ζ ,

∂

∂ t
Φ

〉
= limε→0Σ1≤k≤K

∫ tk−ε

tk−1+ε

∫
D

ζ (t,x)Φ(t,x)dx

=
∫ 1

0

∫
∂Ωt

v(t,x)Φ(t,x)dΓt(x)dx
(37)

This expression continuously extends for any Φ ∈C0
c (I×D) (with compact support)

and we get

|| ∂

∂ t
ζ (t)||L1(I,M1(D)) =

∫ 1

0

∫
Γt

|v(t,x)|dΓt(x), (38)

and we have ∫ 1

0
|| ∂

∂ t
ζ (t)||pM1(D) dt =

∫ 1

0
(
∫

Γt

|v(t,x)|dΓt(x))p dt. (39)

2.6.3 “Piecewise Metric”

Proposition 4. Let Ω̄ be a smooth subset in D , k≥ 1, p≥ 1. We consider the family
Opwk(Ω̄) of all subsets connected to Ω̄ by piecewise Ck tubes in the previous sense
and verifying the following qualification condition:∫ 1

0

∫
Γt

|v(t,x)|dΓt(x)dt < ∞. (40)

Then equipped with

δ
p
pwk(Ω0,Ω1) = Inf

ζ∈T p
pwk(Ω0,Ω1)

∫ 1

0
(
∫

Γt

|v(t,x)|dΓt(x))p dt, (41)

the family O p
pwk(Ω̄) is a p-quasi-metric space. For p = 1, the family O1

pwk(Ω̄)
equipped with δ 1

pwk, is a metric space.

Notice that a sufficient condition for deriving the condition (40) is that the lateral
surface Σ would have a finite H n−1 Hausdorff measure (that is to say that the tube
Q has a finite perimeter in I×D). Indeed we have:
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PI×D(Q) =
∫ 1

0

∫
Γt

√
1+ v2dΓt(x)dt ≥

∫ 1

0

∫
Γt

|v|dΓt(x)dt. (42)

2.6.4 Level Set Formulation

Let Ψ(t,x) ∈C1(Ī× D̄) and consider

∀t ∈ I,Ωt = {x ∈ D s.t. Ψ(t,x) > 0}, Γt = {x ∈ D s.t. Ψ(t,x) = 0}. (43)

An important case is when the function has the following form

Ψ(t,x) = Φ(x)− t then Ωt = {x ∈ D s.t. Φ(x) > t}. (44)

In this very situation, from Sard’s theorem we know that for almost every t in I
the manifold Γt is of class C1 which does not insure the tube associated to Ψ to be
pwk (even for k = 1).

In the general setting the qualification condition (40) would write

∫ 1

0

∫
Γt

(
| ∂

∂ tΨ |
||∇xΨ ||

)(t,x)dΓt(x) < ∞. (45)

We shall restrict our study to the pwk level set tubes, i.e. functions Π(t,x) such
that the generated tubes verify the previous pw1 condition: ∃tk, t0 = 0 < t1 < ... <
tK = 1 such that on each open interval Ik =]tk−1, tK [,

∃αk(.) ∈C0(Ik) s.t. ∀x ∈ Γt , ||∇xΨ(t,x)|| ≥ αk(t) > 0. (46)

In this class the previous piecewise tubes analysis applies and we get an associ-
ated metric in terms of level sets. In the proof of the following result the only main
point is to verify that in the generic construction for the triangle axiom (point 3 in
the proof of Proposition 2) the connecting element ζ̄ ε piecewisely defined is still in
the class. Indeed ζ̄ ε is associated to the function

Ψ̄
ε(t,x) =

{
Ψ 1,ε(2t,x), if 0 < t < 1/2,

Ψ 2,ε(2t−1,x), if 1/2 < t < 1.
(47)

Obviously this elementΨ̄ ε verifies the two conditions (45) and (46) if the element
ζ i,ε , i = 0,1 does.

Proposition 5. Let Ω̄ ⊂ D be a C1 domain. We consider the family

Ppw1 = {Ψ ∈C1(Ī× D̄), s.t. ∃tk, 1 ≤ k ≤ KΨ , s.t.

Σk = {(t,x)| t ∈ Ik, Ψ(t,x) = 0}
is a C1 manifold in RN+1 and Ψ verifying (45), (46)}.

(48)
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We also consider the family generated by this class of piecewise C1 (pw1) func-
tions:

OLS = {Ω = {x ∈ D|Ψ(1,x) > 0}, Ψ ∈Ppw1}. (49)

Obviously two elements Ωi, i = 0,1 in this family are connected by tube in the
form of (47) and we denote

TLS(Ω0,Ω1) = {Ψ ∈Ppw1 s.t. Ωi = {x ∈ D |Ψ(i,x) > 0}}. (50)

We set

δLS(Ω0,Ω1) = InfΨ∈TLS(Ω0,Ω1)

∫ 1

0

∫
Ψ(t)−1(0)

| ∂

∂ t
Ψ(t,x)| ||∇xΨ(t,x)||−1 dΓt(x)dt.

(51)
Then equipped with δLS the family OLS is a metric space.

2.6.5 Submetrics

In the level set setting it is easy to describe some connecting elements. Assume that
Ωi = {x ∈ D |Φi(x) > 0}, i = 0,1. Then let

Ψ(t,x) = ρ(t)Φ1(x)+(1−ρ(t))Φ0(x), with ρ ∈C1(Ī), ρ(i) = i, i = 0,1, (52)

and we could consider the “submetric” associated to these connections, for different
admissible such functions ρ .

2.6.6 Level Set Metric Associated to Subspace

In the definition (48) of the set of “potential” functions Ψ we can limit to a given
subspace of functions in the following way: let E be a closed subspace in C1(Ī× D̄),
we consider

PpwE = Ppw1∩E (53)

As PpwE ⊂ Ppw1 we get the similar inclusions OLSE ⊂ OSL, TLSE(Ω0,Ω1) ⊂
TLS(Ω0,Ω1) and the family OLSE is equipped with the metric δLSE ≤ δLS.

In the specific situation where the Banach space is of finite dimension we con-
sider the Galerkin-like construction. Let E1, .....EM be M given elements in C1(D̄)
and consider

E = {e(t,x) = Σ1≤m≤Mλm(t)Em(x) |λ ∈C1(I)M}. (54)

When the elements Em(x) are chosen as polynomial functions the surfaces Γt are
algebraic surfaces (or curves) in D and it is an open question to characterize condi-
tions on the coefficients λ in order that the tube satisfies (45) and (46). Nevertheless
in applications it seems difficult to violate them.
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3 Complete Metric: Existence of Geodesic

We address now the question concerning the infima in the previous metrics (or
pseudo metrics) we described in the previous sections. Let ζ n be a minimizing se-
quence in (24). The element ∂

∂ t ζ n remains bounded in Lp(I,M1(D)). Then when
p > 1, there exists a subsequence, still denoted ∂

∂ t ζ n and weakly converging to an
element ω ∈ Lp(I,M1(D)). The difficulty is now to get ω in the form ω = ∂

∂ t ζ ∗

for some admissible ζ ∗. As ζ n ∈ C 0, it remains bounded as an element of C in
Lr(I ×D), and this for any 1 ≤ r ≤ ∞. Let us consider a subsequence ζ n weakly
convergent to some element ρ . By continuity of the derivative in weak topologies
we derive that ω = ∂

∂ t ρ but a priori the element ρ is not a characteristic function.
Indeed we shall have ρ ∈ C , that is ρ2 = ρ , if and only if ρn strongly converges
to ρ in L1(I×D). Nevertheless, this strong L1(I×D) convergence would not imply
the limiting element ρ to be in C 0. Now, if this element is not time continuous the
connection makes no sense and it could not be a candidate for geodesic.

3.1 Compacity Arguments and Complete Metric

3.1.1 Surface Tension-like Term

We shall propose now several changes in the metric (or p-quasi-metric) to derive
this strong convergence. First of all let us denote that if we complete in (24) the
metric by the following, with σ > 0 (a surface tension term)

d(Ω0,Ω1) = Inf ζ∈T (Ω0,Ω1)Lσ (ζ ) (55)

with

Lσ =
∫ 1

0
|| ∂

∂ t
ζ ||M1(D) dt +σ

∫ 1

0
||∇xζ (t)||M1(D,RN) dt, (56)

then we could derive, for any smooth minimizing sequence, ζ n(t,x) = χQn , the tubes
with bounded perimeter in I×D as we have.

3.1.2 Boundedness of the Perimeter in I×D ⊂ RN+1

Proposition 6. Assume the evolution domain Q to be smooth, then

PI×D(Q)≤
∫ 1

0
|| ∂

∂ t
ζ ||M1(D) dt +

∫ 1

0
||∇xζ (t)||M1(D,RN) dt . (57)
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Proof.

PI×D(Q) =
∫

Σ

dΣ =
∫ 1

0

∫
Γt

√
1+ v2 dΓt(x)dt

PI×D(Q)≤
∫ 1

0

∫
Γt

(1+ |v|)dΓt(x)dt =
∫ 1

0
(PD(Ωt)+

∫
Γt

|v|dΓt)dt,
(58)

but

PD(Ωt) = ||∇ζ (t)||M1(D,RN),
∫

Γt

|v|dΓt(x) = || ∂

∂ t
ζ ||M1(D). (59)

So that (57) is true when the domain is smooth. ut

3.1.3 Metric on the Closure of Smooth Tubes Would Fail

We could hope that (57), by some density arguments, extends for all tubes ζ ∈
L1(I,BV (D))∩W 1,1(I,M1(D)) (which is an open question) or define the metric as
follows. Introducing the family of smooth tubes, say C ∞ (elements ζ = χQ with
lateral boundary being a C∞ manifold in I×D ⊂ RN+1), set

d∞
σ (Ω0,Ω1) = Inf ζ∈C ∞Lσ (ζ ). (60)

Any minimizing sequence, from (57) would remain bounded in BV (I×D) and
then there shall exist a subsequence strongly converging in L1(I ×D) so that the
limiting element will be ζ ∈ C with

||ζ ||BV (I×D) ≤ limin fn→∞ ||ζn||BV (I×D), (61)

and by similar weak l.s.c. arguments on each term of Lσ we would see that the limit-
ing element ζ ∈C would be a minimizer of Lσ on some closure of C ∞. Nevertheless
this element would not belong to C 0, and being not continuous in time the connec-
tion property ζ ∈T (Ω0,Ω1) could be lost and this candidate for metric would fail,
while having a minimizer. Finally we understand that even if the inequality (57) ex-
tends to a more general family of tubes it would not help for deriving metric with
geodesic.

An important point here is that any expression in the form of

d̃σ (Ω0,Ω1) = Inf ζ∈T Lσ (ζ ) (62)

would fail to be a metric because it violates the first metric axiom. Indeed the new
perimeter term σ

∫ 1
0 PD(Ωt)dt cannot be zero.
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3.2 Compactness Results

We have seen that the compactness result deriving from the boundedness of Lσ , i.e.
boundedness in the Banach space

B1 = L1(I,BV (D))∩W 1,1(I,M1(D))⊂C(I,M1(D)) (63)

is not enough.

Proposition 7. Consider ζn bounded in L1(I,BV (D)), together with ∂

∂ t ζn bounded
in Lp(I,M1(D)) for some p > 1. Then there exists a subsequence, still denoted
ζn, and an element ζ ∈ L1(I,BV (D))∩W 1,1(I,M1(D)) ⊂ C0(I,M1(D)) such that
ζn strongly converges to ζ in L1(I,L1(D)) with ∂

∂ t ζ ∈ Lp(I,M1(D)) verifying
||ζ ||L1(I,BV (D)) ≤ limin f ||ζn||L1(I,BV (D)) and || ∂

∂ t ζ ||Lp(I,M1(D)) ≤ limin f || ∂

∂ t ζn||Lp(I,M1(D)).
Continuity ζ ∈ W 1,1(I,M1(D)) implies ζ ∈ C0(I,L1(D)). Moreover ζ (t,x) =
ζ 2(t,x), a.e.(t,x) ∈ I×D and ζ ∈C0(I, L1(D)) implies that the mapping:

t ∈ Ī → p(t) := ||∇xζ (t)||M1(D,RN) is s.c.i. (64)

Proof. See [24, 13]. ut

Also a similar compacity result can be derived with p = 1, leading to a metric,
but assuming some uniform integrability for the || ∂

∂ t ζ ||M1(D) term.

Proposition 8. Consider ζn bounded in L1(I,BV (D)) together with ∂

∂ t ζn bounded
in L1(I,M1(D)), and assume there exists an element θ ∈ L1(I) such that

a.e. t ∈ I, || ∂

∂ t
ζn ||M1(D) ≤ θ(t). (65)

Then there exists a subsequence, still denoted ζn, and an element ζ ∈ L1(I,BV (D))∩
W 1,1(I, M1(D))⊂C0(I,M1(D)) such that ζn strongly converges to ζ in L1(I,L1(D))
with ∂

∂ t ζ ∈ Lp(I,M1(D)) verifying ||ζ ||L1(I,BV (D)) ≤ limin f ||ζn||L1(I,BV (D)) and

|| ∂

∂ t ζ ||Lp(I,M1(D)) ≤ limin f || ∂

∂ t ζn||Lp(I,M1(D)).
Continuity ζ ∈ W 1,1(I,M1(D)) implies ζ ∈ C0(I,L1(D)). Moreover ζ (t,x) =

ζ 2(t,x), a.e. (t,x) ∈ I×D and ζ ∈C0(I, L1(D)) implies that the mapping:

t ∈ Ī → p(t) := ||∇xζ (t)||M1(D,RN) is s.c.i. (66)

Proof. See [21, 13]. ut

3.3 Use of Compactness

The idea is to consider the following expression for the shape metric defined by
(24):
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d̄p(Ω0,Ω1) = Inf ζ∈T p(Ω0,Ω1)

∫ 1

0
|| ∂

∂ t
ζ (t)||M1(D)dt + ”

∫ 1

0
|p′

ζ
(t)|p dt”. (67)

Indeed the last term is not finite in general as it would imply p(t) to be time
continuous which is known to be false (the perimeter is l.s.c. only and may “jump
down” as in the celebrate “Camembert entamé” example: take a circular cheese
Camembert with radius R and subtract a radial triangular part with angle α , the
perimeter is p(α) and limin fα→0 p(α) = (2π + 2)R > p(0) = 2πR).

We relax this term by introducing (see [23]) the “time capacity” term

θ
p(ζ ) = Inf µ∈K p(ζ )

∫ 1

0
|µ ′(t)|p dt, (68)

with the closed convex set

K p(ζ ) = {µ ∈W 1,p(I) s.t. ||∇xζ (t)||M1(D,RN) ≤ µ(t) a.e. t ∈ I}. (69)

Then the metric is

d̄p(Ω0,Ω1) := Inf ζ∈T p(Ω0,Ω1)

∫ 1

0
|| ∂

∂ t
ζ (t)||M1(D)dt +θ

p(ζ ). (70)

3.4 Complete Quasi-metric by Level Set Formulation

Let p > 1 and Ωi, i = 1,2 be two arbitrary measurable subsets in D. Let

K(Ω1,Ω2) = {φ ∈ L2(I,H1(D))∩W 1,1(I,L2(D)),
∂

∂ t
φ ∈ Lp(I,L2(D)),

Ω1 = {Φ(0, .) > 0}, Ω2 = {Φ(1, .) > 0}}.

(71)

Notice that K(Ω1,Ω2)⊂ C0(Ī,L2(D)). We set

dLS,p(Ω1,Ω2) := Inf φ∈K(Ω1,Ω2)

∫ 1

0
(α ||φ(t)||2H1(D) + || ∂

∂ t
φ(t)||pL2(D))dt. (72)

Proposition 9. Let 1 < p ≤ 2 . Equipped with dLS,p , the family of measurable sub-
sets in D is a complete quasi-metric space.

4 Fully Eulerian Metric de

For non smooth vector fields, being given the element Ω0 in D the problem (25)
may have no solution or several solutions (depending on the weak regularity of the
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speed vector field V ). As soon as V satisfies the minimal regularity V ∈ V p where

p ≥ 1, V p = {V ∈ Lp(I×D,RN), divV ∈ Lp(I×D),

〈V,n∂D〉= 0 in W−1,p(∂D)},
(73)

the following classical convection problem

ζ ∈ L1(I×D),
∂

∂ t
ζ +∇ζ .V = 0, ζ (0) = χΩ0 (74)

possesses solution (the proof is classically done by the Galerkin method when V ∈
L2(I×D) and (divV )+ ∈ L∞(I,L2(D)), see [20], and there is no uniqueness result
for the solution, which a priori is not an element in C , nor in C 0). The element ζ is
not a characteristic function but is time continuous, ζ ∈C0([0,1],H−1/2(D)). Indeed
we consider weak solutions to problems (25) and (74), in the following sense:

∀φ ∈C∞(Ī× D̄) s.t. φ(1, .) = 0,∫ 1

0

∫
D

ζ (− ∂

∂ t
φ −div(φ V ))dxdt =

∫
D

χΩ0φ(0,x)dx.
(75)

The time derivative, for any solution to (74) (then to (25)) verifies:

∂

∂ t
ζ = div(ζV )−ζ divV ∈ Lp(I,W−1,p(D)), (76)

so that
ζ ∈W 1,p(I,W−1,p(D))⊂C0(Ī,W−1,p(D)). (77)

Notice that weak solutions to (74) can also be obtained by the following tech-
nique, without any L∞ requirement on the divergence:

Proposition 10. Let p > 1 and V ∈V p defined in (73), let Vn ∈V p∩C∞(Ī×D̄,RN))
such that Vn → V strongly in V p. Consider the element ζn(t) = χΩ0 oTt(Vn)−1 ∈
C 0 , a unique solution to the characteristic convection problem (25). There exists a
subsequence, still denoted ζn which weakly converges in Lp(I ×D) to an element
ρ ∈ Lp(I×D)∩W 1,1(I,W−1,p(D))⊂C0(Ī,W−1,p(D)) , a solution to the convection
problem (74) or (75).

Proof. We pass to the limit in the weak form (75). ut

The concept of distance between the two sets Ωi, i = 0,1 is associated to the
“shortest path”, that is now introduced through the Euler description using the prod-
uct space approach which is described in [23] and [24]. Let us consider the eulerian
connecting tubes defined as set of couples (ζ ,V ) solving the convection equation:

T p
e (Ω0,Ω1) = {(ζ ,V ) ∈ C ×V p solving (25) with ζ (i) = χΩi , i = 0,1}. (78)
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4.1 Eulerian Metrics

Let

de
p(Ω0,Ω1) := Inf (ζ ,V )∈T p(Ω0,Ω1)

∫ 1

0
(||V (t)||pLp(D,RN) + |divV (t)|pLp(D))dt, (79)

and

d̄p
e (Ω0,Ω1) := Inf (ζ ,V )∈T p

e (Ω0,Ω1)

∫ 1

0

∫
D
(|V |p +(divV )p)dxdt +θ

p(ζ ). (80)

Proposition 11. For p ≥ 1, de
p is a quasi-metric in the following sense:

i) de
p(Ω0,Ω1) = 0 iff χΩ0 = χΩ1 ,

ii) de
p(Ω0,Ω1) = de

p(Ω1,Ω0),
iii) de

p(Ω0,Ω2)≤ 2p−1(de
p(Ω0,Ω1)+de

p(Ω1,Ω2)).

Moreover, equipped with d̄e
p the family Oe

Ω̄
is a complete quasi-metric space and for

p = 1, equipped with de
1, it is a complete metric space.

4.2 BV Regularity of the Field V

When the speed vector field V verifies some BV properties, V ∈ L2(I,BV (D)N)
([1, 23, 24]), there is a unique tube associated to V , then we do have an application
V → ζV and with such regularity on V we can revisit the complete metric d being
completely delivered of the non differential perimeter and curvature terms that we
were obliged to introduce in order to apply the compacity theorems. From the tube
analysis we consider several interesting choices for the space regularity of the speed
vector field (together with its divergence field). Let

E 1,1 = {V ∈ L1(I×D,RN) s.t. divV ∈ L1(D),V.nD ∈W−1,1(∂D)}, (81)

and let E be a closed subspace in BV (D)∩E 1,1 such that any element V ∈ E verifies
the required assumptions. A first example is, when working with prescribed volume
for the moving domain

E0 = {V ∈ BV (D,RN)∩E 1,1, s.t. divV = 0 a.e. (t,x) ∈ I×D} (82)

V be a divergence-free vector field with divV = 0, V ∈ L1(I,E0), where E =
BV (D,RN) or any closed subspace (for example E = {V ∈ H1

0 (D,RN), s.t. divV =
0}). An obvious metric is to consider the set

V (Ω1,Ω2) = {V ∈ E 1,1 s.t. V, divV ∈ Lp(I,E0), s.t. ζ0 = χΩ1 ,ζ (1) = χΩ2}

δE0(Ω1,Ω2) = Inf V∈V (Ω1,Ω2)

∫ 1

0
||V (t)||E0 dt.

(83)
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As V is divergence-free the previous boundedness assumption on the divergence
is verified and to each V a tube ζV is associated through the convection. Then we
get:

Proposition 12. Let E be any subspace of BV (D,RN)∩E 1,1 such that any element
V satisfies assumptions of Theorem 2.12 of [24], for example E = E0. Then equipped
with δE , the family OE

Ω0
is a metric space.

p > 1,dE0(Ω1,Ω2) = Inf V∈V (Ω1,Ω2)||V ||Lp(I,E0) + || ∂

∂ t
V ||L1(I,M1(D,RN)). (84)

Proposition 13. Let E be any subspace of BV (D,RN)∩E 1,1, such that any element
V whose divergence satisfies assumptions of Theorem 2.12 of [24]. Then equipped
with dE the family OE

Ω0
is a complete quasi-metric space.

4.2.1 Geodesic Characterization via Transverse Field Z

In that setting we are concerned with smooth vector fields Z(s, t,x) ∈ RN such that
Z(s,0,x) = Z(s,1,x) = 0 so that the extremities (for t = 0, t = 1) of the perturbed
tube Qs := Ts(Z(s))(Q) are preserved. The parameter s appears here as a pertur-
bation parameter. Indeed the family of connecting tubes T p

e (Ω0,Ω1) is not a
linear space nor equipped with any manifold structure. Nevertheless we can de-
scribe some tangential space T(ζ ,V )T

p
e (Ω0,Ω1) at any element (tube) (ζ ,V ): if

(ζ ,V ) ∈ T then ζ oTs(Z(t))−1,V s) ∈ T where [ d
dsV

s]s−0 = Zt +[Z,V ]. The previ-
ous study for the transverse field [18, 13, 11] implies that for given such a vector
field Z, with divxZ(s, t,x) = 0 we get the admissible perturbation of the field V in
the form V + sW (s, t,x), with

W (s, t,x) =
∂

∂ t
Z(s, t,x)+ [Z, V ] . (85)

More precisely, define the Lipschitz-continuous connecting set:

V 1,∞(Ω1,Ω2) = {V ∈ L1(I,W 1,∞)∩E 1,1, s.t. ζV ∈ T̄ (Ω1,Ω2)} (86)

and the set of smooth transverse vector fields:

Z = {Z(t,x) ∈C∞
comp(I×D,RN)}. (87)

Notice that such Z verifies Z(0, .) = Z(1, .) = 0 on D.

Proposition 14. Let V ∈ V (Ω1,Ω2) and Z(t,x) ∈ Z . The transformation T =
Ts(Z)oTt(V ) maps Ωt(V ) onto Ω s

t := Ts(Z)(Ωt(V )) so that
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∀s, ∀Z, V s(t,x) =
∂

∂ t
T oT −1

= (
∂

∂ t
Ts(Z(t))+DTs(Z(t)).V (t))oTs(Z(t))−1 ∈ V 1,∞(Ω1,Ω2).

(88)

Lemma 2.
∂

∂ s
V s(t,x)|s=0 =

∂

∂ t
Z(t)+ [Z(t), V (t)]. (89)

Corollary 2. Consider a functional J (V ) = j(ζV ) and let V̄ be a minimizing ele-
ment of J on V (Ω1,Ω2). Then we have

∀Z ∈Z ,
∂

∂ s
J (V̄ s)s=0 = J′(V̄ ; (

∂

∂ s
V s)s=0) = J ′(V̄ ;

∂

∂ t
Z(t)+ [Z(t), V (t)])≥ 0.

(90)

That variational principle extends to vector field V ∈ E for which the flow map-
ping Tt(V ) is poorly defined. The element ζV ∈ H c is uniquely defined. For any
Z ∈ Z the perturbed ζ s

V := ζV oTs(Z)−1 ∈ T̄ (Ω1,Ω2); on the other hand the fol-
lowing result is easily verified.

Proposition 15. ζ s
V = ζV s with

V s(t, .) :=−DT−1
s (−Z(t)).(V (t)oTs(Z(t))−1)− ∂

∂ t
Ts(−Z(t)) (91)

In other words:

∂

∂ t
ζ +∇ζ .V = 0 implies

∂

∂ t
(ζ oTs(Z(t))−1)+∇(ζ oTs(Z(t))−1).V s = 0. (92)

It can also be verified that the expression (89) for the derivative of the field still
holds true so that the variational principle (90) is valid for any functional J min-
imized over the lipschitzian connecting family V 1,∞(Ω1,Ω2). And more generally,
without assuming V in E we have:

Proposition 16. Let (ζ ,V ) ∈T p,q(Ω1,Ω2), then for all s > 0 and Z ∈Z we have:

(ζ oTs(Z)−1, V s) ∈T p,q(Ω1,Ω2). (93)

In order to get a differentiable metric, we could consider

d̃(Ω1,Ω2) = Inf V∈V (Ω1,Ω2)

∫ 1

0
(||V (t)||H1

0∩E0
+ || ∂

∂ t
V ||L2(D))dt. (94)

Equipped with d̃, OΩ0 would be a complete metric space but d̃ fails to be a metric
because of the triangle axiom. The advantage is that now the associated functional is
differentiable with repect to V , then we can apply the previous variational principle
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with transverse vector field Z. Let V̄ be a minimizer in V (Ω1,Ω2) for d̃(Ω1,Ω2).
Then ∀Z ∈Z we have:∫ 1

0
{||V (t)||−1 〈V (t),Zt +[Z,V ]〉+ |V ′(t)|−1((V ′(t)(Zt +Z,V )′))}dt = 0, (95)

where 〈,〉 is the H1
0 (D,RN) inner product while ((,)) is the L2(D,RN) one. In order

to recover a differentiable complete metric, we introduce again the constraint on the
perimeter as in the beginning and set

δH1(Ω1,Ω2) = Inf V∈V (Ω1,Ω2)

∫ 1

0
||V (t)||H1

0∩E0
dt. (96)

The optimality condition is: ∀Z ∈Z

s.t.
∫ 1

0

∫
Γt

H(t)〈Z(t),nt〉dΓt dt = 0,∫ 1

0
||V (t)||−1 〈V (t),Zt +[Z,V ]〉dt = 0. (97)

4.2.2 Euler Equation for Geodesics

∃c(t), P s.t.
∂

∂ t
(||V (t)||p−2V (t))+ ||V (t)||p−2(DV (t).V +D∗V.V (t))

= ∇P+ cχΓt divΓt (nt)nt .

(98)

That is,

(p−2)||V ||p−4((V,
∂

∂ t
V ))+ ||V (t)||p−2 (

∂

∂ t
V +DV (t).V +D∗V.V (t))

= c χΓt divΓt (nt)nt ,

(99)

which can be written as (with V̄ = ||V ||−1 V , Π = P−1/2|V |2):

divV = 0,

∂

∂ t
V +(p−2)((

∂

∂ t
V, V̄ ))V̄ = DV.V = ∇Π + c(t)||V ||2−p

χΓt divΓt (nt)nt .
(100)

5 Variational Formulation for Euler Flow

As an application of the previous results we give a variational formulation for Euler
incompressible flow with tube boundary condition. We consider two non miscible
fluids and the tube describes the densities distribution. For shortness in this section
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we assume p = 2 and we consider the quadratic situation with divergence-free vector
fields. Then we consider the Hilbert space

H = {V ∈ L2(I×D,RN) s.t. divV = 0, V.nD = 0}. (101)

We consider any Banach space E1 ⊂ L1(D,RN) with continuous and compact
inclusion mapping.

Examples are E1 = BV (D,RN) or E1 = W ε,p(D,RN), for ε < 1/p, 1 ≤ p < ∞,
which is, for p = 2, the Hilbert space E1 = Hε(D,RN), for ε < 1/2.

The set of tubes under consideration is then

T = {(ζ ,V ) ∈ L2(I×D)×H, s.t. ζ = ζ
2,

∇ζ ∈ L1(I,E1), ζt +∇ζ .V = 0, ζ (τ) = χΩ1}.
(102)

Notice that the convection equation implies that as ζt = div(−ζ V ), then we get:

ζ ∈C0(I,W−1,1(D,RN)). (103)

Proposition 17. The set T of tubes is non empty.

5.1 Tube-variational Principle

We introduce the optimal control view point: the state equation will be the con-
vection equation (102) while we shall minimize a “Tube-Energy” cost functional
governed by this equation. The regularizing term is a surface tension-like term. As
in the previous sections this term will be needed in order to make use of the previ-
ous parabolic compactness of tubes. Indeed we shall introduce a kind of “density”
perimeter θh associated with L1(I,Hε(D)) norm of the tube ζ , which turns to be
differentiable under smooth transverse fields perturbations ζs.

5.1.1 Given Initial Domain Ω0 ⊂ D

Being given α > 0, β > 0, we consider the following Tube-Energy functional:

E (ζ ,V ) = 1/2
∫

τ

0

∫
D
(α ζ (t,x)+β ) |V (t,x)|2dxdt +σ

∫
τ

0
||ζ (t)||E1 dt

−
∫

τ

0

∫
D

V0(x).V (t,x)dxdt.
(104)

Theorem 1. The functional E reaches its minimum on the set T of tubes.

Proof. We consider a minimizing sequence (ζn,Vn) ∈T . There exist subsequences
such that Vn ⇀V , weakly in L2(I×D) and ζn → ζ strongly in L1(I×D). Effectively
as (ζn)t = div(−ζn Vn ), we have:
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||ζn||L1(I,E1) ≤ M1, ||(ζn)t ||L2(I ,W−1,1(D,RN)) ≤ M2. (105)

The conclusion derives from the compacity result. From this strong L1 conver-
gence we derive that ζ 2 = ζ . We consider the weak formulation for the convection
problem (102):

∀ψ ∈C1(I× D̄, RN), ψ(0, .) = 0,∫
τ

0

∫
D

ζn(−ψt −∇ψ.Vn)dxdt =−
∫

Ω1

ψ(0,x)dx,
(106)

in which we can pass to the limit and conclude that (ζ ,V ) ∈ T . Moreover, the
element (ζ ,V ) is classically a minimizer as the three terms are weakly lower semi-
continuous, respectively for each weak topology. ut

5.2 Euler Equation Solved by the Minimizer

In order to analyze the necessary conditions associated with any minimizer of E
over the set T we introduce transverse transformations of the tube.

5.2.1 Transverse Field

Let us consider a perturbation parameter s ≥ 0 and any smooth horizontal non au-
tonomous vector field over RN+1 (s being the evolution parameter for a dynamic in
RN+1)

Z (s, t,x) = (0, z(s, t,x)) ∈ Rr × RN , (107)

such that Z (s, 0,x) = 0.
For any element (ζ ,V ) ∈T we consider the perturbed tube (ζ s, V s), where:

ζ
s(t,x) := ζ oTs(Z t)(x))−1

V s(t,x) = (D(Ts(Z t)−1)−1.(V (t)oTs(Z t)−1− ∂

∂ t
(Ts(Z t)−1)).

(108)

Indeed we can show

Proposition 18. ∀(ζ ,V ) ∈T , ∀Z , the previously defined elements (ζ s,V s) ∈T .

5.2.2 Transverse Derivative

Assume that divxZ t = 0, then:∫
D
(αζ

s(t,x)+β )|V s(t,x)|2 dx =
∫

D
(αζ (t,x)+β )|V s(t)oTs(Z t)(x)|2 dx (109)
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So that the optimality of the element (ζ ,V ) writes:

1/s(E (ζ s, V soTs)−E (ζ ,V ))≥ 0. (110)

Now the following quotient has a strong limit in L2(I×D):

V soTs−V
s

=
d
ds

[V soTs(Z t)]s=0

=
d
ds

[(D(Ts(Z t)−1)−1.(V (t)− ∂

∂ t
(Ts(Z t)−1)oTs(Z t))]s=0

=
d
ds

[(D(Ts(Z t)oTs(Z t)−1.(V (t)− ∂

∂ t
(Ts(Z t)−1)oTs(Z t))]s=0

=
∂

∂ t
Z(t)+DZ(t).V (t) ∈ L2(I×D,RN),

(111)

where we always denote Z(t)(x) = Z(t,x) := Z t(0,x) (that is at s = 0). Indeed we
know that if V was smoother, say V ∈ L2(H1(Ω)), we would have:

∂

∂ s
[V s]s=0 = Zt +[Z(t),V (t)] := HV .Z, (112)

where the Lie bracket is [Z,V ] = DZ.V −DV.Z, so we would get the previous ex-
pression for the derivative of V soTs(Z t), as (V soTs)s = (V s)s +DV s.DZ(t).

5.3 Necessary Condition

5.3.1 Quadratic Term of E

The quadratic term may be decomposed as follows:∫
τ

0

∫
D
((αζ

s +β )|V s|2− (αζ +β )|V |2)/sdxdt

=
∫

τ

0

∫
D
((αζ +β )(|V soTs|2−|V |2)/sdxdt

=
∫

τ

0

∫
D
((αζ +β )(V soTs +V )(V soTs−V )/sdxdt

→ 2
∫

τ

0

∫
D
((αζ +β )V.(

∂

∂ t
Z(t)+DZ(t).V (t))dxdt

=−2
〈

∂

∂ t
((αζ +β )V )+ ”D((αζ +β )V ).V ”,Z

〉
D ′×D

+
∫

D
(αχΩτ

+β )V (τ).Z(τ)dx−
∫

D
(αχΩ0 +β )V (0).Z(0)dx,

(113)

where
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”D((αζ +β )V ).Vi” = ∂ j((αζ +β )Vi Vj) ∈W−1,1(D). (114)

In fact we shall consider Z such that Z(τ, .) = 0 over D.

5.3.2 The Linear Term

Let V0 be any given element in RN . We have:∫
τ

0

∫
D

V0.(V s(t,x)−V (t,x))/sdxdt

=
∫

τ

0

∫
D

V0.(V s(t)oTs(Z t)(x)−V (t,x))/sdxdt

+
∫

τ

0

∫
D

V0.(V s(t)oTs(Z t)(x)−V (t,x))/sdxdt

→
∫

τ

0

∫
D

V0.(Zt(t,x)+DZ(t,x).V (t,x))dxdt

=
∫

τ

0

∂

∂ t
(
∫

D
V0.Z(t,x)dx)dt =

∫
D

V0.Z(τ,x)dx−
∫

D
V0.Z(0,x)dx.

(115)

5.3.3 “Perimeter” Term in E

Assume formally that the minimizer element ζ is smooth enough, so that with the
choice E1 = BV (D,RN) we have the surface tension term in the classical form:

σ

∫
τ

0
||∇ζ ||M1(D,RN)dt = σ

∫
τ

0
PD(Ωt)dt. (116)

We would obtain as derivative with respect to s:

σ

∫
τ

0

∫
Γt

∆bΩt 〈Z(t),nt〉dΓt dt. (117)

In the interesting case where E1 = W ε,p(D) we introduce the term, for any given
“small” h > 0:

θh(ζ ) :=
∫

τ

0
(
∫

D×D
ρh(||x− y||) |ζ (x)−ζ (y)|p

||x− y||N+ε p dxdy)dt, (118)

where ρh is any smooth positive function such that ρ(z) = 0 for |z| ≥ 2h, and ρ(z) =
1 for |z| ≤ h.

As a result we have

Lemma 3.∫
τ

0
||ζ (t)||W ε,p(D) dt ≤ τ(meas(D)+

1
hN+ε p meas(D)2)+θh(ζ ). (119)
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So that it is enough to choose the surface tension term in the form σ θh(ζ ). This
term turns to be always differentiable with respect to the transverse perturbations as
follows:

θh(ζ oTs(Z )−1)

=
∫

τ

0

∫
D×D

ρh(||Ts(Z )(x)−Ts(Z )(y)||) |ζ (x)−ζ (y)|p

||Ts(Z )(x)−Ts(Z )(y)||N+ε p dxdydt

(120)

So that, for a.e. t in I we have (with θh(ζ ) =
∫

τ

0 θ(ζ (t))dt )

∂

∂ s
θh(ζ s(t))p

s=0

=
∫

D×D
ρh(||x− y||) |ζ (x)−ζ (y)|p

||x− y||N+ε p+2 〈x− y,Z(t,x)−Z(t,y)〉dxdy

+
∫

D×D
ρ
′
h(||x− y||) |ζ (x)−ζ (y)|p

||x− y||N+ε p 〈x− y,Z(t,x)−Z(t,y)〉dxdy

(121)

As ||x− y|| ≤ h in the previous integrals, we have:

Z(t,x)−Z(t,y) = DZ(t,x+δ (t)(y− x)).(y− x). (122)

There exists a measure µh(Γ (t) supported by

∆h(Σ) = ∪0<t<τ{t}× (∪x∈∂Ωt B(x,h)), (123)

such that

< µh, Z >=
∂

∂ s
θh(ζ s(t))p

s=0. (124)

In some sense when h → 0 the measure converges to the mean curvature of the
moving boundary Γt .

6 Euler-convection Problem

We have

Theorem 2. Let V0 be any given element in RN . Then any minimizer (ζ ,V ) to the
functional E over the family of tubes T solves the following problem:

∂

∂ t
ζ +∇ζ .V = 0, ζ (0) = χΩ0 , ζ (τ) = χΩ1 , (125)

∃Π s.t.
∂

∂ t
((αζ +β )V ) + D((αζ +β )V ).V +∇Π = µh. (126)

Moreover we have
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V (0) = (V0 +∇θ)/(αζ (0)+β ). (127)
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