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Abstract We address the regularity of the solution to the time dependent Maxwell
equations of electromagnetics in the case of metallic boundary condition under min-
imal regularity of the data. We extend the so-called extractor technique that we in-
troduced in 1995 for wave equation in several cases (including the non-cylindrical
case of moving domains for which the sharp-hidden regularity [10] was still an open
problem). Concerning the electrical vector field we consider its normal component
e at the boundary and, using a specific version of the so called pseudo-differential
extractor (that we recently introduced in a different context), we obtain new sharp
regularity results that are quantified in terms of curvature through the oriented dis-
tance function and all the intrinsic geometry we developed in the book [6].

1 Introduction

This paper deals with the regularity of the solution at the boundary of the 3D time-
dependent solution E,H of Maxwell’s equations of Electromagnetics. We show a
hidden regularity result at the boundary for the electric field on a metallic ob-
stacle. We consider a domain Ω with boundary Γ on which the boundary con-
dition EΓ = 0 is applied1. Assuming divergence-free initial data Ei ∈ H i(Ω ,RN),
i = 0,1, and divergence-free current J ∈ L2(0,τ;L2(Ω ,RN)) we show that, at the
boundary, the magnetic field verifies H ∈ H1/2(0,τ;L2(Γ ,R3)) while curlE ∈
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H−1/2(0,τ;L2(Γ ,R3)). The proof makes use of the Extractor technique introduced
at ICIAM 1995 [5] and in several papers ([1, 3, 2]); we first prove that (DE.n)Γ ∈
L2( ]0,τ[×Γ ,R3), E.n ∈ H1/2(0,τ ;L2(Γ )) and ∇Γ E.n ∈ H−1/2(0,τ ; L2(Γ )). The
proof of this last regularity follows a pseudo-differential extractor technique which
is developed in a forthcoming paper [7].

2 Divergence-free Solutions of Maxwell and Wave Equations

As E is the electrical field, we deal with vector functions, say E ∈C0([0,τ],H1(Ω ,
RN)), where Ω is a bounded smooth domain with boundary Γ and I = ]0,τ[ is
the time interval. Throughout this paper we shall be concerned with divergence-
free initial conditions E0,E1 and right-hand side F for the classical wave equation
formulated in the cylindrical evolution domain Q = I ×Ω . We shall discuss the
boundary conditions on the lateral boundary Σ = I×Γ .

2.1 Wave Deriving from Maxwell Equation

Assuming perfect media (ε = µ = 1) the Ampère law is

curlH =
∂

∂ t
E + J, (1)

where J is the electric current density. The Faraday’s law is

curlE =− ∂

∂ t
H. (2)

The conservation laws are

divE = ρ, divH = 0, (3)

where ρ is the volume charge density. From (1) and (2), as divcurl = 0, we obtain

divJ =−div(Et) =−ρt . (4)

We assume that ρ = 0, which implies that divJ = 0. Under this assumption any
E solving (1) is divergence-free as soon as the initial condition E0 is. We shall also
assume divE0 = 0 so that (6) will be a consequence of (1).

With F =−Jt , we similarly get divF = 0 and E is solution of the usual Maxwell
equation:

Ett + curl curl E = F, E(0) = E0, Et(0) = E1. (5)

Lemma 1. Assume that divF = divE0 = divE1 = 0. Then any solution E to Maxwell
equation (5) verifies the conservation condition (3) (with ρ = 0):



Boundary Smoothness of the Solution of Maxwell’s Equations of Electromagnetics 5

divE = 0. (6)

We have the classical identity

curl curl E =−∆E +∇(divE) (7)

so that E is also solution of the following wave equation problem

Ett −∆E = F, E(0) = E0, Et(0) = E1. (8)

2.2 Boundary Conditions

The physical boundary condition for metallic boundary is E × n = 0 which can be
written as the homogeneous Dirichlet condition on the tangential component of the
field E:

EΓ = 0 on Γ . (9)

We introduce the following Fourier-like boundary condition involving the mean cur-
vature ∆bΩ = λ1 +λ2 of the surface Γ

∆bΩ E.n+ 〈DE.n,n〉= 0 on Γ . (10)

In flat pieces of the boundary this condition reduces to the usual Neumann condition.

Proposition 1. Let E be a smooth element (E ∈ H 2, see below) and the three
divergence-free elements (E0, E1, F) ∈ H2(Ω ,R3)×H1(Ω ,R3)× L2(0,τ;H1(Ω ,
R3)). Then we have the following conclusions.

i) Let E be solution to Maxwell-metallic system (5), (9). Then E solves the mixed
wave problem (8), (9), (10) and, from Lemma 1, E solves also the free diver-
gence condition (6).

ii) Let E be solution to the wave equation (8) with “metallic" b.c. (9). Then E ver-
ifies the Fourier-like condition (10) if and only if E verifies the free divergence
condition (6).

iii) Let E be a divergence-free solution to the “metallic" wave problem (8), (6), (9),
then E solves the Maxwell problem (5), (9), (10).

Proof. We consider e = divE; if E is solution to Maxwell problem (5) then e solves
the scalar wave equation with initial conditions ei = divEi = 0, i = 0,1 and right
hand side f = divF = 0. If E solves (10) then we get e = 0, as from the following
result we get e = 0 on the boundary:

Lemma 2. Let E ∈ H2(Ω) solving the tangential Dirichlet condition (9), then we
have the following expression for the trace of divE:

divE|Γ = ∆bΩ 〈E,n〉+ 〈DE.n,n〉 on Γ . (11)
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Proof. The divergence successively decomposes as follows at the boundary (see
[13, 12]):

divE|Γ = divΓ (E)+ 〈DE.n,n〉= divΓ (E.nn)+divΓ (EΓ )+ 〈DE.n,n〉
= 〈∇Γ (E.n),n〉+E.ndivΓ (n)+divΓ (EΓ )+ 〈DE.n,n〉 .

(12)

Obviously 〈∇Γ (E.n),n〉 = 0, the mean curvature of the surface Γ is ∆bΩ =
divΓ (n) and if the field E satisfies the tangential Dirichlet condition (9) we get the
following simple expression for the restriction to the boundary of the divergence:

div(E)|Γ = ∆bΩ 〈E,n〉+ 〈DE.n,n〉 . (13)

ut

Then if E satisfies the extra “Fourier-like" condition (10) we get e = 0 on Γ , so that
e = 0. ut

2.3 The Wave-Maxwell Mixed Problem

From previous considerations, it follows that under the divergence-free assumption
for the three data E0, E1, F , the following three problems are equivalent (in the
sense that any smooth solution of one of them is solution to the two others): Maxwell
problem (5), (9), Free-Wave problem (8), (6), (9), and Mixed-Wave problem (8), (9),
(10). We emphasize that any solution to Maxwell problem satisfies the divergence-
free condition (6) and the Fourier-like condition (10). Any solution to the Mixed-
Wave problem satisfies (for free) the divergence-free condition (6). Any solution to
the Free-Wave problem satisfies (for free) the Fourier-like condition (10). The object
of this paper is to develop the proof of the following regularity result.

Theorem 1. Let (E0,E1,J) be divergence-free vector fields in

H1(Ω ,R3)2×L2(Ω ,R3)×H1(I,L2(Ω ,R3)) (14)

with zero tangential components: (E0)Γ = 0. Assume also curlE1 = 0. The Maxwell
problem (5), (9) has a unique solution

E ∈C0(Ī,H1(Ω ,R3))∩C1(Ī,L2(Ω ,R3)) (15)

verifying the boundary regularity:

curlE|Γ ∈ H−1/2(I×Γ ,R3) (16)

so that the magnetic field H at the boundary verifies

H|Γ ∈ H1/2(I,L2(Γ ,R3)). (17)
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Moreover, we have
E|Γ ∈ H1/2(I,L2(Γ ,R3)). (18)

Furthermore, if J|Γ ∈ L2(I,L2(Γ )), from Ampère law (1) we obtain

curlH|Γ ∈ H−1/2(I,L2(Γ ,R3)). (19)

2.3.1 Tangential Decomposition

For any vector field G ∈ H1(Ω ,RN) denote by GΓ the tangential part GΓ =
G|Γ− < G,n > n and (see [12, 8, 6, 11]) consider its tangential Jacobian matrix
DΓ G = D(GopΓ )|Γ and its transpose D∗

Γ
. To derive the regularity result we shall be

concerned with the following three terms at the boundary:

(DE.n)Γ , ∇Γ (E.n), Et . (20)

Lemma 3. For all E ∈ H2(Ω ,RN), we have by direct computation:

DE|Γ = DE.n⊗n+DΓ E. (21)

Obviously, as E = EΓ + 〈E,n〉n, we have:

DΓ E = DΓ EΓ +DΓ (E.nn) (22)

so that
EΓ = 0 ⇒ DΓ E = DΓ (〈E,n〉n). (23)

Now as DΓ (〈E,n〉n) = 〈E,n〉 DΓ (n)+ n⊗∇Γ (〈E,n〉) and as DΓ (n) = D2bΩ , we
get the following result.

Lemma 4. Assume that EΓ = 0. Then we have

DΓ E = 〈E,n〉 D2bΩ |Γ +n⊗∇Γ (〈E,n〉). (24)

Moreover as
divΓ E := divE|Γ −〈DE.n,n〉 (25)

when divE = 0, we get 〈DE.n,n〉 = −divΓ E, and if, in addition, EΓ = 0, we have
〈DE.n,n〉=−divΓ (〈E,n〉n), that is the following result.

Lemma 5. Denote by H = ∆bΩ the mean curvature. Then

EΓ = 0 and divE = 0 (26)

implies the following identities

i)
〈DE.n,n〉=−H E.n, (27)
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ii)
DE.n = 〈DE.n,n〉n+(DE.n)Γ =−H E.nn+(DE.n)Γ (28)

and
|DE.n|2 = H2|E.n|2 + |(DE.n)Γ |2 (29)

iii)
DE =−H E.nn⊗n+ (DE.n)Γ ⊗n+E.nD2b+ n⊗∇Γ (E.n), (30)

iv)

DE..DE = H2|E.n|2 + |(DE.n)Γ |2 + |E.n|2D2b..D2b+ |∇Γ (E.n)|2. (31)

Proposition 2. Let E ∈ H2(Ω ,RN), divE = 0, EΓ = 0 , then:

DE..DE|Γ = (H2 +D2b..D2b)|E.n|2 + |(DE.n)Γ |2 + |∇Γ (E.n)|2, (32)

that is
DE..DE|Γ = |DE.n|2 + |E.n|2D2b..D2b+ |∇Γ (E.n)|2. (33)

2.4 Boundary Estimate of DE

Define 2ε
def= DE +D∗E and 2σ

def= DE−D∗E so that

DE = ε(E)+σ(E) (34)

and
‖curlE‖2

L2(Γ ,R3) ≤ 4‖DE‖2
L2(Γ ,RN2 )

. (35)

From the decomposition (21) we have:

‖DE‖L2(I,L2(Γ ,R3)) ≤ ‖DE.n⊗n‖+‖D2bE.n‖, (36)

but
‖DE.n⊗n‖2 =

∫
τ

0

∫
Γ

(DE.n⊗n)..(DE.n⊗n)dtdΓ . (37)

That is

‖DE.n⊗n‖2
L2(I,L2(Γ ,R3)) ≤

∫
τ

0

∫
Γ

|DE.n|2 dt dΓ

=
∫

τ

0

∫
Γ

{|(DE.n)Γ |2 + |< DE.n,n > |2}dt dΓ ,

(38)

but, as 〈DE.n,n〉=−〈E,n〉D2bΩ , we get the estimate (35).
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2.5 Extractor Identity

Let I = ]0,τ[ be the time interval and for any integer k ≥ 1 define the spaces

Hk def= C0
(

Ī,Hk(Ω ,R3)
)
∩C1

(
Ī,Hk−1(Ω ,R3)

)
, (39)

H k def=
{

E ∈ Hk : divE = 0, EΓ = 0 on Γ

}
. (40)

Let F ∈ L2(I,L2(Ω ,R3)), E0 ∈ H1(Ω ,R3), E1 ∈ L2(Ω ,R3) with divE0 = divE1 =
0. Consider E ∈H 1 solution of the equations

A.E := Ett −∆E = F ∈ L2(I,L2(Ω ,R3)), (41)
E(0) = E0, Et(0) = E1. (42)

2.5.1 The Extractor e(V )

Let E ∈ H 2, and V ∈ C0([0,τ[ , C2(D,RN)), 〈V (t, .),n〉 = 0 on ∂D. Consider its
flow mapping Ts = Ts(V ) and the derivative:

e(V ) def=
∂

∂ s
E (V,s)

∣∣∣∣
s=0

, (43)

where

E (V,s) def=
∫ 1

0

∫
Ωs

(
|Et ◦T−1

s |2−D(E ◦T−1
s )..D(E ◦T−1

s )
)

dxdt. (44)

By change of variable
D(E ◦T−1

s )◦Ts = DE.DT−1
s (45)

we get the second expression

E (V,s) =
∫ 1

0

∫
Ω

(|Et |2− (DE.DT−1
s )..(DE.DT−1

s ))J(t)dxdt. (46)

We have two expressions (44) and (46) for the same term E (V,s). The first one is
an integral on a mobile domain Ωs(V ) while the second one is an integral over the
fixed domain Ω . So taking the derivative with respect to the parameter s we shall
obtain two different expressions for e that we shall respectively denote by e1 and e2.

2.5.2 Expression for e1

As the element E is smooth, E ∈ H 2, we can directly apply the classical results
from [12]. For simplicity, assume that divV = 0 so that J(t) = 1. In this specific
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case we get

e =
∂

∂ s
E

∣∣∣∣
s=0

, (47)

and

e1 = 2
∫ 1

0

∫
Ω

{Et .(−DEt .V )−DE..D(−DE.V )}dxdt

+
∫ 1

0

∫
Γ

{|Et |2−DE..DE}vdΓ dt.
(48)

2.5.3 Green-Stokes Theorem

Using integration by parts:∫ 1

0

∫
Ω

{DE..D(DE.V )}dxdt =
∫ 1

0

∫
Ω

〈−∆E,DE.V 〉 dxdt

+
∫ 1

0

∫
Γ

〈DE.n,DE.V 〉 dΓ (x)dt.
(49)

2.5.4 Time Integration by Parts

Then ∫ 1

0

∫
Ω

Et .(DEt .V )dxdt =
∫ 1

0

∫
Ω

(−Ett .(DE.V )+Et .(DE.W )) dxdt

−
∫

Ω

Et(0).(DE(0).W )dx.
(50)

Furthermore, assuming that the initial condition is of the form

E0 ∈ H1(Ω ,R3), E1 ∈ L2(Ω ,R3), (51)

we get

e1 =2
∫ 1

0

∫
Ω

{Ett .(DE.V )−Et .(DE.W )−〈∆E,DE.V 〉} dxdt

+2
∫

Ω

E1.(DE0.W )dx

+
∫ 1

0

∫
Γ

{(|Et |2−DE..DE)〈V,n〉+2〈DE.n,DE.V 〉}dΓ (x)dt.

(52)

The discussion is now on the last boundary integral.
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2.5.5 Specific Choice for V at the Boundary

As the boundary Γ = ∂Ω ∈ C2 we can apply all intrinsic geometry material in-
troduced in [6]. Denoting by p = pΓ the projection mapping onto the manifold Γ

(which is smoothly defined in a tubular neighborhood of Γ ) we consider the ori-
ented distance function b = bΩ = dΩ c −dΩ where Ω c = RN \Ω , and its “localized
version" defined as follows (see [4]): let h > 0 be “a small" positive number and
ρh(.)≥ 0 be a cutting scalar smooth function such that ρh(z) = 0 when |z|> h and
ρ(z) = 1 when |z|< h/2. Then set

bh
Ω

def= ρh ◦bΩ (53)

and define the associate localized projection mapping

ph
def= Id −bh

Ω ∇bh
Ω (54)

smoothly defined in the tubular neighborhood

Uh(Γ ) def= {x ∈ D : |bΩ (x)|< h}. (55)

Let any smooth element v ∈ C0(Γ ) be given and consider the vector field V of
the following form

V (t,x) def= W (x)(1− t), W (x) def= v◦ ph∇bh
Ω . (56)

Then the last term (boundary integral) in (52) takes the following form:∫ 1

0

∫
Γ

{(|Et |2−DE..DE)+2〈DE.n,DE.n〉}v(1− t)dΓ (x)dt. (57)

We get:

e1 =
∫ 1

0

∫
Γ

(|Et |2−DE..DE +2|DE.n|2)vdΓ dt

+2
∫

Q
(Ett .DE.V −〈∆E,DE.V 〉 dxdt−

∫
Ω

〈Et(0),DE(0).W 〉 dx.
(58)

As from (33) we have

DE..DE = |DE.n|2 +D2bΩ ..D2bΩ |E.n|2 + |∇Γ E.n|2 (59)

and as
|DE.n|2 = |(DE.n)Γ |2 +(∆bΩ )2|E.n|2 (60)

we obtain the following result.
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Proposition 3.

e1 =
∫ 1

0

∫
Γ

(τ − t){|Et |2 + |(DE.n)Γ |2−|∇Γ (E.n)|2

+ |E.n|2(H2−D2b..D2b)}vdΓ dt

+2
∫

Q
〈A.E,DE.V 〉dQ−2

∫
Ω

〈E1,D(E0).W 〉 dx.

(61)

2.5.6 Second Expression for e

From (46) we obtain the s derivative as a distributed integral term as follows

e2 =
∫

Q

{
(|Et |2−DE..DE)divV (0)−2DE..(−DE.DV )

}
dxdt. (62)

2.5.7 Extractor Identity

As e = e1 = e2 we get∫
Σ

(τ − t){(|Et |2−|∇Γ (E.n)|2 + |(DE.n)Γ |2 + |E.n|2(H2−D2b..D2b))}vdΣ

=
∫

Q
{(|Et |2−DE..DE)divV −2DE..(−DE.DV )}dxdt

−
∫

Q
2(Ett −∆E).DE.V dQ+

∫
Ω

2〈E1,DE0.W 〉 dx.

(63)

That is ∫
Σ

(τ − t){(|Et |2−|∇Γ (E.n)|2 +(DE.n)Γ |2)}vdΣ

=
∫

Q
{(|Et |2−DE..DE)divV −2DE..(−DE.DV )}dxdt

−2
∫

Q
2〈A.E,DE.V 〉dQ+

∫
Ω

2〈E1,DE0.W 〉 dx

+
∫

Σ

(1− t)|E.n|2(D2b..D2b−H2)vdΣ .

(64)

Notice that the curvature terms

D2b..D2b−H2 = λ
2
1 +λ

2
2 − (λ1 +λ2)2 =−2κ, (65)

where κ = λ1λ2 is the Gauss curvature of the boundary Γ .
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3 Regularity at the Boundary

We apply twice this last identity.

3.1 Tangential Field Eτ

In a first step consider the “tangential vector field" obtained as Eτ def= E−E.∇bh
Ω

∇bh
Ω

.
We get

Eτ
tt −∆Eτ = (Ett −∆E)− (Ett −∆E).∇bh

Ω ∇bh
Ω +C. (66)

That is A.Eτ = (A.E)τ +C, where the commutator C ∈ L2(0,T,L2(Ω ,R3)) is given
by

C def= −E.∆bh
Ω ∇bh

Ω −2D2bh
Ω .∇bh

Ω ∇bh
Ω −E.∇bh

Ω d2bh
Ω −2D2bh

Ω .∇(E.bh
Ω ). (67)

The conclusion formally derives as follows: as Eτ ∈ L2(I,H1(Ω ,R3)) we get the
traces terms

Eτ .n = Eτ
t = 0 ∈ L2(I,H1/2(Γ )). (68)

Since e1 = e2, we conclude by choosing the vector field of the form

V (t,x) = (τ − t)∇bh
Ω = (τ − t)ρ

′
h ◦bΩ ∇bΩ . (69)

That is v = 1 and as for 0 < t ≤ τ/2 we have τ/2 ≤ τ − t, we get:

τ/2
∫

τ/2

0

∫
Γ

|(DEτ .n)Γ |2 dΓ dt ≤
∫

τ/2

0
(τ − t)

∫
Γ

|(DEτ .n)Γ |2 dΓ dt

≤
∫

τ

0
(τ − t)

∫
Γ

|(DEτ .n)Γ |2 dΓ dt

=
∫

Q
(τ − t)

{
(|Eτ

t |2−DEτ ..DEτ)div(∇bh
Ω )−2DEτ ..(−DEτ .D(∇bh

Ω ))
}

dQ

−2
∫

Q
(τ − t)

〈
A.Eτ ,DEτ .(∇bh

Ω )
〉

dQ+
∫

Ω

2
〈

Eτ
1 ,DEτ

0 .(∇bh
Ω )

〉
dx.

(70)

As for 0 < t < τ we have 2/τ(τ − t)≤ 2 we get, with T = τ/2∫ T

0

∫
Γ

|(DEτ .n)Γ |2 dΓ dt

≤ 2
∫ 2T

0

∫
Ω

{
(|Eτ

t |2−DEτ ..DEτ)div(∇bh
Ω )−2DEτ ..(−DEτ .D(∇bh

Ω ))
}

dxdt

−4
∫ 2T

0

∫
Ω

〈
A.Eτ ,DEτ .(∇bh

Ω )
〉

dxdt +4/T
∫

Ω

〈
Eτ

1 ,DEτ
0 .(∇bh

Ω )
〉

dx,

(71)



14 Jean-Paul Zolésio and Michel C. Delfour

there exists a constant M > 0 such that∫ T

0

∫
Γ

{|Eτ
t |2 + |(DEτ .n)Γ |2}dΓ dt

≤M ‖∇bh
Ω‖W 1,∞(Ω ,RN) . . .

·
{
‖Eτ‖2

H 1(0,2T ) + |A.Eτ |L2([0,2T ]×Ω ,R3) +1/T (|Eτ
0 |2H1(Ω ,R3) + |Eτ

1 |2L2(Ω ,R3))
}

.

(72)

Notice that
∇bh

Ω = ρ
′
h ◦bΩ ∇bΩ , (73)

so that
‖∇bh

Ω‖L∞(RN ,RN) ≤ Max0≤s≤h|ρ ′
h(s)|. (74)

Moreover

D2bh
Ω = D(ρ ′

h ◦bΩ ∇bΩ ) = ρ
′′
h ◦bΩ ∇bΩ ×∇bΩ +ρ

′
h ◦bΩ D2bΩ (75)

so that

‖D2bh
Ω‖L∞(RN ,RN2 ) ≤

Max0≤s≤h|ρ ′′
h (s)|+Max0≤s≤h|ρ ′

h(s)| ‖D2bΩ‖L∞(Uh(Γ ),RN2 ).
(76)

By choice of ρh in the form ρh(s) = f (2s/h− 1) when h/2 < s < h and F(x) =
2x3−3x2 +1, we obtain

‖ρh‖C2([0,h]) ≤
8
h2 . (77)

So the previous estimate is in the form

‖D2bh
Ω‖L∞(RN ,RN2 ) ≤C0

1
h2 ‖D2bΩ‖L∞(Uh(Γ ),RN2 ) (78)

for the larger h such that the following condition holds

D2bΩ ∈ L∞(Uh(Γ ),RN2
). (79)

3.1.1 Regularity Result for Eτ

Proposition 4. Let Ω be a bounded domain in R3 with boundary Γ being a C2

manifold. Let h verify condition (79).
There exists a constant M > 0 such that for any data (E0,E1,F) ∈ L2(Ω ,R3)×

H1(Ω ,R3)×L2(Ω ,R3), the vector

Eτ ∈H 1(0,2τ) def= C0 (
[0,2τ],H1(Ω ,R3)

)
∩C1 (

[0,2τ],L2(Ω ,R3)
)

(80)
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verifies
(DEτ .n)Γ ∈ L2(0,τ;L2(Γ ,R3)) (81)

and ∫ T

0

∫
Γ

{|(DEτ .n)Γ |2}dΓ dt

≤M ‖∇bh
Ω‖W 1,∞(Ω ,RN) . . .

· {‖E‖2
H 1(0,2T ) + |F |L2([0,2T ]×Ω ,R3) +1/T |Eτ

0 |2H1(Ω ,R3) +1/T |Eτ
1 |2L2(Ω ,R3)}

(82)

It can be verified that
D(Eτ).n = (DE.n)Γ . (83)

3.2 The Normal Vector Field e

Set
e def= E.∇bh

Ω . (84)

Lemma 6.
ett −∆e = (Ett −∆E).∇bh

Ω +θ , (85)

where

θ = D2bh
Ω ..DE +div(D2bh

Ω .E) and
∂

∂n
e = 〈DE.n,n〉=−∆bΩ e on Γ . (86)

Then e is solution of the wave problem:

ett −∆e = Θ , (87)

where
Θ = F.∇bh

Ω +D2bh
Ω ..DE +div(D2bh

Ω .E). (88)

3.3 Extension to R

Let

ρ ∈C2(R), ρ ≥ 0, supp ρ ⊂ [−2τ,+2τ], ρ = 1 on [−τ,+τ]. (89)

Define
ẽ def= ρ(t)e(t), t ≥ 0, ẽ = ρ(t)(e0 + te1), t < 0, (90)

which turns to be solution on R to the wave problem
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ẽtt −∆ ẽ = H and
∂

∂n
ẽ = g, (91)

where

g def=


−∆bΩ ẽ for t > 0

ρ(t)(
∂

∂n
e0 + t

∂

∂n
e1) for t < 0,

on Γ (92)

and H ∈ L2(R,L2(Ω)) verifies

H def=

ρ(t)Θ +ρ
′′e+2ρ

′ ∂

∂ t
e for t > 0

ρ
′′(e0 + te1)+2ρ

′e1−ρ(∆e0 + t∆e1) for t < 0.

(93)

4 Fourier Transform

Define
z(ζ )(x) def=

∫ +∞

−∞

exp(−iζ t) ẽ(t,x)dt, (94)

which turns to be solution to

∂

∂n
z = F .g on Γ . (95)

Consider the perturbed domain Ωs = Ts(V )(Ω) with boundary Γs = Ts(V )(Γ ), the
following integral and derivative

E (s,V ) def=
∫ +∞

−∞

dζ

∫
Ωs(V )

(
|ζ‖z◦Ts(V )−1|2 +

1
1+ |ζ |

|∇(z◦Ts(V )−1)|2
)

dx,

(96)

e def=
d
ds

E (s,V )
∣∣∣∣
s=0

, (97)

and compute the derivative in the two different ways.

4.0.1 By Moving Domain Derivative

Let
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e1
def=

∫ +∞

−∞

dζ

∫
Ω

(
|ζ |2Re{〈z,∇z̄.(−V )〉}+

1
1+ |ζ |

2Re{〈∇z,∇(∇z̄(−V ))〉}
)

dx

+
∫ +∞

−∞

dζ

(∫
Γ

{
|ζ | |z|2 +

1
1+ |ζ |

|∇z|2
}
〈V,n〉dΓ (x)

)
.

(98)

By Stokes theorem we get,∫ +∞

−∞

dζ

∫
Ω

1
1+ |ζ |

2Re{∇(z).∇(∇z̄(−V ))}dx

=
∫ +∞

−∞

dζ

∫
Ω

1
1+ |ζ |

2Re{∆(z),(∇z̄.V )}dx

−
∫ +∞

−∞

∫
Γ

1
1+ |ζ |

2Re{〈∇z.n,∇z̄.V 〉}dΓ dt.

(99)

As V = vn on Γ , we get for the last term:

−
∫ +∞

−∞

∫
Γ

1
1+ |ζ |

2Re{〈∇z.n,∇z̄.n〉}vdΓ dt, (100)

but on Γ we have
〈∇z.n,∇z̄.n〉= |F .g|2. (101)

Finally, we get

e1 =
∫ +∞

−∞

∫
Γ

{|ζ | |z|2 +
1

1+ |ζ |
Re{〈∇z,∇z̄〉}−2|F .g|2}vdΓ dt

+
∫ +∞

−∞

dζ

∫
Ω

(|ζ |2Re{〈z,∇z̄.(−V )〉}+
1

1+ |ζ |
2Re{∆z,(∇z̄.V )})dx.

(102)

Then ∫ +∞

−∞

∫
Γ

{|ζ | |z|2 +
1

1+ |ζ |
|∇Γ z|2}v

=
∫ +∞

−∞

∫
Γ

1
1+ |ζ |

|F .g|2 dΓ dt

−
∫ +∞

−∞

dζ

∫
Ω

1
1+ |ζ |

2Re{|ζ |2z+F .H(∇z̄.V )}dx

+
∫ +∞

−∞

dζ

∫
Ω

|ζ |2Re{〈z,∇z̄.V 〉}dx+ e2.

(103)

Hence there exists M > 0 such that∫ +∞

−∞

∫
Γ

{|ζ | |z|2 +
1

1+ |ζ |
|∇Γ z|2}v ≤ M

{
‖z‖2

L2(R,H1(Ω)) +‖z‖2
L2(R,L2(Γ ))

}
. (104)
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We have
√
|ζ |z ∈ L2(Rζ ,L2(Γ )) and 1√

|ζ |
∇Γ z ∈ L2(Rζ ,L2(Γ ,RN)). By a den-

sity argument, we conclude that

E.n ∈ H1/2(I,L2(Γ ))∩L2(I, H1/2(Γ )) (105)

∇Γ (E.n) ∈ H−1/2(I, L2(Γ ,RN)). (106)
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