

Intelligent Tutoring Systems using Reinforcement
Learning to teach Autistic Students

B. H. Sreenivasa Sarma and B. Ravindran
Department of Computer Science and Engineering,

Indian Institute of Technology Madras, India.

Abstract. Many Intelligent Tutoring Systems have been developed using
different Artificial Intelligence techniques. In this paper we propose to use
Reinforcement Learning for building an intelligent tutoring system to teach
autistic students, who can't communicate well with others. In reinforcement
learning, a policy is updated for taking appropriate action to teach the student.
The main advantage of using reinforcement learning is that, it eliminates the
need for encoding pedagogical rules. Various issues in using reinforcement
learning for intelligent tutoring systems are discussed in this paper.

1 Introduction

A student learns better through one-to-one teaching than through class room
teaching. Intelligent Tutoring System (ITS) is one of the best ways of one-to-one
teaching. ITS instructs about the topic to a student, who is using it. The student has
to learn the topic from an ITS by solving problems. The system gives a problem and
compares the solution it has with that of the student and then it evaluates the student
based on the differences. The system keeps on updating the student model by
interacting with the student. As the system keeps updating the student’s knowledge,
it considers what the student needs to know, which part of the topic is to be taught
next, and how to present the topic. It then selects the problems accordingly.

There are three modules in ITS, namely domain, pedagogical and student

modules as shown in Fig.1. The domain module or knowledge base is the set of
questions being taught. The pedagogical module contains the methods of instruction
and how the knowledge should be presented to the student. The student module
contains the knowledge about the student.

 B. H. Sreenivasa Sarma and B. Ravindran

 Fig. 1. Block diagram of basic ITS

1.1 Need of an ITS for autistic students

Autism is a semantic pragmatic disorder, characterized by deficits in socialization,
communication and imagination. Along with the deficits, autistic children may have
exceptional learning skills of unknown origin. Many children with autism do make
eye contact, especially with familiar people. However, often it is observed that the
eye contact is less frequent than would be expected, or it is not used effectively to
communicate with others. Our approach mainly focuses on developing an ITS to
teach such students.

1.2 Motivation for using Reinforcement Learning

Usually, ITS uses artificial intelligence techniques [5] to customize their instructions
according to the student's need. For this purpose the system should have the
knowledge of the student (student model) and the set of pedagogical rules.
Pedagogical rules are usually in the rule-based form. For example, “if-then” where
the “if” part is student model dependent and the “then” part is the teaching action
taken. There are some disadvantages with this method. First, there are many rules
which a system can use to teach efficiently, but which are very difficult to encode.
Secondly, it is difficult to incorporate the knowledge that human teachers use, but
cannot express. The machine tutors have a different set of data available than the
human tutors, so the knowledge that could improve the tutor's performance is
ignored. Third, rule-based systems are not adaptive to new student's behavior.

Intelligent Tutoring Systems using Reinforcement Learning to teach Autistic Students

The organization of this paper is as follows: Section 2 gives a brief
description of reinforcement learning (RL). Section 3 presents the basic idea of using
RL for ITS. In Sections 4 and 5, experimental results have been discussed. Some
issues in the designing ITS and future work have been discussed in Section 6.

2 Reinforcement learning

RL [9] is learning what to do, how to map situations to actions, so as to maximize a
numerical reward signal. The learner is not told which actions to take, as in most
forms of machine learning, but instead must discover which actions yield the most
reward by trying them. To obtain high reward, an RL agent must prefer actions that it
has tried in the past and found to be effective in producing reward. But to discover
such actions, it has to try actions that it has not selected before.

An RL system consists of a policy, a reward function, a value function, and,

optionally, a model of the environment. A policy defines the learning agent's way of
behaving at a given time, it is a mapping from perceived states of the environment to
the actions to be taken when in those states. A reward function defines the goal in an
RL problem, it maps each perceived state of the environment to a single number, a
reward, indicating the intrinsic desirability of that state. The value of a state is the
total amount of reward an agent can expect to accumulate over the future, starting
from that state.

In an ITS, the RL agent acts as the pedagogical module. The RL agent learns

a policy for presenting the examples and the hints to the student. In [1, 5], the authors
have proposed theoretically, the idea that RL can be efficiently used for learning to
teach in an ITS. In [8], the authors used basic RL algorithms like softmax andε -
greedy for evaluating the effects of hints on the student. They used the method of
clustering students into different levels according to their knowledge. The RL agent
then uses this cluster information to take teaching actions. But in our case we have
taken the information of individual students, which we expect to provide efficient
information to the ITS about a student. In [4], RL is used for modeling a student.
They proposed different ways of selecting state variables for an RL agent.

 2.1 Mathematical background

This section gives definitions and a brief description of the concepts used in RL. In
RL framework, the agent makes its decisions as a function of a signal from the
environment's state, s. A state signal summarizes past sensations compactly, in such
a way that all relevant information is retained. This normally requires more than the
immediate sensations, but never more than the complete history of all past
sensations. A state signal that succeeds in retaining all relevant information is said to
be Markov, or to have the Markov property.

2.2 Markov Decision Process

 B. H. Sreenivasa Sarma and B. Ravindran

An RL task that satisfies the Markov property is called a Markov decision process or
MDP. If the state and action spaces are finite, then it is called a finite Markov
decision process (finite MDP). Finite MDPs are particularly important to the theory
of RL.

It is relevant to think that a state signal is Markov even when the state signal
is non-Markov. A state should predict subsequent states, where the environment
model is learned. Markov states are efficient to do these things. If the state is
designed as Markov then RL systems perform better than with a non-Markov state.
For these reason, it is better to think of the state at each time step as an
approximation to a Markov state, though it is not fully Markov. Theory that applies
to Markov cases can also be applied to many tasks that are not fully Markov.

2.3 Value Functions

The value function is the future reward that can be expected or the expected return.
The value functions are defined with respect to particular policies. Let S be the set of
possible states and A(s) be the set of actions taken in state s, then the policy, π , is a
mapping from each state, Ss∈ and action,)(sAa∈ , to the probability,),(asπ ,of
taking an action, a, when in state, s. The value of a state, s, under a policy,
π ,defined)(sV π , is the expected return when starting in s and following
π thereafter. For MDPs, we can define)(sV π formally as

 (1)

Where {}πE denotes the expected value given that the agent follows policy,π ,

1++ktr is the reward for thkt)1(++ time step and γ is the discount factor. Note that
the value of the terminal state, if any, is always zero. We call the function)(sV π ,
the state-value function for policy, π . Similarly, the value of taking action a in state
s under a policy, π , denoted),(asQπ , as the expected return starting from s, taking
the action a, and thereafter following policy π :

 (2)

Where),(asQπ is the action-value function for policy, π .

Finding an optimal policy that gives a high reward over long run is the goal
of an RL task. For finite MDPs, an optimal policy is a policy, π , that is better than
or equal to a policy 'π , if its expected return is greater than or equal to that of 'π for

}{ ,|1
0

aassrE ttkt
k

k
=== ++∑

∞

=
γπ

},|{),(aassREasQ ttt === π
π

}{ |1
0

ssrE tkt
k

k
== ++∑

∞

=
γπ

}|{)(ssREsV tt == π
π

Intelligent Tutoring Systems using Reinforcement Learning to teach Autistic Students

all states. There would be at least one policy, that is better than or equal to other
policies, which is called an optimal policy. All the optimal policies are denoted by

*π , and their value functions are denoted by *V and *Q .

2.4 Q-learning

Q-learning [10] is a popular RL algorithm that does not need a model of its
environment and can be used on-line. Q-learning algorithm works by estimating the
values of state-action pairs. Once these values have been learned, the optimal action
from any state is the one with the highest Q-value. Q-values are estimated on the
basis of experience as in Eq. (3).

 (3)

 This algorithm is guaranteed to converge to the correct Q-values with
probability one if the environment is stationary and depends on the current state and
the action taken in it.

3 ITS using RL

In this case, RL acts as a pedagogical module which selects appropriate action to
teach student by updating Q-values. The RL agent has a function approximator and
an RL algorithm, as show in Fig. 2. The state of the student is the summary of a few
past training questions asked and the response of the student for those questions. As
we are not considering the entire history of questions and answers, this problem is a
non-Markov problem. So, to make it more Markov we considered the responses of
some of the past questions for the state of the student.

Initially, a random state of the student is considered and a reward for RL
agent is obtained. The RL agent takes an action according to the state and reward.
The action of the RL agent is to select appropriate question or hint for the student.
Each question has its own target. Student is tested with this question as shown in Fig.
2. By following a strategy, a reward for the RL is calculated from the student's
response. Then the student is trained with same question as shown in Fig. 3 and state
of the student is obtained from the trained output. This process is continued for some
number of questions, which is called an episode.

A function approximator is used for generalization of states in a large state
space. Most states encountered will never have been experienced exactly before. The
only way to learn anything at all is to generalize from previously experienced states
to one that have never been seen. Many RL algorithms [9] are available which
updates Q-values and selects an action accordingly. The knowledge base consists of
the questions from a topic, which are represented according to that needed for a
student to learn.

)],()','(max[),(),(
'

asQasQrasQasQ
a

−++← γα

 B. H. Sreenivasa Sarma and B. Ravindran

Fig.2. Block diagram of testing phase of the student using ITS with RL.

3.1 Simulated Students

Cohen [6] has shown that Artificial Neural Networks (ANN) trained with
backpropogation can appropriately model the selective attention and generalization
abilities of autistic students. The model is based on neuropathological studies which
suggest that affected individuals have either too few or too many neuronal
connections in various regions of the brain. In simulations, where the model was
taught to discriminate children with autism from children with mental retardation,
having too few simulated neuronal connections led to relatively inferior
discrimination of the input train patterns, consequently, relatively inferior
generalization of the discrimination to a novel train patterns. Too many connections
produced excellent discrimination but inferior generalization because of
overemphasis on details unique to the training set.

By using simulated-student, teachers can keep checking the simulated student's
knowledge base. If the teachers don't like the recently taken action, they can reset the
student's knowledge and try again. Teachers can teach as many times as they can to
the simulated student to study the effect of the instructions on the student. Teachers
can experiment their tactics with simulated student without fear of failing, which can
give negative results with human student. We have used appropriately chosen ANNs
to simulate students in our work.

Intelligent Tutoring Systems using Reinforcement Learning to teach Autistic Students

Fig. 3. Block diagram of training phase of the student using ITS with RL.

4 Experiments

We have developed an ITS to teach pattern classification problem. In our case,
pattern classification problem is that the student has to classify the pattern (question)
given to him. This problem is selected for validating the approach using ANNs,
though this is not directly relevant to teaching children. Appropriate question banks
should be developed to teach human students.

In pattern classification problem, the knowledge base contains two
dimensional patterns from four classes, A, B, C and D, as shown in Fig. 4. The
classes are selected in such a way that if a random action is selected, the probability
of selecting the pattern from class A is more than from the other classes. The target
output for ANN is a four dimensional vector, for example, [1 0 0 0] is the target for
class A, [0 1 0 0] is for class B, and so on.

On-line training and testing have been performed on the ANN. The response
(output) of ANN is classified into correct (1) and wrong (0) answers. For example, if
the target of training question is [0 0 1 0] and if the third output of the ANN is higher
than all other outputs then the response is considered as correct, else wrong. The
summary of the ANN's response for past 300 questions and the history of responses
for past 50 questions are considered for a state of the ANN.

 B. H. Sreenivasa Sarma and B. Ravindran

Fig.4. Knowledge base of pattern classes

Among the past 300 questions, let AN be the number of questions asked from
class A. Let ACN and AWN be the number of correct answers and wrong answers
for AN , respectively. Similarly, let DCDCWCCCBWBCB NNNNNNNN ,,,,,,, and

DWN be the number of questions asked, correct answers and wrong answers from
classes B, C and D, respectively. Let ix be the thi question in an episode. Let jiz − ,

501 ≤≤ j , be the answer for jix − question. Then the state of the ANN is classes

These four form an action set,)(sA , for the RL agent. It selects a question from the
knowledge base, through policy and ANN is tested with that question. The negative
of the Mean Square Error (MSE) of the output of ANN is given as a reward for the
RL agent. The same question is used to train the ANN, and the output is used to find
the next state of the ANN. This procedure is repeated for 25 episodes, each episode
containing 2000 questions. These experiments are done on normal ANN and on
ANN model of autistic student.

4.1 RL algorithm

For training of the RL agent, a slightly modified version of Watkin's Q-learning with
backpropagation [2] is used. An ANN with single hidden layer is used to learn the

),(asQ function. The number of input neurons is equal to the dimension of the state,
hidden layer contains number of neurons required for feature extraction and number
of output neurons equal to the number of actions taken. In this case, we have 72
dimension states, feature size is 80 and 4 actions to be taken.

]...[1149495050 −−−−−− iiiiiiDWDCDCWCCCBWBCBAWACA zxzxzxNNNNNNNNNNNN

Intelligent Tutoring Systems using Reinforcement Learning to teach Autistic Students

Activation function for the hidden units is the approximate Gaussian function.
Let id be the squared distance between the current input vector, s , and the weights
in the hidden unit, j. Then,

 (4)

Where, is is the thi component of s at current time and jiw are the weights of
hidden layer. The output, iy , of hidden unit j is

Where ρ controls the radius of the region in which the unit's output is nonzero and
α controls the position of the RBFs in the state space.

Actions are selected ε -greedily, to explore the effect of each action. To
update all weights, error back-propagation is applied at each step using the following
temporal-difference error

Let jlv be the weights of the thl output neuron. Then weights are updated
by the following equations, assuming unit k is the output unit corresponding to the
action taken, and all variables are for the current time t.

)',(1 asQ t+ ,)(' sAa ∈∀ , is the product of updated kjv , and the output of function
approximator, iy .

5 Results

The results in Fig. 5 and 6 are obtained for ε =0.2, which means the
exploration is done for 20% of the questions. The other parameters are, β =1.0 and
α =200.

=jy
if ρ<jd

,0 otherwise)5(

),()]1,1([
1

max1 tatsQtatsQ
tatrte −++
+

++= γ)6(

),(, ijwiskjvjyteh
jiw −=Δ

ρ

β
)7(

iytekjv β=Δ ,)8(

09.0=hβ

∑
=

−=
72

1
2)(

i jiwisjd α

,21)(ρ
jd

−{

 B. H. Sreenivasa Sarma and B. Ravindran

Fig. 5(a) shows the average percentage classification for first 500 questions
selected for the normal ANN with 5 hidden layer neurons, without ITS and with ITS.
Classification of ANN without ITS is around 26%, which is much less than that
compared to the classification of ANN with ITS, which is around 70%. Fig. 5(b)
shows the histogram of actions taken by ITS. The uniform distribution of the actions
shows that the ITS is not stuck in the local optima. ITS selects an action depending
on the present state of the student, to increase the future classification rate of the
ANN.

Fig. 5. (a) Percentage classification (left figure) by ANN model of normal student
(learning rate 0.2). (b) Histogram (right figure) of actions taken by RL agent,
averaged over episodes. (0, 1, 2 and 3 represent classes A, B, C, and D respectively).

Fig. 6. (a) Percentage classification (left figure) by ANN model of an autistic child
(learning rate 0.2). (b) Histogram (right figure) of actions taken by RL agent (0, 1, 2
and 3 represent classes A, B, C, and D respectively)

Intelligent Tutoring Systems using Reinforcement Learning to teach Autistic Students

Fig. 7. (a) Percentage classification by ANN model of autistic student with learning
rates 0.2, 0.4, 0.6 and 0.8 for classes 0, 1, 2, and 3, respectively. (b) Histogram of
actions taken by RL agent, averaged over episodes (0, 1, 2 and 3 represent classes
A,B,C, and D respectively)

Fig. 8. (a) Percentage classification by ANN model of normal student with learning
rates 0.8, 0.6, 0.4 and 0.2 for classes 0,1,2 and 3 respectively (b) Histogram of
actions taken by RL agent, averaged over episodes (0,1,2 and 3 represent classes
A,B,C, and D respectively)

Fig. 9 (a) Percentage classification by ANN model of normal student with learning
rates 0.8, 0.6, 0.2 and 0.4 for classes 0, 1, 2, and 3 respectively (b) Histogram of

 B. H. Sreenivasa Sarma and B. Ravindran

actions taken by RL agent, averaged over episodes (0,1,2 and 3 represent classes
A,B,C, and D respectively)

Fig. 20 (a) Percentage classification by ANN model of normal student with learning
rates 0.8, 0.2, 0.6 and 0.4 for classes 0, 1, 2, and 3 respectively (b) Histogram of
actions taken by RL agent, averaged over episodes (0,1,2 and 3 represent classes
A,B,C, and D respectively)

The goal was to develop an ITS capable of adapting to large deviations from
normal learning behavior. So, we have simulated models of both autistic student and
normal student by selecting more neurons (15 neurons) in the hidden layer than that
required (5 neurons, normal behavior) for capturing the information in the input
patterns. We have evaluated the ITS using these simulated models. Fig. 6(a) shows
the classification rate for ANN model for autistic student, with ITS and without ITS.
Classification rate of autistic model can be compared with that of the normal ANN.
In both cases, the percentage classification is approaching the same value (70%),
indicating the autistic student can be taught effectively using ITS. But autistic
student needs more number of questions (around 175 questions) to learn, than that
required for a normal student (around 50 questions). Fig. 6(b) gives the histogram of
actions taken by RL agent for the ANN model of autistic student.

The policy learned by the ITS seemed to be picking actions at random,
uniformly from all the 4 classes. Though this is the desired behavior, we cannot be
entirely sure that this was learned. So we tried different experiments which have
different desired behaviors. For example, experiments where the student had
different learning rates like 0.2, 0.4, 0.6 and 0.8 for classes A, B, C, and D
respectively. The ITS learned the appropriate mix of actions to take, as shown in Fig.
7(b). Fig. 7(a) shows the classification performance of such combination. For other
combinations of learning rate, similar learned behavior was observed as shown in
Fig. 8, 9 and 10.

Intelligent Tutoring Systems using Reinforcement Learning to teach Autistic Students

6 Conclusions and Future Work

Sections 4 and 5 presented the experiments performed to test the application of RL
for ITS to teach an autistic student. We conclude that, by considering the history and
summary of past few questions as state variables, an autistic student can be taught as
effectively as a normal student.

We are now concentrating on improving the present ITS using the hierarchical
framework [3]. In a hierarchical framework, entire knowledge base is divided into
lessons and each lesson is divided into different categories. The RL agent has to
learn two policies, one for picking a lesson and the other for picking a categories
within the lesson, which is expected to improve the performance of the ITS.

This can be extended to real world problems like teaching mathematics, where
selection of state variables and action variables is much more difficult task. In this
paper, we used the history of past 50 questions and summary of past 300 questions as
state variables. But in real world situation, we can consider the variables like the
amount of time taken by the student to answer a question, history of hints the student
requested. More work can be done in selecting state variables, which can improve,
not only the percentage classification but also the learning rate. In this case, we have
to consider which type of questions form a group, for example, easy questions form a
group and tough questions form another group.

Other applications of our work include pattern synthesis and active learning.
Pattern synthesis is the process of generating patterns for training and testing a
machine. In our case, the two dimensional data generated as a question can be
considered as the pattern synthesis problem. Active learning is the "learning with
examples" [7]. This is a closed-loop phenomenon of a learner asking questions that
can influence the data added to its training examples. In the case of ITS, the student
has the facility to ask for hints for improving his knowledge on the topic, this can be
considered as active learning. Active learning provides greatest reward in situations
where data are expensive or difficult to obtain.

References

1. B. Abdellah, D. Theo and M. Bernard. An approach of reinforcement
learning use in tutoring systems. In Proceedings of International
Conference on Machine learning and Applications, ICMLA’02, 2002.

2. C. W. Anderson. Q-learning with hidden-unit restarting. In Proceedings of
Fifth International Conference on Neural Information Processing Systems,
pages 81-88, 1992.

3. A. Barto and S. Mahadevan. Recent advances in hierarchical reinforcement
learning. Discrete Event Dynamics Systems: Theory and Applications, 13:
343-379, 2003.

 B. H. Sreenivasa Sarma and B. Ravindran

4. J. E. Beck. Modeling the student with reinforcement learning. Machine
learning for User Modeling Workshop at the Sixth International Conference
on User Modeling, 1997.

5. J. E. Beck. Learning to teach with a reinforcement learning agent.
American Association for Artificial Intelligence (AAAI), 1998.

6. I. L. Cohen. An artificial neural network analogue of learning in autism.
Biological Psychiatry, 36(1):5-20, 1994.

7. D. A. Cohn, Z. Ghahramani, and M. I. Jordan. Active learning with
statistical models. Journal of Artificial Intelligence Research, 4: 129-145,
1996.

8. K. N. Martin and I. Arroya. AgentX: Using reinforcement learning to
improve the effectiveness of intelligent tutoring systems.

9. R. S. Sutton and A. G. Barto. Reinforcement learning: An Introduction.
MIT Press, Cambridge, MA, 1998.

10. Watkins, C. J. C. H. (1989). Learning from delayed rewards. Ph.D. thesis,
Cambridge University.

