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Abstract. Many Intelligent Tutoring Systems have been developed using 
different Artificial Intelligence techniques. In this paper we propose to use 
Reinforcement Learning for building an intelligent tutoring system to teach 
autistic students, who can't communicate well with others. In reinforcement 
learning, a policy is updated for taking appropriate action to teach the student. 
The main advantage of using reinforcement learning is that, it eliminates the 
need for encoding pedagogical rules. Various issues in using reinforcement 
learning for intelligent tutoring systems are discussed in this paper. 

1 Introduction 

A student learns better through one-to-one teaching than through class room 
teaching. Intelligent Tutoring System (ITS) is one of the best ways of one-to-one 
teaching. ITS instructs about the topic to a student, who is using it. The student has 
to learn the topic from an ITS by solving problems. The system gives a problem and 
compares the solution it has with that of the student and then it evaluates the student 
based on the differences. The system keeps on updating the student model by 
interacting with the student. As the system keeps updating the student’s knowledge, 
it considers what the student needs to know, which part of the topic is to be taught 
next, and how to present the topic. It then selects the problems accordingly.  

 
There are three modules in ITS, namely domain, pedagogical and student 

modules as shown in Fig.1. The domain module or knowledge base is the set of 
questions being taught. The pedagogical module contains the methods of instruction 
and how the knowledge should be presented to the student. The student module 
contains the knowledge about the student. 
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    Fig. 1.  Block diagram of basic ITS 

1.1 Need of an ITS for autistic students 
 
Autism is a semantic pragmatic disorder, characterized by deficits in socialization, 
communication and imagination. Along with the deficits, autistic children may have 
exceptional learning skills of unknown origin. Many children with autism do make 
eye contact, especially with familiar people. However, often it is observed that the 
eye contact is less frequent than would be expected, or it is not used effectively to 
communicate with others. Our approach mainly focuses on developing an ITS to 
teach such students.  
 
 
1.2   Motivation for using Reinforcement Learning 
 
Usually, ITS uses artificial intelligence techniques [5] to customize their instructions 
according to the student's need. For this purpose the system should have the 
knowledge of the student (student model) and the set of pedagogical rules. 
Pedagogical rules are usually in the rule-based form. For example, “if-then” where 
the “if” part is student model dependent and the “then” part is the teaching action 
taken. There are some disadvantages with this method. First, there are many rules 
which a system can use to teach efficiently, but which are very difficult to encode. 
Secondly, it is difficult to incorporate the knowledge that human teachers use, but 
cannot express. The machine tutors have a different set of data available than the 
human tutors, so the knowledge that could improve the tutor's performance is 
ignored. Third, rule-based systems are not adaptive to new student's behavior. 
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The organization of this paper is as follows: Section 2 gives a brief 
description of reinforcement learning (RL). Section 3 presents the basic idea of using 
RL for ITS. In Sections 4 and 5, experimental results have been discussed. Some 
issues in the designing ITS and future work have been discussed in Section 6. 
 
 
2    Reinforcement learning 
 
RL [9] is learning what to do, how to map situations to actions, so as to maximize a 
numerical reward signal. The learner is not told which actions to take, as in most 
forms of machine learning, but instead must discover which actions yield the most 
reward by trying them. To obtain high reward, an RL agent must prefer actions that it 
has tried in the past and found to be effective in producing reward. But to discover 
such actions, it has to try actions that it has not selected before.  

 
An RL system consists of a policy, a reward function, a value function, and, 

optionally, a model of the environment. A policy defines the learning agent's way of 
behaving at a given time, it is a mapping from perceived states of the environment to 
the actions to be taken when in those states. A reward function defines the goal in an 
RL problem, it maps each perceived state of the environment to a single number, a 
reward, indicating the intrinsic desirability of that state. The value of a state is the 
total amount of reward an agent can expect to accumulate over the future, starting 
from that state.  

 
In an ITS, the RL agent acts as the pedagogical module. The RL agent learns 

a policy for presenting the examples and the hints to the student. In [1, 5], the authors 
have proposed theoretically, the idea that RL can be efficiently used for learning to 
teach in an ITS. In [8], the authors used basic RL algorithms like softmax andε -
greedy for evaluating the effects of hints on the student. They used the method of 
clustering students into different levels according to their knowledge. The RL agent 
then uses this cluster information to take teaching actions. But in our case we have 
taken the information of individual students, which we expect to provide efficient 
information to the ITS about a student. In [4], RL is used for modeling a student. 
They proposed different ways of selecting state variables for an RL agent.  

 
 2.1      Mathematical background 

 
This section gives definitions and a brief description of the concepts used in RL. In 
RL framework, the agent makes its decisions as a function of a signal from the 
environment's state, s. A state signal summarizes past sensations compactly, in such 
a way that all relevant information is retained. This normally requires more than the 
immediate sensations, but never more than the complete history of all past 
sensations. A state signal that succeeds in retaining all relevant information is said to 
be Markov, or to have the Markov property. 
 
 
2.2      Markov Decision Process 
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An RL task that satisfies the Markov property is called a Markov decision process or 
MDP. If the state and action spaces are finite, then it is called a finite Markov 
decision process (finite MDP). Finite MDPs are particularly important to the theory 
of RL. 
 

It is relevant to think that a state signal is Markov even when the state signal 
is non-Markov. A state should predict subsequent states, where the environment 
model is learned. Markov states are efficient to do these things. If the state is 
designed as Markov then RL systems perform better than with a non-Markov state. 
For these reason, it is better to think of the state at each time step as an 
approximation to a Markov state, though it is not fully Markov. Theory that applies 
to Markov cases can also be applied to many tasks that are not fully Markov.  
 
2.3      Value Functions 

 
The value function is the future reward that can be expected or the expected return. 
The value functions are defined with respect to particular policies. Let S be the set of 
possible states and A(s) be the set of actions taken in state s, then the policy, π , is a 
mapping from each state, Ss∈  and action, )(sAa∈ , to the probability, ),( asπ ,of 
taking an action, a, when in state, s. The value of a state, s, under a policy, 
π ,defined )(sV π , is the expected return when starting in s and following 
π thereafter. For MDPs, we can define )(sV π  formally as 
 
                                                 

 
                                                                       (1) 

 
Where {}πE denotes the expected value given that the agent follows policy,π , 

1++ktr  is the reward for thkt )1( ++  time step and γ  is the discount factor. Note that 
the value of the terminal state, if any, is always zero. We call the function )(sV π  , 
the state-value function for policy, π  . Similarly, the value of taking action a in state 
s under a policy, π , denoted ),( asQπ , as the expected return starting from s, taking 
the action a, and thereafter following policy π : 
                                            
                            

 
 

                                                   (2) 
 
 
Where ),( asQπ  is the action-value function for policy, π . 
 

Finding an optimal policy that gives a high reward over long run is the goal 
of an RL task. For finite MDPs, an optimal policy is a policy, π , that is better than 
or equal to a policy 'π , if its expected return is greater than or equal to that of  'π for 
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all states. There would be at least one policy, that is better than or equal to other 
policies, which is called an optimal policy. All the optimal policies are denoted by 

*π , and their value functions are denoted by *V  and *Q . 
 

2.4      Q-learning 
 

Q-learning [10] is a popular RL algorithm that does not need a model of its 
environment and can be used on-line. Q-learning algorithm works by estimating the 
values of state-action pairs. Once these values have been learned, the optimal action 
from any state is the one with the highest Q-value. Q-values are estimated on the 
basis of experience as in Eq. (3). 
 
                   (3) 
 
          This algorithm is guaranteed to converge to the correct Q-values with 
probability one if the environment is stationary and depends on the current state and 
the action taken in it. 

 
3    ITS using RL 
 
In this case, RL acts as a pedagogical module which selects appropriate action to 
teach student by updating Q-values. The RL agent has a function approximator and 
an RL algorithm, as show in Fig. 2. The state of the student is the summary of a few 
past training questions asked and the response of the student for those questions. As 
we are not considering the entire history of questions and answers, this problem is a 
non-Markov problem. So, to make it more Markov we considered the responses of 
some of the past questions for the state of the student.  
 

Initially, a random state of the student is considered and a reward for RL 
agent is obtained. The RL agent takes an action according to the state and reward. 
The action of the RL agent is to select appropriate question or hint for the student. 
Each question has its own target. Student is tested with this question as shown in Fig. 
2. By following a strategy, a reward for the RL is calculated from the student's 
response. Then the student is trained with same question as shown in Fig. 3 and state 
of the student is obtained from the trained output. This process is continued for some 
number of questions, which is called an episode. 
 

A function approximator is used for generalization of states in a large state 
space. Most states encountered will never have been experienced exactly before. The 
only way to learn anything at all is to generalize from previously experienced states 
to one that have never been seen. Many RL algorithms [9] are available which 
updates Q-values and selects an action accordingly. The knowledge base consists of 
the questions from a topic, which are represented according to that needed for a 
student to learn. 

)],()','(max[),(),(
'

asQasQrasQasQ
a

−++← γα



 B. H. Sreenivasa Sarma and B. Ravindran 
 

 

Fig.2. Block diagram of testing phase of the student using ITS with RL. 

 
3.1   Simulated Students 

 
Cohen [6] has shown that Artificial Neural Networks (ANN) trained with 
backpropogation can appropriately model the selective attention and generalization 
abilities of autistic students. The model is based on neuropathological studies which 
suggest that affected individuals have either too few or too many neuronal 
connections in various regions of the brain. In simulations, where the model was 
taught to discriminate children with autism from children with mental retardation, 
having too few simulated neuronal connections led to relatively inferior 
discrimination of the input train patterns, consequently, relatively inferior 
generalization of the discrimination to a novel train patterns. Too many connections 
produced excellent discrimination but inferior generalization because of 
overemphasis on details unique to the training set.  
 
By using simulated-student, teachers can keep checking the simulated student's 
knowledge base. If the teachers don't like the recently taken action, they can reset the 
student's knowledge and try again. Teachers can teach as many times as they can to 
the simulated student to study the effect of the instructions on the student. Teachers 
can experiment their tactics with simulated student without fear of failing, which can 
give negative results with human student. We have used appropriately chosen ANNs 
to simulate students in our work. 
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Fig. 3. Block diagram of training phase of the student using ITS with RL. 

 
 
4      Experiments 
 
 
We have developed an ITS to teach pattern classification problem. In our case, 
pattern classification problem is that the student has to classify the pattern (question) 
given to him. This problem is selected for validating the approach using ANNs, 
though this is not directly relevant to teaching children. Appropriate question banks 
should be developed to teach human students.  
 

In pattern classification problem, the knowledge base contains two 
dimensional patterns from four classes, A, B, C and D, as shown in Fig. 4.  The 
classes are selected in such a way that if a random action is selected, the probability 
of selecting the pattern from class A is more than from the other classes. The target 
output for ANN is a four dimensional vector, for example, [1 0 0 0] is the target for 
class A, [0 1 0 0] is for class B, and so on. 
 

On-line training and testing have been performed on the ANN. The response 
(output) of ANN is classified into correct (1) and wrong (0) answers. For example, if 
the target of training question is [0 0 1 0] and if the third output of the ANN is higher 
than all other outputs then the response is considered as correct, else wrong. The 
summary of the ANN's response for past 300 questions and the history of responses 
for past 50 questions are considered for a state of the ANN. 
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Fig.4. Knowledge base of pattern classes 

Among the past 300 questions, let AN be the number of questions asked from 
class A. Let ACN  and AWN  be the number of correct answers and wrong answers 
for AN  , respectively. Similarly, let DCDCWCCCBWBCB NNNNNNNN ,,,,,,, and 

DWN  be the number of questions asked, correct answers and wrong answers from 
classes B, C and D, respectively. Let ix be the thi question in an episode. Let jiz − , 

501 ≤≤ j , be the answer for jix − question. Then the state of the ANN is  classes 

These four form an action set, )(sA , for the RL agent. It selects a question from the 
knowledge base, through policy and ANN is tested with that question. The negative 
of the Mean Square Error (MSE) of the output of ANN is given as a reward for the 
RL agent. The same question is used to train the ANN, and the output is used to find 
the next state of the ANN. This procedure is repeated for 25 episodes, each episode 
containing 2000 questions. These experiments are done on normal ANN and on 
ANN model of autistic student. 
 
4.1      RL algorithm 
 
For training of the RL agent, a slightly modified version of Watkin's Q-learning with 
backpropagation [2] is used. An ANN with single hidden layer is used to learn the 

),( asQ  function. The number of input neurons is equal to the dimension of the state, 
hidden layer contains number of neurons required for feature extraction and number 
of output neurons equal to the number of actions taken. In this case, we have 72 
dimension states, feature size is 80 and 4 actions to be taken. 
 
 
 
 
 
 

]...[ 1149495050 −−−−−− iiiiiiDWDCDCWCCCBWBCBAWACA zxzxzxNNNNNNNNNNNN
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Activation function for the hidden units is the approximate Gaussian function. 
Let id  be the squared distance between the current input vector, s , and the weights 
in the hidden unit,  j. Then, 
 
 

                                                                                                                (4) 
 

 
Where, is  is the thi  component of s at current time and jiw are the weights of 
hidden layer. The output, iy  , of hidden unit  j is 
 
 
 
 
                                                                                                                                                                                             
  
Where ρ controls the radius of the region in which the unit's output is nonzero and 
α  controls the position of the RBFs in the state space. 
 

Actions are selected ε -greedily, to explore the effect of each action. To 
update all weights, error back-propagation is applied at each step using the following 
temporal-difference error 
 
 
 
 

Let jlv  be the weights of the thl  output neuron. Then weights are updated 
by the following equations, assuming unit k is the output unit corresponding to the 
action taken, and all variables are for the current time t. 
 
 
 
 
 
 

)',( 1 asQ t+ , )(' sAa ∈∀ , is the product of updated kjv ,  and the output of function 
approximator, iy . 
 
 
5   Results 
 
The results in Fig. 5 and 6 are obtained for ε =0.2, which means the 
exploration is done for 20% of the questions. The other parameters are, β =1.0 and 
α =200.  
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Fig. 5(a) shows the average percentage classification for first 500 questions 
selected for the normal ANN with 5 hidden layer neurons, without ITS and with ITS. 
Classification of ANN without ITS is around 26%, which is much less than that 
compared to the classification of ANN with ITS, which is around 70%. Fig. 5(b) 
shows the histogram of actions taken by ITS. The uniform distribution of the actions 
shows that the ITS is not stuck in the local optima. ITS selects an action depending 
on the present state of the student, to increase the future classification rate of the 
ANN.  
 

 
Fig. 5. (a) Percentage classification (left figure) by ANN model of normal student 
(learning rate 0.2). (b) Histogram (right figure) of actions taken by RL agent, 
averaged over episodes. (0, 1, 2 and 3 represent classes A, B, C, and D respectively). 
 

 
Fig. 6. (a) Percentage classification (left figure) by ANN model of an autistic child 
(learning rate 0.2). (b) Histogram (right figure) of actions taken by RL agent (0, 1, 2 
and 3 represent classes A, B, C, and D respectively) 
 
 
 
 
 
 
 



Intelligent Tutoring Systems using Reinforcement Learning to teach Autistic Students
 

Fig. 7. (a) Percentage classification by ANN model of autistic student with learning 
rates 0.2, 0.4, 0.6 and 0.8 for classes 0, 1, 2, and 3, respectively. (b) Histogram of 
actions taken by RL agent, averaged over episodes (0, 1, 2 and 3 represent classes 
A,B,C, and D respectively)  
 

Fig. 8. (a) Percentage classification by ANN model of normal student with learning 
rates 0.8, 0.6, 0.4 and 0.2 for classes 0,1,2 and 3 respectively (b) Histogram of 
actions taken by RL agent, averaged over episodes (0,1,2 and 3 represent classes 
A,B,C, and D respectively) 

 

 
 

 
 
 
 

Fig. 9 (a) Percentage classification by ANN model of normal student with learning 
rates 0.8, 0.6, 0.2 and 0.4 for classes 0, 1, 2, and 3 respectively (b) Histogram of 
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actions taken by RL agent, averaged over episodes (0,1,2 and 3 represent classes 
A,B,C, and D respectively) 
 

 

 

Fig. 20 (a) Percentage classification by ANN model of normal student with learning 
rates 0.8, 0.2, 0.6 and 0.4 for classes 0, 1, 2, and 3 respectively (b) Histogram of 
actions taken by RL agent, averaged over episodes (0,1,2 and 3 represent classes 
A,B,C, and D respectively) 
 

The goal was to develop an ITS capable of adapting to large deviations from 
normal learning behavior. So, we have simulated models of both autistic student and 
normal student by selecting more neurons (15 neurons) in the hidden layer than that 
required (5 neurons, normal behavior) for capturing the information in the input 
patterns. We have evaluated the ITS using these simulated models. Fig. 6(a) shows 
the classification rate for ANN model for autistic student, with ITS and without ITS. 
Classification rate of autistic model can be compared with that of the normal ANN. 
In both cases, the percentage classification is approaching the same value (70%), 
indicating the autistic student can be taught effectively using ITS. But autistic 
student needs more number of questions (around 175 questions) to learn, than that 
required for a normal student (around 50 questions). Fig. 6(b) gives the histogram of 
actions taken by RL agent for the ANN model of autistic student.  
 

The policy learned by the ITS seemed to be picking actions at random, 
uniformly from all the 4 classes. Though this is the desired behavior, we cannot be 
entirely sure that this was learned. So we tried different experiments which have 
different desired behaviors. For example, experiments where the student had 
different learning rates like 0.2, 0.4, 0.6 and 0.8 for classes A, B, C, and D 
respectively. The ITS learned the appropriate mix of actions to take, as shown in Fig. 
7(b). Fig. 7(a) shows the classification performance of such combination. For other 
combinations of learning rate, similar learned behavior was observed as shown in 
Fig. 8, 9 and 10.   
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6     Conclusions and Future Work 
 
Sections 4 and 5 presented the experiments performed to test the application of RL 
for ITS to teach an autistic student. We conclude that, by considering the history and 
summary of past few questions as state variables, an autistic student can be taught as 
effectively as a normal student. 
 

We are now concentrating on improving the present ITS using the hierarchical 
framework [3]. In a hierarchical framework, entire knowledge base is divided into 
lessons and each lesson is divided into different categories. The RL agent has to 
learn two policies, one for picking a lesson and the other for picking a categories 
within the lesson, which is expected to improve the performance of the ITS.  
 

This can be extended to real world problems like teaching mathematics, where 
selection of state variables and action variables is much more difficult task. In this 
paper, we used the history of past 50 questions and summary of past 300 questions as 
state variables. But in real world situation, we can consider the variables like the 
amount of time taken by the student to answer a question, history of hints the student 
requested. More work can be done in selecting state variables, which can improve, 
not only the percentage classification but also the learning rate. In this case, we have 
to consider which type of questions form a group, for example, easy questions form a 
group and tough questions form another group.  
 

Other applications of our work include pattern synthesis and active learning. 
Pattern synthesis is the process of generating patterns for training and testing a 
machine. In our case, the two dimensional data generated as a question can be 
considered as the pattern synthesis problem. Active learning is the "learning with 
examples" [7]. This is a closed-loop phenomenon of a learner asking questions that 
can influence the data added to its training examples. In the case of ITS, the student 
has the facility to ask for hints for improving his knowledge on the topic, this can be 
considered as active learning. Active learning provides greatest reward in situations 
where data are expensive or difficult to obtain. 
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