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Abstract. In recent years, a handful of anonymity metrics have been
proposed that are either based on (i) the number participants in the given
scenario, (ii) the probability distribution in an anonymous network re-
garding which participant is the sender / receiver, or (iii) a combination
thereof. In this paper, we discuss elementary properties of metrics in gen-
eral and anonymity metrics in particular, and then evaluate the behavior
of a set of state-of-the-art anonymity metrics when applied in a number
of scenarios. On the basis of this evaluation and basic measurement the-
ory, we also define criteria for anonymity metrics and show that none of
the studied metrics fulfill all criteria. Lastly, based on previous work on
entropy-based anonymity metrics, as well as on theories on the effective
support size of the entropy function and on Huffman codes, we propose
an alternative metric – the scaled anonymity set size – that fulfills these
criteria.

1 Introduction

Anonymity can be defined as follows: “anonymity of a subject from an at-
tacker’s perspective means that the attacker cannot sufficiently identify the sub-
ject within a set of subjects, the anonymity set” [12]. This definition underlines
both that anonymity can be quantified on a relative scale and that there might
be a (situation-dependent) threshold where anonymity begins. Anonymity both
involves (i) maintaining unlinkability between user / application data and the
corresponding user with whom these data is concerned (data level anonymity)
and (ii) hiding with whom a user is communicating (communication level anony-
mity). Sender anonymity means that a message cannot be linked to the sender
of that message, while recipient anonymity implies that a message cannot be
linked to the receiver(s) of that message [12]. The scope of the paper is limited
to sender anonymity, although most ideas are valid also for recipient anonymity.

This paper discusses anonymity metrics, metrics that can be applied to mea-
sure the degree of anonymity in a certain scenario. State-of-the-art anonymity
metrics are normally based on either (i) the number participants in the given sce-
nario, (ii) the probability distribution in an anonymous network regarding which
participant is the sender / receiver, or (iii) a combination thereof. In this paper,
we first discuss the basics of measurements and anonymity metrics. Then, a ba-
sic model for anonymity attacks is proposed and some recent anonymity metrics
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are presented. Thereafter, we define a set of “typical” scenarios for anonymous
communication and quantify the degree of anonymity in these scenarios using
the earlier introduced metrics. In the scenarios, the Crowds [14] system, a the-
oretically well studied and intuitive protocol, is used for providing anonymous
communication. On the basis of this evaluation of the scenarios – and taking el-
ementary properties of each anonymity metric into account – we thereafter pro-
pose a set of criteria that an anonymity metric should meet and assess whether
the studied anonymity metrics fulfill these criteria.

A result from the evaluation of the criteria is that although some metrics
fulfill most criteria, there is no anonymity metric that fulfill all criteria. Using
existing entropy-based anonymity metrics [4, ?] as a starting point, we therefore
propose and evaluate an alternative anonymity metric that better fulfills the
stated criteria. We denote this anonymity metric the scaled anonymity set size,
and to explain the underlying semantics of this metric, we use concepts such as
Huffman codes / Huffman trees [3] and the effective support size of the entropy
function [9].

This paper has the following structure. Section 2 introduces Crowds and
presents a model for anonymity attacks. It also explains the basics of mea-
surements and introduces a set of state-of-the-art anonymity metrics. Section
3 evaluates the behavior of these anonymity metrics when applied in a number
of scenarios using the Crowds system. This section also proposes a set of crite-
ria for anonymity metrics and evaluates the studied anonymity metrics against
these criteria. As no metric fulfills all criteria, Section 4 proposes and explains
an alternative entropy-based metric designed to meet these criteria – the scaled
anonymity set size. Finally, Section 5 concludes the paper.

2 Preliminaries

2.1 Introduction to Crowds

This paper later presents four scenarios building on the Crowds system [14] –
a mechanism for anonymous web browsing based on traffic forwarding through
virtual paths. For this reason, this section contains a brief description of Crowds.
The anonymity set in Crowds is denoted a crowd, and all users in the crowd run
a jondo application. Also, a blender application administrates user membership
and key distribution. Paths in Crowds are created randomly: first, a user extends
the path to a random jondo, which, in turn, flips a biased coin (based on the
probability of forwarding, pf ) to determine whether the path should be ended
(i.e., the request is submitted to the web server), or extended to another jondo
which repeats the same procedure.

2.2 A Model for Anonymity Attacks

An anonymity attack entails an attacker A trying to uniquely link an observed
message (or set of messages)M to a user ui in the anonymity set U = {u1, u2, ...,
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un} by gathering knowledge about the system, the user base U , and M. Each
of these entities have a set of attribute types / values. The system has attributes
such as ai = {application, “Crowds”} and aj = {pf , 3

4}. One essential attribute in
the system is the probability distribution P = (p1, p2, . . . , pn), where pi denotes
the probability that ui is the sender ofM. U has attribute sets about its users (or
their devices), such as ai = {name, “Bob”} and aj ={IP, 192.168.10.20}. Lastly,
M shares several attribute types with U , although they are initially empty. Now,
an anonymity attack can be described as follows:

1. Initially, A can be assumed to know at least the public parameters of the
system and some information about the users in U .1 A initially possess no
knowledge about the sender. Hence, P is initially uniform.

2. Now, A’s objective is to either passively observe or actively trigger events
to learn information about M. The triggering can be accomplished using
arbitrary active attacks, such as a predecessor [18], intersection [13], or Sybil
attack [6]. If A is successful, the events may enable him to learn one or more
attribute values ofM’s attribute types, or at least restrict the corresponding
value domains.

3. Then, A analyzes the collected attribute values of M, together with the
attributes of the system and the users in U . A’s objective is to calculate
a new (less uniform) P ′. The way P ′ is calculated varies from scenario to
scenario; in the included scenarios we base our calculations on the internal
structure of Crowds [14].

4. A’s goal is to map a single user in U to M. Depending on P ′, there are three
possible next steps: (i) if there is a pi ∈ P ′ that is equal (or very close) to
1, the attacker succeeds; (ii) if any of A’s resources are exhausted, he fails;
else (iii) if P ′ cannot bind one ui to M with a specifically large likelihood,
repeat step two.

When assessing a system’s resistance against anonymity attacks, an analyst
can simulate these steps. In step three, the analyst can use an anonymity metric
to determine the degree of anonymity. In the next section, we discuss the basics
of measurement and anonymity metrics and give examples of anonymity metrics.

2.3 Anonymity Metrics

The Basics of Measurements. Measurement can be defined as “a mapping
from the empirical world to the formal, relational world. Consequently, a mea-
sure is the number or symbol assigned to an entity by this mapping in order to
characterize an attribute” where “the real world is the domain of the mapping,
and the mathematical world is the range” [7]. One important rule is the repre-
sentation condition which asserts that “a measurement mapping M must map
entities into numbers and empirical relations into numerical relations in such a
way that the empirical relations preserve and are preserved by the numerical
relations” [7]. Lastly, a metric is a standard of measurement.

1Compare for example with the information distributed by the blender in
Crowds [14].



306 Christer Andersson and Reine Lundin

Introduction to Anonymity Metrics. An anonymity metric is a mapping
from the empirical world (the domain) to the mathematical world (the range),
in which numbers or symbols are assigned to entities in a system to describe
the degree of anonymity. The domain is the knowledge of the attacker A about
the studied entities in the real world – the system and its anonymity set U =
{u1, u2, ..., un}. A may both be a real attacker or a model defined to test the
resistance of a system against anonymity attacks. The system can both be a
real world instance or a theoretical model. The mapping itself can be seen as
a function behaving according to set of rules. An important parameter in the
mapping is the probability distribution vector P = (p1, p2, ..., pn) among the
users in U regarding which user is the sender in a communication. Finally, the
range is the set of possible values from the mapping. Here, there are many
options, as different anonymity metrics use different units for presenting the
degree of anonymity.

Examples of Anonymity Metrics. Below, we introduce some common met-
rics.

– Anonymity set size: a classic degree is the anonymity set size, |U| = n. The
concept of anonymity set was introduced in [2].

– Crowds-based metric: in this metric, the degree of anonymity Ai of a user
ui is measured on a continuum between provably exposed (0) and absolute

privacy2 (1), were Ai = 1 − pi = p̄i [14] (pi is the probability that ui

is the sender). The continuum includes the intermediary points: possible

innocence (the probability that ui is not the sender is non-negligible, thus
Ai ≥ 0+ δ, where δ > 0); probable innocence (pi that ui is the sender is less
than 1/2, thus Ai ≥ 1/2); and beyond suspicion (ui is not more likely than
any other uj ∈ U to be the sender, and thus Ai = max{A1, A2, ..., Ai, ..., An}
among U).

– Source-hiding property: here, Θ is defined as the greatest probability you can
assign to any user ui of being the sender of a message, thus Θ = max(P) [17].
Naturally, 1

n ≤ Θ ≤ 1, where Θ = 1
n denotes maximum anonymity.

– Entropy-based metrics: in Serjantov /Danezis’s metric [15], “the effective
anonymity set size” S is defined as the Shannon entropy H(P) [16] regard-
ing which user in U sent a message, with S = −

∑n
i=1 pilog2(pi), where

0 ≤ S ≤ log2(n). Dı́az et al. [4] instead calculate the degree of anonymity
d = H(P)

log2(n) , where 0 ≤ d ≤ 1. Both S and d output a max degree of anony-
mity when P equals the uniform distribution.

2.4 Measuring the Uniformness of Probability Distributions

To study how an anonymity metric behaves when the probability distribution P
change, a function d(P, U) is needed, where U is the uniform distribution. Such

2The latter means that the attacker cannot distinguish between a situation where a
potential sender participated in a communication and a situation where he did not [14].
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a function d(P, U) should by some means quantify the distance (or quotient)
between P and U . There are several alternatives for d(P, U), such as d(P, U) =
H(U)−H(P) or d(P, U) = H(P)

H(U) . Another option that we think could be used as
well is to calculate d(P, U) as the Euclidean distance (ED) in n-space, according
to the following:

d(P, U) =

√√√√ n∑
i=1

(pi −
1
n

)2 (1)

Here, 1
n is the probability assigned to each of

the n users for the uniform distribution. Intu-
itively, Equation (1) outputs the ordinary dis-
tance between the two points P and U when
they are plotted in an n-dimensional space,

where 0 ≤ d(P, U) ≤
√(n(n−1)

n2

)
. For n → ∞,(n(n−1)

n2

)1/2 approaches 1. In Figure 1 to the
right, ED in 2-space is plotted for one example
distribution P = ( 2

3 , 1
3 ).

Fig. 1. ED in 2-space be-
tween
P = ( 2

3
, 1

3
) and U = ( 1

2
, 1

2
).

3 Evaluation of Anonymity Metrics

This section evaluates the degree of anonymity in a set of example scenarios using
Crowds [14]. The scenarios involves a user communicating with an external web
server through the Crowds network. The following parameters are varied in the
scenarios: the number of users n, the number of rogue users c (where c < n),
and pf :

– In scenario one, n = 10, c = 1, and pf = 11/20;
– In scenario two, n = 1000, c = 10, and pf = 11/20;
– In scenario three, n = 1000, c = 200, and pf = 11/20;
– In scenario four, n = 1000, c = 200, and pf = 3/4.

Attacker Model. As Crowds does not provide anonymity against global observers
or eavesdroppers directly observing the sender [14], we omit these entities from
the attacker model, and instead only include (i) the c corrupted users and (ii)
the web server. In the analysis, we assume that a corrupted user is succeeding
the sender in the path.

3.1 Anonymity Evaluations

Below, we evaluate the erlier scenarios against the metrics introduced in Sec-
tion 2.3. We provide the details of the calculations only for scenario one. For
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the entropy-based metrics and the source-hiding property, we need the prob-
ability distribution P. From the perspective of the c corrupted users, P =
(0.56, 0.44

8 , 0.44
8 , 0.44

8 , 0.44
8 , 0.44

8 , 0.44
8 , 0.44

8 , 0.44
8 , 0), while from the perspective of

the web server P is uniform. The probability pi = 0.56 is calculated as: pi =
n−pf (n−c−1)

n = 10−0.55∗8
10 = 0.56 [14].

– Anonymity set size: against the web server, this metric yields |U| = 10 for
S1 and |U| = 1000 for S2 − S4. The corrupted users only count the honest
users U ′ = U − c. Thus, in this case |U ′| = 9 (S1), |U ′| = 990 (S2), and
|U ′| = 800 (S3, S4).

– Crowds-based metric: Ai against the web server is beyond suspicion, as all
users in U are equally likely of being the sender. If expressing Ai as 1−pi, we
get Ai = 9

10 , as pi that any ui is the sender is 1
10 . Assuming that one of the

c corrupted users succeeds the user ui in the path, Ai against the corrupted
users is possible innocence. This is because the following inequality does
not hold [14]: n ≥ pf

(pf−1/2) ∗ (c + 1). Instead, the corrupted users can say
with pi = 0.56 that ui is the sender (i.e., Ai = 1− pi = 0.44).

– Entropy-based metrics: according to Serjantov / Danezis [15], the effective
anonymity set size against the corrupted users is calculated as S = −

∑n
i=1(

pi ∗ log2pi) = 1.83477 ≈ 1.83 bits. According to the metric proposed by Dı́az
et al. [4], the degree of anonymity is instead calculated as d = H(P)

log2(n) ≈ 0.55.
Regarding the web server, Dı́az et al.’s metric gives us d = 1, as P is uniform.
Using Serjantov / Danezis’s metric, we get S ≈ 3.32 bits.

– The source-hiding property: the greatest pi the corrupted users can assign
to any ui is max(P) = 0.56, and thus Θ = 0.56. Against the web server,
Θ = max(P) = 1

10 .

In Table 1, we list the degrees of anonymity for the above scenarios. For com-
parison, we also include d(P, U) according to the Euclidean distance in n-space.

Table 1: Anonymity evaluation of scenarios (incl. Euclidean dis-
tance).

Scen. c corrupted users Web server

Anonymity S1 |U| = 9 |U| = 10

set size S2 |U| = 990 |U| = 1000

S3 & S4 |U| = 800 |U| = 1000

Crowds- S1 & S3 possible innocence beyond suspicion

based m. S2 & S4 probable innocence beyond suspicion

Entropy- S1 S = 1.83 bits S = 3.32 bits

based S2 S = 6.37 bits S = 9.97 bits

metric S3 S = 5.23 bits S = 9.97 bits

(Serjantov /Danezis) S4 S = 6.75 bits S = 9.97 bits

Entropy- S1 d = 0.55 d = 1

based S2 d = 0.63 d = 1
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metric S3 d = 0.52 d = 1

(Dı́az et al.) S4 d = 0.68 d = 1

Source- S1 Θ = 0.56 Θ = 1/10

hiding S2 Θ = 0.46 Θ = 1/1000

property S3 Θ = 0.56 Θ = 1/1000

S4 Θ = 0.40 Θ = 1/1000

Euclidean- S1
d(P, U) = 0.49 (max:

0.95)
d(P, U) = 0

distance in S2
d(P, U) = 0.46 (max:

0.995)
d(P, U) = 0

in n-space S3
d(P, U) = 0.56 (max:

0.995)
d(P, U) = 0

S4
d(P, U) = 0.40 (max:

0.995)
d(P, U) = 0

Some Observations from the Evaluation Results:

– All metrics except the anonymity set size consider probabilities. This is evi-
dent in the results as the difference in the degree of anonymity against the
corrupted users and the web server is much less significant for the anonymity
set size.

– Although stated in [15], we do not think that Serjantov / Danezis’s metrics
reflect the “effective anonymity set size” (as the endpoints do not overlap
with those of the anonymity set size metric). We also think that the max
anonymity (given n) should be made explicit. That is, S could be expressed
as H(P ) out of log2(n) bits.

– Against the corrupted users, most metrics yielded the highest anonymity in
S4.

– d(P, U) according to the Euclidean distance in n-space seems to be fairly
alike measuring distance based on entropy, although not exactly similar.
Further analysis on the deviation between these different measures of d(P, U)
is left as future research.

3.2 Criteria for Anonymity Metrics

As it is essential that an anonymity metric gives an accurate picture about the
degree of anonymity, we below state a set of criteria that an anonymity metric
should meet.

– A user can be said to be de-anonymized when an attacker can, beyond rea-
sonable doubt, pinpoint a user as the sender of an observed communication
(step 3 in Section 2.2). Thus, the analyst must, in one way or another, con-
sider probabilities.

⇒ C1: An anonymity metric should base its analysis on probabilities.
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– The endpoints in an anonymity metric are “no anonymity” and “max anony-
mity”. The meaning of ’max anonymity’ can differ between different metrics.
In metrics solely based on P, max anonymity occurs when P is uniform and
no anonymity occurs if: ∃pi ∈ P ; pi >> max{P − pj}, where pi 6= pj . A
uniform P would yield (a special case of) beyond suspicion in the Crowds-
based metric for any ui ∈ U . Yet, max anonymity for ui in the Crowds-based
metric – absolute privacy – does not correspond to max entropy, as pi = 0
for ui, and thus P is not uniform. Still, an anonymity metric should model
these two endpoints in a theoretically sound manner.

⇒ C2: An anonymity metric must have well defined and intuitive
endpoints.

– Intuitively, the more uniform the P, the more uncertain the attacker is. A
metric should preserve this relation (recall the representation condition [13]).
Thus, a degree of anonymity should increase if the uniformness of P in-
creases, and vice versa.

⇒ C3: The more uniform the distribution P, the higher the anony-
mity.

– Assuming an unchanged uniformity of P: the more the (honest) users in
U , the more the potential senders, and thus the higher the attacker’s uncer-
tainty. A metric should preserve this relation according to the representation
condition. Thus, the degree of anonymity should increase if the number of
users increases, and vice versa.

⇒ C4: The more the users in the anonymity set, the higher the ano-
nymity.

– By studying the degree of anonymity in a scenario, an analyst should be
able to judge where in between the two endpoints (no & max anonymity)
the current degree is. Thus, all values in the value domain of an anonymity
metric should be well defined.

⇒ C5: The elements in the metric’s value domain should be well
defined.

– An anonymity metric should use a scale preserving the ordering among el-
ements, such as ordinal, interval, ratio, or absolute scale [13]. Further, it
should be fined-grained enough to differ between seemingly similar, but not
equivalent, scenarios.

⇒ C6: The value range of the metric should be ordered and not too
coarse.

Next, we evaluate the aforementioned anonymity metrics against these cri-
teria.

3.3 Evaluation of Anonymity Metrics against Criteria

In Table 2, we assess whether the studied metrics fulfill the earlier stated criteria.
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Table 2: Evaluation against criteria.

Anonymity C1 - Neither |U| = n nor log2(|U|) consider (dynamic) probabilities.

set
size C2 -

As this is an absolute measure, the metric always outputs n,
which can vary between 1 and ∞. Difficult to state a “good-
enough” value for n.metric

C3 - Not fulfilled, as this metric does not consider probabilities.

C4 + Fulfilled, as the degree of anonymity is |U| = n.

C5 + n simply entails the number of users in the anonymity set (|U|).
C6 + Fulfilled, as this metric uses absolute scale.

Crowds- C1 +
Fulfilled, as output corresponds directly to the probability of
being the sender an attacker can assign to the sending user in a
system.

based
C2 +

The metric varies between provably exposed and absolute privacy,
where each intermediary category is semantically mapped to
probabilities.metric

C3 - Not always true as individual probabilities are quantified.

C4 +
In general fulfilled, assuming that the corresponding pi > 0.
Specifically, increasing n helps fulfilling n ≥ pf

(pf−1/2)
∗ (c+1) in

the scenarios.

C5 +
Categories are based on the underlying probability of being the
sender.

C6 - Although ordinal scale is used, the output is fairly coarse.

Entropy- C1 + Based on the entropy of the probability distribution.

based C2 -
The endpoints are 0 and log2(n). The latter is hard to calculate
by hand.

metric C3 + Fulfilled, if we assume d(P, U) = H(U)−H(P).

(Serjantov C4 +
Fulfilled. Note that the maximum increases with an increasing
n.

/Danezis) C5 -
States that an attacker on average has to find the answer for at
least H(P ) binary questions to identity the sender which is not
perfectly intuitive.

C6 + This criterion is fulfilled as ratio scale is used.

Entropy- C1 + Based on the entropy of the probability distribution.

based C2 + Clear endpoints: 0 (no anonymity) and 1 (max anonymity).

metric C3 + Fulfilled, if we assume d(P, U) = H(P)
H(U)

.

(Dı́az et al.) C4 - This criterion is not fulfilled, as the resulting d is normalized.

C5 +
Easy to interpret as d denotes the quotient between H(P) and
H(U).

C6 + This criterion is fulfilled as ratio scale is used.

Source- C1 +
Θ is directly based on the greatest probability in P, as Θ =
max(P).

hiding C2 -
The use of an inverted scale is somewhat confusing (best case:
Θ = 0).

property
C3 -

Although it can be expected to be true in many real scenar-
ios, it may not coincide as the output is merely an individual
probability.

C4 + Fulfilled, assuming corresponding pi > 0 for added users.
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C5 +

Θ is the max probability (of being the sender) any user in the
anonymity set can be assigned of by the attacker. In real scenar-
ios, it will probably often overlap with the probability assigned
to the real sender.

C6 + This criterion is fulfilled as ratio scale is used.

We can note in Table 2 above that no metric fulfill all criteria.

4 The Scaled Anonymity Set Size Metric

In Section 3.3, we saw that no anonymity metric fulfilled all criteria. For this
reason, this section proposes an alternative entropy-based anonymity metric –
the scaled anonymity set size metric – that is designed to fulfill these criteria.

Definition 1. The scaled anonymity set size for a given distribution P is defined
as:

A = 2H(P) (2)

Equation (2) increases with an increasing uniformity of P and varies between
1 (when ∃pi ∈ P ; pi = 1) and n = |U| (when P is uniform). The endpoints are
intuitive as max(A) = n equals the the actual size of the anonymity set and
min(A) = 1 denotes a singleton set (i.e., the sender is identified). In the next
sections, the underlying semantics of the scaled anonymity set size are explained.
In particular, we show that H(P) denotes a lower bound for the average number
of yes-no questions an attacker needs to answer to identity the sender; thus,
2H(P) is the the expected number of possible outcomes – or the effective support
size of H(P) (see below) – given this lower bound.

4.1 Theoretical Background

This section elaborates on the underlying semantics of the scaled anonymity set
size by relating H(P) and 2H(P) to concepts such as Huffman codes, Huffman
trees, expected number of questions (EQ), and the effective support size of the
entropy (ESS).

Source codes and optimality. A source code is a mapping that assigns short
descriptions (code words) to the most frequent outcomes of a data source (i.e.,
a random variable) and longer descriptions to less frequent outcomes. Source
codes are often used in, e.g., data compression. Formally, the data source outputs
symbols from an alphabet, where each symbol is associated with a weight stating
the probability that it will be the next produced symbol by the data source.
An optimal source code yields code words of minimum average length3. The
following holds for optimal source codes, where L is the average length of the

3For more information on source codes and conditions for optimality, see for instance
[3].
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code words and H(P) is the entropy of the probability distribution P (i.e., the
weights) over the possible outcomes of the data source [16].

H(P) ≤ L < H(P) + 1 (3)

Huffman codes. A classical optimal source code is the Huffman code [10]. The
basic technique for producing Huffman codes is to create a binary tree, called
a Huffman tree, from which the set of code words can be derived4. Each leaf in
the tree corresponds to one possible outcome from the data source, and the code
word corresponding to the data source is retrieved by traversing the tree from
the root note to the given leaf node, while adding ’0’ to the code if a left branch
is selected and ’1’ if a right branch is selected. See Figure 2 for an illustration,
where the grey leaf nodes represent the possible outcomes and the digits to the
left of the colons in the branch labels above the leaf nodes denote the respective
code words for these possible outcomes.

The game of 20 questions and its relation to Huffman codes. In [3], the
game of 20 questions is defined as the act of finding the most efficient series of
yes-no questions to determine an object from a class of objects (assuming that
we know the probability distribution P on the objects). It is shown in [3] that an
optimal solution to this game is to create a Huffman tree based on P where the
objects constitute the leaf nodes. Then, the strategy is to traverse the Huffman
tree from the root node, and at each intermediary node ask the question “Is the
sought object below the left branch or right branch?”. Using this strategy, the
average number of questions needed to identify the object, EQ, will coincide
with the expected length L of the Huffman code (where the latter is determined
by traversing the Huffman tree). Thus, Equation (3) can be rewritten as:

H(P) ≤ EQ < H(P) + 1 (4)

Anonymity attacks and their relation to Huffman codes. The game of
20 questions (see above) corresponds directly to a situation when an anonymity
attacker is trying to single out a sender from a group of users by using an optimal
divide-and-conquer strategy on the user sets (i.e., binary search). If we assume
that the attacker has derived P, he can use the following strategy to identify
the sender. First, he creates a Huffman tree, where the users in U constitute the
leaf nodes in the tree (see Figure 2). The attacker then starts at the root node
in the tree. Now, he needs to answer a series of yes-no questions of the type “is
the sender in the group of users in the subtree below the left branch or below
the right branch”. By answering a certain number of such yes-no questions, the
attacker will eventually end up in one of the leaf nodes in the tree, and now
the sender is identified as the user corresponding to the current leaf node. As
with the game of 20 questions, the expected number of yes-no questions that the
attacker needs to answer, EQ, is bounded by H(P) according to Equation (4).

4For more information on Huffman codes and Huffman trees, see for instance [3].
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Support size and effective support size. In coding theory, the support
size of a variable X with a probability distribution P is denoted S(P). The
support size is the size of the value domain of X (only counting outcomes whose
corresponding pi ∈ P are greater than zero). For example, if X is the outcome
of a toss of a coin, S(P) = 2. The support size is not affected by changes in P
as long as the indvidual probabilities are not set to zero. If, for example, the
coin was manipulated so that P ′ = ( 1

10 , 9
100 ), S(P ′) would still yield two. On the

other hand, the effective support size (ESS) for a variable X with probability
distribution P outputs a value in the range 1 ≤ ESS(P) ≤ S(P), depending
on the degree of uniformity of P, where ESS(X) = 1 if ∃pi ∈ P; pi = 1 and
ESS(P) = S(P) if P is uniform [9]. Grendar showed that it is appropriate to
define ESS(P) = exp (H(P)) for arbitrary log bases (and thus ESS(P) = 2H(P)

for log base two) [9]. The latter definition corresponds to the definition of the
scaled anonymity set size metric. According to Grendar, ESS(P) has a more
natural meaning than the entropy H(P), at least in the realms of statistics and
probabilities.

On the semantics of the scaled anonymity set size. Above, we stated
that the scaled anonymity set size represents the expected number of possible
outcomes (alternatively: effective support size) given H(P), which, in turn, is
a lower bound for EQ – the expected number of yes-no questions an attacker
needs to answer to identify the sender. This section presents a more intuitive
explanation of the scaled anonymity set size. First, however, we prove the well
known obsevation that the entropy of a variable X1 with distribution P, where
|X1| = n, equals the entropy of a variable X2 with a uniform distribution, where
|X2| = 2H(P). Below, we state this property more formally in the context of
anonymous communication (to improve clarity, the size of the user base is added
as a parameter in the entropy expression for the remainder of this subsection).

Theorem 1. The entropy H(P, n) of a probability distribution P over a user
base U with n participants is equivalent to the entropy H(U, n′) of the uniform
distribution U over a user base U ′ with n′ = 2H(P,n) participants.

Proof. 5

The entropy H(P, n) in a user base U with n participants can be expressed
as:

H(P, n) = −
n∑

i=1

pilog2(pi) (5)

Now, H(U, n′) in a user base U ′ with n′ = 2H(P) participants can be expressed
as:

5This proof holds when 2H(P,n′) is an integer. Using differential entropy, Theorem
(1) can be proved in a similar manner also for decimal numbers.
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H(U, n′) = −
n′∑

i=1

uilog2(ui) = (6)

−
2H(P,n)∑

i=1

2−H(P,n)log2(2−H(P,n)) = (7)

H(P, n)2−H(P,n)
2H(P,n)∑

i=1

1 = H(P, n) (8)

Upon the basis of Theorem 1 and its proof, we can state the following theo-
rem.

Theorem 2. The degree of anonymity according to the scaled anonymity set size
in a user base U with n participants, A = 2H(P,n), is equivalent to the degree of
anonymity A = 2H(U),n′ in a user base U ′ with n′ = 2H(P,n) participants, hence
A = 2H(P,n) = 2H(U,n′) = n′.

Proof. This follows trivially from: H(P, n) = H(U, n′) ⇒ 2H(P,n) = 2H(U,n′) =
n′.

Informally, this means that a sender that participates in a communication
where, for instance, A = 10 according to the scaled anonymity set size metric is
as anonymous as he would be in a group of 10 users, where all users are equally
likely of being the origin sender (regardless of the size of the original user base).

On the relationship between A = 2H(P) and EQ. Finally, to express a
relation between A = 2H(P), ESS(P), and EQ, we can rewrite Equation (4) as:

2H(P) ≤ 2EQ < 2H(P)+1 ⇒ 2H(P) ≤ 2EQ < 2 ∗ 2H(P) (9)

From Equation (9) it follows that 1 ≤ 2EQ < 2n, where n = |U|. Thus, the
theoretical minimum for the expected size of the solution space 2H(P) (or effective
support size) does not always match the actual expected solution space size 2EQ.
Yet, as 2H(P) ≤ 2EQ, the scaled anonymity set size never underestimates the
effort an attacker must undertake to identity the sender. Still, in situations when
EQ > H(P), you could argue that it (and all other metrics based on entropy)
“understates” the degree of anonymity, as in this case the theoretical minimum
cannot be reached (as EQ is optimal).

Concluding notes. Above, we showed that entropy (and the scaled anonymity
set size) are related to concepts such as optimal source codes and search trees,
and, further, that the entropy gives a lower bound for how difficult it is to
perform a binary search on the search space (see also [11] for more information).
This means that entropy is well suited for quantifying security or anonymity in
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cases when the attacker conducts a binary search on the search space (i.e., uses
a divide-and-conquer strategy), but it may be questionable whether entropy is
a good measure in cases when the attacker conducts, e.g., a linear search on the
search space (similar to a brute force attack). We suspect that in the context
of anonymity attacks, the attacker behaves more intelligently than a simple
(probability-based) linear search on the user base. Yet, we leave as future work
asserting whether a model for anonymity attacks (such as the one in Section 2.2)
corresponds to the anonymity attack based on Huffman codes described above.

4.2 Numerical Examples

Below follows two numerical examples in which we calculate the scaled anony-
mity set size and EQ. In these examples, we assume an attacker observing a
system with five users. The attacker conducts attacks and, based on the infor-
mation he learns from his attacks, calculates P regarding who is the sender in a
particular communication.

(a) Example one. (b) Example two

Fig. 2. Huffman trees for examples one and two. The numbers to the left of the colons
denote the probability for taking the given decision (left / right), while the right digits
represent the code for the current position in the tree (0 = left and 1 = right). The
leaf nodes represent the users.

Example one. Assuming that the attacker has calculated P = (pu1 = 1
2 , pu2 =

1
4 , pu3 = 1

8 , pu4 = 1
16 , pu5 = 1

16 ), H(P) = 1, 875, and A = 2H(P) = 21,875 =
3, 67 (max: 5). According to Equation (4), H(P) denotes a lower bound for the
expected number of yes-no questions the attacker needs to answer to identify
the sender, while the reachable expected number of questions is given by EQ.
The latter can be calculated by creating a Huffman tree based on P (left tree
in Figure 2). Then, EQ can be calculated by using basic probability theory as
EQ = 15

8 = 1, 875. Hence, in this example H(P ) = EQ.
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Example Two. In this example, the attacker has obtained the (uniform) dis-
tribution P = (pu1 = 1

5 , pu2 = 1
5 , pu3 = 1

5 , pu4 = 1
5 , pu5 = 1

5 ). Now, he can
determine H(P) ≈ 2, 32, EQ = 12

5 = 2, 4 (see the right Huffman tree in Figure
2), and A = 2H(P) = 22,32 = 5 (max: 5). Thus, the maximum degree of ano-
nymity is achieved in this example, and, contrary to the former example, the
entropy H(P) is here slightly lower than EQ.

4.3 Evaluation against Scenarios and Criteria

In Table 3, we calculate the degree of anonymity according to the scaled ano-
nymity set size metric for the four scenarios defined in Section 3, while in Table
4 the scaled anonymity set size metric is evaluated against the criteria defined
in Section 3.3. Table 3 shows that the ordering among the scenarios equals that
of the Serjantov /Danezis metric [15]. Yet, we argue that the linear scale in the
scaled anonymity set size metric more clearly shows that, e.g., A in scenario one
is far lower than in the other scenarios. Further, Table 4 shows that all criteria
are fulfilled for the scaled anonymity set size.

Table 3: Degrees of anonymity for the scaled anonymity set size.

Scen. c corrupted users Web server

Scaled S1
A = 2H(P) = 21.83 = 3.6 (for

n = 10) A = 2log2(10) = 10

anonymity S2
A = 2H(P) = 26.37 = 83 (for

n = 1000) A = 2log2(1000) = 1000

set size S3
A = 2H(P) = 25.23 = 38 (for

n = 1000) A = 2log2(1000) = 1000

S4
A = 2H(P) = 26.75 = 108 (for

n = 1000) A = 2log2(1000) = 1000

Table 4: Evaluation of scaled anonymity set size against criteria.

Scaled C1 + Fulfilled, as this metric is based on probabilities.

anonymity C2 + Intuitive and well defined endpoints where A varies between 1
and n.

set size C3 + This criterion is fulfilled as A is based on the uniformity of P.

C4 + Fulfilled, as max anonymity increases with n: max(2H(P)) =
2log2(n).

C5 +
A = 2H(P) is the size of the corresponding anonymity set in a
user base where all users are equally likely of being the sender
(see Theorem 2).

C6 + Fulfilled, as the scaled anonymity set size metric uses ratio scale.
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4.4 Related Work on Quantifying Anonymity as A = 2H(P)

To the authors’ best knowledge, the consequences of quantifying the degree with
which a user can be linked to a communication as A = 2H(P) have not previously
been formally analyzed. However, in the context of anonymized databases, 2H(P)

have previously been proposed as measure of the risk of re-identification.

– In [8], Fischer-Hübner proposed to use 2H(X1,...,Xn) as a measure of how
many combinations of the value ranges of X1, . . . ,Xn that can be used for re-
identification. A high value of 2H(X1,...,Xn) means that the attacker is more
likely to re-identify the user;

– Shortly after the pre-proceedings version of this paper was published, Bezzi
proposed in [1] to use 2H(R|s) to quantify the number of different records in
an anony-mized database that could correspond to the user, where H(R|s)
denotes the conditional entropy between the anonymized and the original
database. In this example, a high value of 2H(R|s) instead indicates a lower
risk of re-identification for the user.

5 Summary & Outlook

In this paper, we discussed elementary properties of anonymity metrics. We
defined a set of example scenarios for Crowds and quantified the degree of ano-
nymity in these scenarios for some recent metrics. Based on the evaluation and
measurement theory, we then defined a set of criteria for anonymity metrics,
and assessed whether the studied metrics fulfilled these criteria. Lastly, we pro-
posed to quantify anonymity as A = 2H(P) (denoted the scaled anonymity set
size metric) and showed that this metric fulfilled the above criteria. Future work
includes further analyzing the underlying semantics of scaled anonymity set size
and other entropy-based metrics, formalizing a model for anonymity attacks
and relating it to different optimal search strategies, as well as studying the
correlation between different ways of quantifying the uniformity of probability
distributions and their relation to different metrics.
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