
Variations on an Ordering Theme

with Constraints

Walter Guttmann and Markus Maucher

Fakultät für Informatik, Universität Ulm, 89069 Ulm, Germany
walter.guttmann@uni-ulm.de · markus.maucher@uni-ulm.de

Abstract. We investigate the problem of finding a total order of a
finite set that satisfies various local ordering constraints. Depending on
the admitted constraints, we provide an efficient algorithm or prove
NP-completeness. We discuss several generalisations and systematically
classify the problems.

Key words: total ordering, NP-completeness, computational complex-
ity, betweenness, cyclic ordering, topological sorting

1 Introduction

An instance of the betweenness problem is given by a finite set A and a collection
C of triples from A, with the task to decide if there is a total order < of A such
that for each (a, b, c) ∈ C, either a < b < c or c < b < a [1, problem MS1].
The betweenness problem is NP-complete [2]. Applications arise, for example,
in the design of circuits and in computational biology [2, 3].

Similarly, the cyclic ordering problem asks for a total order < of A such
that for each (a, b, c) ∈ C, either a < b < c or b < c < a or c < a < b [1, prob-
lem MS2]. The cyclic ordering problem, too, is NP-complete [4]. Applications
arise, for example, in qualitative spatial reasoning [5].

On the other hand, if a < b < c or a < c < b is allowed, the problem can be
solved with linear time complexity by topological sorting [6, Sect. 2.2.3].

Yet another choice, namely c < a or c < b, is needed to model an object-
relational mapping problem described in Sect. 2. We present a generalisation of
topological sorting to solve it.

Starting with Sect. 3, several kinds of generalisations to these problems are
explored with respect to their time complexity and interdependence. We prove
that each problem is either efficiently solvable or NP-complete by identifying
sufficient properties or appropriate reductions. The problems are grouped in
three families, treated in Sects. 3, 4, and 5, respectively. Related work is dis-
cussed in the conclusion.

Our motivation to investigate the generalised ordering problems is twofold.
On the practical side, several instances appear in different branches of com-
puter science, and we are interested in their time complexity. On the theoret-
ical side, the present work is a first step towards addressing the dichotomy of

78 W. Guttmann and M. Maucher

being tractable or NP-complete for further generalisations of ordering problems
with constraints. A second step towards this goal is to explain the structure
underlying the ordering problems [7].

2 A Generalisation of Topological Sorting

In this section, we substantiate our interest in generalising the ordering prob-
lems mentioned in the introduction by discussing an instance that can be solved
by a generalised version of topological sorting. Since the instance arises in a
practical application, we first give a short overview of the context and then
proceed to the mathematical abstraction and the solution.

We consider the part of an object-oriented model of a system specified by
the UML class diagram shown in Fig. 1. The classes L and M are related to
each other, and the association class K details this relationship. Note that the
association from L to M is directed, which means that objects of the class M
cannot access those of K and L [8].

L

K

M× >

Fig. 1. UML class diagram with association class

From time to time, a software that implements this model needs to make the
instances that have been accumulated in memory persistent to a database. The
representations in memory using pointers and in a relational database clash,
however, resulting in object-relational mapping problems [9]. For our special
problem, the following approach is appropriate.

There should be one database table for each of the classes K, L, and M , into
which objects of the respective classes save themselves, with unique identifiers
being generated upon storage. To hold the instances of the associations, the so-
called links, another table is devised that keeps the identifiers of related objects.
For efficiency reasons, one of the three objects that participate in a link should
make the entry into the association table. Since all three identifiers are needed
for this, the only object of each link capable to do this is the one stored at last.
Moreover, because of the restricted visibility in the model, this must not be the
object of class M for it cannot access the other identifiers.

To summarise, for each triple (a, b, c) of objects from classes (K, L, M) that
constitute such a link, a or b must be stored after c. This is the reason for the
requirement c < a or c < b given before for the total order.

In practice, a UML class diagram may also have directed associations with-
out a detailing association class. Such a pair (d, e) of objects would have the

Variations on an Ordering Theme with Constraints 79

requirement d < e modelling that d must be stored before e. We therefore state
the decision problem of this, more general version.

Problem 1. Instance: Finite set A, collection B of pairs from A, collection
C of triples from A.

Question: Is there a bijection f : A → {1, 2, . . . , |A|} such that f(a1) <
f(a2) for each (a1, a2) ∈ B, and f(a3) < f(a1) or f(a3) < f(a2) for each
(a1, a2, a3) ∈ C?

Note that the bijection f induces a total order, and vice versa. We prove that
problem 1 is efficiently decidable by algorithm T shown in Fig. 2, an extension
of topological sorting [6, Sect. 2.2.3]. The algorithm maintains working sets
E ⊆ A, F ⊆ B, and G ⊆ C.

input: finite set A, collection of pairs B and triples C from A

output: total order of A such that the first element of each pair
in B precedes the second, and the third element of
each triple in C precedes the first or the second

method: (E, F, G)← (A,B, C)
Order ← empty sequence
while E 6= ∅ do

find e ∈ E such that ∀x, y ∈ E : (e, y) /∈ F ∧ (x, y, e) /∈ G
if such an e exists then

G← {(x, y, z) ∈ G | x 6= e ∧ y 6= e}
F ← {(x, y) ∈ F | y 6= e}
E ← E \ {e}
prepend e to Order

else

output “there is no order”
halt

end

end

output Order

Fig. 2. Algorithm T

Theorem 1. Algorithm T shown in Fig. 2 solves problem 1.

Proof. Assume algorithm T proposes an order. That order is a permutation of
A since during every iteration one element e is removed from E and prepended
to the order. To see that the constraints specified by B are satisfied note that
each (a1, a2) ∈ B remains in F until the iteration where a2 = e, thus a2 is
prepended to the order. While (a1, a2) ∈ F , however, the chosen element e
cannot be a1, hence a1 precedes a2 in the order.

80 W. Guttmann and M. Maucher

Similarly, to see that the constraints specified by C are satisfied note that
each (a1, a2, a3) ∈ C remains in G until the iteration where a1 = e ∨ a2 = e,
thus a1 or a2 is prepended to the order. While (a1, a2, a3) ∈ G, however, the
chosen element e cannot be a3, hence a3 precedes a1 or a2 in the order.

Assume algorithm T fails to find an order. In this case, there is a non-empty
subset E ⊆ A such that no e ∈ E satisfies the required property. Thus, for each
e ∈ E either (e, y) ∈ F for some y ∈ E or (x, y, e) ∈ G for some x, y ∈ E. Since
F ⊆ B and G ⊆ C each e ∈ E must precede some e′ ∈ E in a total order. There
is no such order of finite sets. ut

The time complexity of algorithm T is polynomial in the size of the input.
Implemented using suitable data structures, we have even achieved linear time.
To this end, we take two measures to ensure that the body of the loop is executed
in constant time.

– The working sets F and G are no longer maintained as a whole, but replaced
by links from the elements of A to the constraints they occur in. This allows
for constant time updates to the working sets.

– As soon as all constraints are satisfied for an element, it is added to a list
of candidates. A suitable e can thus be found in constant time in the next
iteration of the loop.

Taking C = ∅ and requiring B to be a (strict) partial order over A demon-
strates that algorithm T is indeed a generalisation of topological sorting. Since
we do not assume that the elements of a triple in C are distinct, one may
even entirely dispose of B by adding a triple (a2, a2, a1) to C for each pair
(a1, a2) ∈ B. While this procedure works for the problem at hand, it might fail
for other types of problems discussed in Sect. 4.

3 Constraints over Three Elements

We explore different kinds of generalising the betweenness, cyclic ordering, and
topological sorting problems introduced before. By S3 we denote the symmetric
group of size 3. It contains all permutations of three elements, which we denote
as detailed in S3 = {(123), (132), (213), (231), (312), (321)}.

The first generalisation keeps the assumption that a collection C of triples
is given but abstracts from the constraint P ⊆ S3 specifying the relative order
of the elements of each triple. We therefore have a family of problems, one for
each P .

Problem Family 2. Instance: Finite set A, collection C of triples (a1, a2, a3)
of distinct elements from A.

Question: Is there a bijection f : A → {1, 2, . . . , |A|} such that for each
(a1, a2, a3) ∈ C there is a p ∈ P with f(ap(1)) < f(ap(2)) < f(ap(3))?

Variations on an Ordering Theme with Constraints 81

Choose P = {(123), (321)} for betweenness, P = {(123), (231), (312)} for
cyclic ordering, and P = S3 \ {(123), (213)} to get the problem discussed in
Sect. 2. The added distinctness condition a1 6= a2 6= a3 6= a1 is easy to check.

The total number of problems in this family is 2|S3| = 26 = 64. Already
from the small sample just presented it follows that some of these problems
are tractable while others are NP-complete. Thus the task arises to classify the
remaining problems. All of them are in NP, since a non-deterministic algorithm
can guess the order and check in polynomial time that the constraints specified
by C are satisfied with respect to the chosen P . This remark applies to all
problems discussed in this paper.

To reduce the number of problems that must be investigated, the fol-
lowing symmetry consideration applies. Regard, for example, the problems
P1 = {(123), (213)} and P2 = {(231), (321)} that differ just by a consistent
renaming of the elements of their permutations. Such a renaming is achieved
by composing a permutation from the left, in our case P2 = (231) ◦ P1. Intu-
itively, this can be compensated by permuting the positions in each triple so
that the modified constraints access the original elements. In our example, a
triple (a1, a2, a3) from an instance of P1 would be rearranged to (a3, a1, a2) for
P2. Precisely, symmetry is exploited by permuting each triple and applying the
inverse permutation to all constraints. It follows that two problems P1 and P2

such that P2 = π ◦ P1 for some π ∈ S3 have the same time complexity.
Another kind of symmetry enables a further reduction of the number of

problems. Intuitively, reversing each constraint can be compensated by trans-
posing the resulting total order. Precisely, a partial order can be extended to a
total order if and only if its transpose can be extended—just take the transpose
of the total order. It follows that two problems P1 and P2 that differ just by
reversing their permutations, that is P2 = P1 ◦ (321), have the same time com-
plexity. For example, S3 \ {(123), (213)} and S3 \ {(321), (312)} are two such
problems.

After applying both kinds of symmetry considerations to the 64 problems,
we are left with those shown in Fig. 3. We prove that the classification provided
there is correct.

tractable NP-complete

∅ {(123), (231)}
{(123)} {(123), (321)}
{(123), (132)} {(123), (132), (231)}
{(123), (213), (231)} {(123), (231), (312)}
S3 \ {(123), (213)} S3 \ {(123), (231)}
S3 S3 \ {(123), (321)}

S3 \ {(123)}

Fig. 3. Tractability of all problems ⊆ S3 up to symmetry

82 W. Guttmann and M. Maucher

Theorem 2. The problems of the family 2 are tractable or NP-complete as

shown in Fig. 3.

Proof. The problems ∅ and S3 are solved trivially. The problems {(123)},
{(123), (132)}, and {(123), (213), (231)} are solved by topological sorting. The
problem S3 \ {(123), (213)} is solved by algorithm T from Sect. 2.

We have already mentioned that betweenness {(123), (321)} and cyclic or-
dering {(123), (231), (312)} are NP-complete [2, 4].

To see that the problem S3 \ {(123), (321)}—which might be called non-
betweenness—is also NP-complete, we perform a reduction from between-
ness. Let A′ and C ′ characterise an instance of betweenness. Construct the
instance of non-betweenness where A = A′ and C consists of two triples
(a2, a1, a3), (a1, a3, a2) for each (a1, a2, a3) ∈ C ′. Intuitively, if neither the first
nor the third element of a triple must be arranged between the other two, the
second element is forced into that position. This instance has a solution if and
only if the corresponding instance of betweenness has one.

A similar argument replaces each triple (a1, a2, a3) ∈ C ′ by two triples
(a1, a2, a3), (a3, a2, a1) to reduce betweenness to the {(123), (132), (231)} prob-
lem. Replace each (a1, a2, a3) ∈ C ′ by two triples (a2, a1, a3), (a2, a3, a1) to
reduce betweenness to the problem S3 \ {(123), (231)}.

By the same argument, the problem S3\{(123)} is most difficult. Intuitively,
every other problem can be simulated by prohibiting all unwanted triples one
by one. For example, a reduction from cyclic ordering replaces each (a1, a2, a3)
by three triples (a1, a3, a2), (a2, a1, a3), (a3, a2, a1).

NP-completeness of the remaining problem {(123), (231)} is proved by
Corollary 1 in Sect. 5. ut

Additional structure illuminating the interrelation of the problems listed in
Fig. 3 is provided by a reduction method [7].

4 Constraints over Additional Pairs

The second generalisation we take a look at has already been touched in Sect. 2,
where the collection of triples was joined by a collection of pairs. For that special
instance, the additional constraint pairs have no impact on the complexity of
algorithm T since they could also be replaced by triples. In general, however, this
is not the case. For example, whatever additional betweenness triples are devised
to replace a pair (a1, a2) that requires a1 to precede a2, they are also satisfied
by transposing the resulting total order. There is no way to express absolute
direction in the betweenness problem. We therefore have another family of 64
problems, again indexed by P ⊆ S3.

Problem Family 3. Instance: Finite set A, collection B of pairs from A,
collection C of triples (a1, a2, a3) of distinct elements from A.

Variations on an Ordering Theme with Constraints 83

Question: Is there a bijection f : A → {1, 2, . . . , |A|} such that f(a1) <
f(a2) for each (a1, a2) ∈ B, and for each (a1, a2, a3) ∈ C there is a p ∈ P with
f(ap(1)) < f(ap(2)) < f(ap(3))?

Note that the symmetry considerations presented in Sect. 3 apply as well
to this family. The permutation of the positions in the triples is independent of
the additional pairs. Symmetry by reversing each constraint can be extended
to this, more general case by transposing the relation B to accommodate to the
reversed order.

With the results of Sect. 3 in place, the complexity of each problem in the
new family can easily be derived. It turns out that the classification remains
unchanged.

Theorem 3. The problems of the family 3 are tractable or NP-complete as

shown in Fig. 3.

Proof. Taking B = ∅ demonstrates that the new problems are indeed generali-
sations. All NP-complete problems of Sect. 3 thus remain NP-complete.

On the other hand, the pairs in B feature as additional input for topological
sorting. Thus, all tractable problems are solved using the more general algo-
rithm T that already accepts an additional collection of constraining pairs. ut

5 Constraints over Disjoint Triples

The third variation we are investigating takes advantage of the expressivity
gained by the pairs introduced in Sect. 4. It is rather a specialisation of those
problems where we assume that any two triples in the collection C are pairwise
disjoint when viewed as sets. This family of problems is also indexed by P ⊆ S3.

Problem Family 4. Instance: Finite set A, collection B of pairs from A,
collection C of pairwise disjoint triples (a1, a2, a3) of distinct elements from A.

Question: Is there a bijection f : A → {1, 2, . . . , |A|} such that f(a1) <
f(a2) for each (a1, a2) ∈ B, and for each (a1, a2, a3) ∈ C there is a p ∈ P with
f(ap(1)) < f(ap(2)) < f(ap(3))?

Note that the symmetry considerations presented in Sect. 3 do not affect
disjointness, and therefore apply also to this family, the new problems being
restrictions of those in Sect. 4. By the latter reason, algorithm T can still be
applied to solve the tractable problems. The question remains whether some
of the NP-complete problems become more easy. In the remaining part of this
section, we answer the question in the negative.

Let us start with the problem P = {(123), (231)}, which we call the inter-

mezzo problem. The requirement for the triples in (a1, a2, a3) ∈ C therefore
reads f(a1) < f(a2) < f(a3) or f(a2) < f(a3) < f(a1). We prove its NP-
completeness by reduction from 3SAT using the component design technique
described in [1, Sect. 3.2.3].

84 W. Guttmann and M. Maucher

Lemma 1. The intermezzo problem is NP-complete.

Proof. Let an instance of 3SAT be characterised by the set of variables U =
{u1, . . . , un} and the set of clauses C ′ = {(c1,1 ∨ c1,2 ∨ c1,3), . . . , (cm,1 ∨ cm,2 ∨
cm,3)}, where ci,j = uk or ci,j = ūk for some k. Let ¯̄uk = uk, and let a ⊕ b
denote the number c ∈ {1, 2, 3} such that a + b ≡ c (mod 3). Construct the
instance of intermezzo where

A = {uk,l, ūk,l | 1 ≤ k ≤ n ∧ 1 ≤ l ≤ 3} ∪

{cl
i,j | 1 ≤ i ≤ m ∧ 1 ≤ j ≤ 3 ∧ 1 ≤ l ≤ 3}

B = {(uk,1, ūk,3), (ūk,1, uk,3) | 1 ≤ k ≤ n} ∪

{(ci,j,2, c
1
i,j), (c

2
i,j , ci,j,1) | 1 ≤ i ≤ m ∧ 1 ≤ j ≤ 3} ∪

{(c1
i,j⊕1, c

3
i,j) | 1 ≤ i ≤ m ∧ 1 ≤ j ≤ 3}

C = {(uk,1, uk,2, uk,3), (ūk,1, ūk,2, ūk,3) | 1 ≤ k ≤ n} ∪

{(c1
i,j , c

2
i,j , c

3
i,j) | 1 ≤ i ≤ m ∧ 1 ≤ j ≤ 3}

The notation ci,j,l is an abbreviation of uk,l where uk = ci,j . We describe the
given construction that is illustrated in Fig. 4 in more detail.

For each literal uk we construct three elements uk,l that are grouped in the
triple (uk,1, uk,2, uk,3) as shown in Fig. 4(a). The same construction is applied
for each literal ūk. For each variable uk we thus have two such triples, and we
connect them by two edges (uk,1, ūk,3) and (ūk,1, uk,3) as shown in Fig. 4(b).
The subgraph for each variable therefore consists of 6 nodes, 2 edges, and 2
triples.

For each occurrence of a literal ci,j in a clause ci we construct three elements
cl
i,j that are grouped in the triple (c1

i,j , c
2
i,j , c

3
i,j) as shown in Fig. 4(c). For each

clause ci we thus have three such triples, and we connect them pairwise by
edges (c1

i,j⊕1, c
3
i,j) as shown in Fig. 4(d). The subgraph for each clause therefore

consists of 9 nodes, 3 edges, and 3 triples.
The connection between the subgraphs for the variables and those for the

clauses is obtained by constructing two edges (ci,j,2, c
1
i,j) and (c2

i,j , ci,j,1) for each
occurrence of a literal ci,j in a clause. Note that ci,j,l = uk,l for positive literals
ci,j = uk, and ci,j,l = ūk,l for negative literals ci,j = ūk. Figure 4(e) shows
this construction for the occurrences of the positive literal ci,1 = uk and the
negative literal ch,1 = ūk in two different clauses ci and ch. Further connections
are suggested by arrows attached to one node only.

The whole graph consists of |A| = 6n+9m nodes, |B| = 2n+9m edges, and
|C| = 2n + 3m triples. We prove that this instance of intermezzo is solvable if
and only if the corresponding instance of 3SAT is satisfiable.

Let f be an ordering function as required by the specification of intermezzo.
Define the truth assignment t(uk) = f(uk,3) < f(ūk,3). Assume that t does not
satisfy C ′ and let (ci,1∨ci,2∨ci,3) be a clause such that ¬t(ci,j) for all 1 ≤ j ≤ 3.

1. By definition of t we have f(c̄i,j,3) < f(ci,j,3).

Variations on an Ordering Theme with Constraints 85

•

uk,2

•

uk,1

•

uk,3

-A
A
A
AA�

�
�
��

(a) Triple for each literal uk

•

uk,2

•

uk,1

•

uk,3

-A
A
A
AA�

�
�
��

•

ūk,3

•

ūk,1

•

ūk,2

��
�
�
��A

A
A
AA-

�

(b) Two triples for each variable uk

•

c3

i,j

•
c1

i,j

•

c2

i,j

��
�
�
��AA

A
AA

(c) Triple for each occurrence
of a literal ci,j in a clause

•c1

i,3

• c2

i,3

• c3

i,3

A
A
AU�

�
�
��A

A
A
AA

•

c2

i,2

•c3

i,2

•

c1

i,2

�
�
��

�
�
�
��AA

A
AA •

c3

i,1

•
c1

i,1

•

c2

i,1

��
�
�
��A

A
A
AA

�
�

��

-

A
A

AK

(d) Three triples for each clause ci

•c1

i,3

• c2

i,3

• c3

i,3

A
A
AU

A
AK

A
AU�
�
�
��AA

A
AA

•

c2

i,2

•c3

i,2

•

c1

i,2

�
�
��

�
�� �

���
�
�
��A

A
A
AA •

c3

i,1

•
c1

i,1

•

c2

i,1

��
�
�
��AA

A
AA

•

uk,2

•

uk,1

•

uk,3

-A
A
A
AA�

�
�
��

•

ūk,3

•

ūk,1

•

ūk,2

��
�
�
��AA

A
AA

•

c2

h,1

•
c1

h,1

•

c3

h,1

-A
A
A
AA�

�
�
��

•

c1

h,2

• c3

h,2

•

c2

h,2

�
�

��

�
���

��A
A
A
AA�

�
�
��

•c3

h,3

•c2

h,3

• c1

h,3

A
A

AK

A
AU

A
AKA

A
A
AA�

�
�
��

�
�

��

-

A
A

AK

���9��+

��� ��9��+

�

-��:
��3

�

- -��:��3

�

A
A
AU �

�
��

�

+

ci,1 = uk

ūk
↖↘

uk
−

ch,1 = ūk

(e) Construction for two clauses and one variable

Fig. 4. Graph showing the construction in the reduction from 3SAT to intermezzo

86 W. Guttmann and M. Maucher

2. Since (ci,j,1, c̄i,j,3) ∈ B we have f(ci,j,1) < f(ci,j,3).
3. Since (ci,j,1, ci,j,2, ci,j,3) ∈ C we have f(ci,j,1) < f(ci,j,2).
4. Since (c2

i,j , ci,j,1), (ci,j,2, c
1
i,j) ∈ B we have f(c2

i,j) < f(c1
i,j).

5. Since (c1
i,j , c

2
i,j , c

3
i,j) ∈ C we have f(c3

i,j) < f(c1
i,j).

6. Since (c1
i,j⊕1, c

3
i,j) ∈ B we have f(c1

i,j⊕1) < f(c1
i,j).

7. Therefore we have f(c1
i,j) = f(c1

i,j⊕3) < f(c1
i,j⊕2) < f(c1

i,j⊕1) < f(c1
i,j), a

contradiction.

Let t be a truth assignment that satisfies C ′. For 1 ≤ k ≤ n let tk = uk if
t(uk) and tk = ūk if ¬t(uk). For 1 ≤ i ≤ m let li be such that t(ci,li). Define
the mapping g : A → N such that

g(c2
i,j) = 3i + j for 1 ≤ i ≤ m ∧ 1 ≤ j ≤ 3 ∧ ¬t(ci,j)

g(t̄k,1) = D + k for 1 ≤ k ≤ n
g(t̄k,2) = 2D + k for 1 ≤ k ≤ n
g(tk,2) = 3D + k for 1 ≤ k ≤ n
g(c1

i,j) = 4D + 3i + j for 1 ≤ i ≤ m ∧ 1 ≤ j ≤ 3 ∧ t(ci,j)
g(c2

i,j) = 5D + 3i + j for 1 ≤ i ≤ m ∧ 1 ≤ j ≤ 3 ∧ t(ci,j)
g(c3

i,j) = 6D + 3i + j for 1 ≤ i ≤ m ∧ j = li ⊕ 2 ∧ ¬t(ci,j)
g(c1

i,j) = 7D + 3i + j for 1 ≤ i ≤ m ∧ j = li ⊕ 2 ∧ ¬t(ci,j)
g(c3

i,j) = 8D + 3i + j for 1 ≤ i ≤ m ∧ j = li ⊕ 1 ∧ ¬t(ci,j)
g(c1

i,j) = 9D + 3i + j for 1 ≤ i ≤ m ∧ j = li ⊕ 1 ∧ ¬t(ci,j)
g(c3

i,j) = 10D + 3i + j for 1 ≤ i ≤ m ∧ 1 ≤ j ≤ 3 ∧ t(ci,j)
g(tk,3) = 11D + k for 1 ≤ k ≤ n
g(tk,1) = 12D + k for 1 ≤ k ≤ n
g(t̄k,3) = 13D + k for 1 ≤ k ≤ n

where D is large enough to keep the definitions separate, for instance chosen as
D = 2n + 4m + 4. The mapping g satisfies the constraints specified by B since

1. g(tk,1) < 13D < g(t̄k,3) and g(t̄k,1) < 2D < 11D < g(tk,3).
2. g(ci,j,2) < 4D < g(c1

i,j) and g(c2
i,j) < 6D < 12D < g(ci,j,1) if t(ci,j), and

g(ci,j,2) < 3D < 4D < g(c1
i,j) and g(c2

i,j) < D < g(ci,j,1) if ¬t(ci,j).

3. g(c1
i,li

) < 5D < 6D < g(c3
i,li⊕2) and g(c1

i,li⊕2) < 8D < g(c3
i,li⊕1) and

g(c1
i,li⊕1) < 10D < g(c3

i,li
).

The mapping g satisfies the constraints specified by C since

4. g(t̄k,1) < 2D < g(t̄k,2) < 3D < 13D < g(t̄k,3).
5. g(tk,2) < 4D < 11D < g(tk,3) < 12D < g(tk,1).
6. g(c2

i,li⊕2) < D < 6D < g(c3
i,li⊕2) < 7D < g(c1

i,li⊕2) if ¬t(ci,li⊕2), and

g(c2
i,li⊕1) < D < 8D < g(c3

i,li⊕1) < 9D < g(c1
i,li⊕1) if ¬t(ci,li⊕1), and

g(c1
i,j) < 5D < g(c2

i,j) < 6D < 10D < g(c3
i,j) if t(ci,j).

The function f : A → N defined by f(e) = |{a ∈ A | g(a) ≤ g(e)}| is one-to-one,
and satisfies the constraints specified by B and C. ut

Variations on an Ordering Theme with Constraints 87

We obtain the missing fact from the proof of Theorem 2 in Sect. 3 as a
consequence of Lemma 1.

Corollary 1. The problem {(123), (231)} from the family 2 is NP-complete.

Proof. Let A′, B′, and C ′ characterise an instance of intermezzo. Construct the
instance of the problem {(123), (231)} from the family 2 where A = A′ ∪ {n}
for some n /∈ A′, and C = C ′ ∪ {(n, a1, a2) | (a1, a2) ∈ B′}. This instance has a
solution if and only if the corresponding instance of intermezzo has one. ut

Continuing the main objective of this section, we reduce intermezzo to the
problem {(123), (321)} from the current family. Note that the existing NP-
completeness proof for betweenness does not apply here because it uses non-
disjoint triples [2].

Lemma 2. The problem {(123), (321)} from the family 4 is NP-complete.

Proof. Let A′, B′, and C ′ characterise an instance of intermezzo. Construct the
instance of betweenness where A extends A′ by three new elements a′

1, a′
2, a′

3 for
each (a1, a2, a3) ∈ C ′. Note that there are 3|C ′| distinct new elements since the
triples in C ′ are pairwise disjoint. Moreover, C consists of two triples (a1, a

′
3, a3),

(a′
1, a

′
2, a2) for each (a1, a2, a3) ∈ C ′. Finally, for each (a1, a2, a3) ∈ C ′, B

extends B′ by inserting three new pairs (a′
1, a1), (a′

3, a
′
2), (a2, a3) and, for each

pair (a, a1), one new pair (a, a′
1). Intuitively, an element a1 is split into two

elements a1 and a′
1 such that a′

1 immediately precedes a1.
Assume there is a total order ≺′ of the instance of intermezzo. The order ≺

modifies ≺′ by replacing, for each (a1, a2, a3) ∈ C ′, the occurrence of a1 in ≺′

with

– either a′
1 ≺ a1 ≺ a′

3 ≺ a′
2 if a1 ≺′ a2 ≺′ a3,

– or a′
3 ≺ a′

2 ≺ a′
1 ≺ a1 if a2 ≺′ a3 ≺′ a1,

such that these four elements succeed without a gap. By definition of intermezzo
exactly one of the two cases applies for each triple, thus ≺ is a total order of A.

The order ≺ satisfies each triple (a1, a
′
3, a3) since a1 ≺ a′

3 ≺ a3 in the first
case and a3 ≺ a′

3 ≺ a1 in the second case. The order ≺ satisfies each triple
(a′

1, a
′
2, a2) since a′

1 ≺ a′
2 ≺ a2 in the first case and a2 ≺ a′

2 ≺ a′
1 in the second

case. The order ≺, being an extension of ≺′, satisfies B′. In both cases a′
1 ≺ a1,

a′
3 ≺ a′

2, and a2 ≺ a3 for each triple (a1, a2, a3) ∈ C ′, and, since a′
1 and a1

succeed without a gap, a ≺ a′
1 whenever a ≺′ a1. Hence, ≺ is a total order of

the constructed instance.
Assume there is a total order ≺ of the constructed instance. The order ≺′

is the restriction of ≺ to A. For each triple (a1, a2, a3) ∈ C ′, a2 ≺′ a3 since
(a2, a3) ∈ B. Assume that a2 ≺′ a1 ≺′ a3 for some such triple.

1. By definition of ≺′ we also have a2 ≺ a1 ≺ a3.
2. Since (a1, a

′
3, a3) ∈ C we have a1 ≺ a′

3 ≺ a3.
3. Since (a′

1, a1) ∈ B and (a′
3, a

′
2) ∈ B we have a′

1 ≺ a1 ≺ a′
3 ≺ a′

2.

88 W. Guttmann and M. Maucher

4. Since (a′
1, a

′
2, a2) ∈ C we have a′

1 ≺ a1 ≺ a′
3 ≺ a′

2 ≺ a2.
5. Therefore a1 ≺ a2 and a2 ≺ a1, a contradiction.

Thus, a1 ≺′ a2 ≺′ a3 or a2 ≺′ a3 ≺′ a1, so ≺′ satisfies all triples in C ′.
Finally, (a1, a2) ∈ B′ ⇒ (a1, a2) ∈ B ⇒ a1 ≺ a2 ⇒ a1 ≺′ a2, so ≺′ satisfies B′.
Hence, ≺′ is a total order of the instance of intermezzo. ut

Finally, intermezzo is reduced to each of the remaining five problems, com-
pleting the proof that the classification still remains unchanged. Note again
that the existing NP-completeness proof for cyclic ordering does not apply here
because it also uses non-disjoint triples [4].

Theorem 4. The problems of the family 4 are tractable or NP-complete as

shown in Fig. 3.

Proof. As stated before, algorithm T solves the tractable problems, being re-
strictions of those from family 3.

Lemmas 1 and 2 have already proved two further problems NP-complete.
Recall that each of the remaining five problems shown in Fig. 3 represents a

class of problems up to symmetry as described in Sect. 3. To simplify the proof
we choose five specific problems, one from each class, appropriate for the follow-
ing argument. They are, precisely, {(123), (231), (321)}, {(123), (231), (312)},
S3 \ {(213), (132)}, S3 \ {(213), (312)}, and S3 \ {(213)}. We show that each of
these problems is NP-complete by reduction from intermezzo.

Let A′, B′, and C ′ characterise an instance of intermezzo. Construct the
instance for any of the five problems where A = A′, C = C ′, and B = B′ ∪
{(a2, a3) | (a1, a2, a3) ∈ C ′}. If the instance of intermezzo has a solution, it also
solves the constructed instance since each of the five problems are supersets
of {(123), (231)}. If the constructed instance has a solution, it also solves the
instance of intermezzo since by the extension of the pairs, a2 must precede a3

for each triple (a1, a2, a3) ∈ C ′ and none of the five problems contains (213).
Hence, the constructed instance has a solution if and only if the corresponding
instance of intermezzo has one. ut

6 Conclusion

Let us summarise the contributions of this paper. In Sect. 2 we have presented
an efficient algorithm—a generalisation of topological sorting—that solves an
object-relational mapping problem modelled as an ordering problem with local
constraints.

Several generalisations of this and other known tractable and NP-complete
ordering problems have been explored starting with Sect. 3, where the con-
straints are specified by the relative order of three-element subsets [4, 2]. Addi-
tionally, the relative order of two-element subsets is admitted for specification
in Sect. 4. Finally, causing some effort, the three-element subsets are required
to be pairwise disjoint in Sect. 5.

Variations on an Ordering Theme with Constraints 89

We have established which of the considered problems are efficiently solvable
and which are NP-complete, proving that the classifications coincide for all three
problem families that are related as shown in Fig. 5. That picture is completed
by the variant that requires disjoint triples but does not permit pairs—this
variant can be solved trivially.

no pairs,
disjoint triples

Section 3: no pairs,
overlapping triples

Section 5: pairs,
disjoint triples

Section 4: pairs,
overlapping triples

@@I ���

��� @@I

Fig. 5. Variants of problems with triples

The problems discussed in this paper also arise in the context of qualitative
spatial reasoning [5]. The algebraic treatment pursued in that area originates
in qualitative temporal reasoning, notably with Allen’s interval algebra [10].
All subclasses of Allen’s interval algebra have been classified as being either
NP-complete or tractable [11, 12].

Note that a simple translation from Allen’s interval algebra to our formalism
fails for two reasons. First, the relative positions of intervals use not only < but
also the ≤, =, and 6= relations. Second, there may be different disjunctions
in effect between different pairs of intervals. This could be simulated with the
exclusion problem, but that is already NP-complete.

Conversely, a simple translation from our formalism to Allen’s interval al-
gebra fails also for two reasons. First, the start and end points of intervals are
correlated, whereas no such restrictions apply for our ordering problems with
constraints. Second, there is only one clause for each pair of intervals, but our
set C models arbitrary conjunctions.

Let us finally mention two further generalisations of the problems presented
in this paper. First, the number of elements involved in specifying constraints
may be increased beyond three. To this end, a reduction technique can be de-
fined that reveals an interesting structure underlying the ordering problems. It
again turns out that large classes of the generalised ordering problems are either
tractable or NP-complete, and we intend to address this dichotomy. Second, the
strict order may be replaced by a weak order. Both topics are currently under
investigation [7].

90 W. Guttmann and M. Maucher

References

1. M.R. Garey and D.S. Johnson. Computers and Intractability. W.H. Freeman and
Company, 1979.

2. J. Opatrny. Total ordering problem. SIAM Journal on Computing, 8(1):111–114,
February 1979.

3. B. Chor and M. Sudan. A geometric approach to betweenness. SIAM Journal on

Discrete Mathematics, 11(4):511–523, November 1998.
4. Z. Galil and N. Megiddo. Cyclic ordering is NP-complete. Theoretical Computer

Science, 5(2):179–182, October 1977.
5. A. Isli and A.G. Cohn. A new approach to cyclic ordering of 2D orientations using

ternary relation algebras. Artificial Intelligence, 122(1–2):137–187, September
2000.

6. D.E. Knuth. Fundamental Algorithms, volume 1 of The Art of Computer Pro-

gramming. Addison–Wesley, third edition, 1997.
7. W. Guttmann and M. Maucher. Constrained ordering. Technical Report UIB-

2005-03, Universität Ulm, December 2005.
8. Object Management Group, http://www.omg.org/. UML 2.0 Superstructure

Specification, August 2005.
9. M. Fowler. Patterns of Enterprise Application Architecture. Addison–Wesley,

2002.
10. J.F. Allen. Maintaining knowledge about temporal intervals. Communications of

the ACM, 26(11):832–843, November 1983.
11. B. Nebel and H.-J. Bürckert. Reasoning about temporal relations: A maximal

tractable subclass of Allen’s interval algebra. Journal of the ACM, 42(1):43–66,
January 1995.

12. A. Krokhin, P. Jeavons, and P. Jonsson. Reasoning about temporal relations: The
tractable subalgebras of Allen’s interval algebra. Journal of the ACM, 50(5):591–
640, September 2003.

