
On Traits and Types in a Java-like Setting

Viviana Bono, Ferruccio Damiani, and Elena Giachino

Dipartimento di Informatica, Università di Torino
{bono,damiani,giachino}@di.unito.it

Abstract. Both single and multiple class-based inheritance are often inap-
propriate as a reuse mechanism, because classes play two competing roles.
Namely, a class is both a generator of instances and a unit of reuse. Traits
are composable pure units of behavior reuse, consisting only of methods, that
have been proposed as an add-on to single class-based inheritance in order to
improve reuse. However, adopting traits as an add-on to traditional class-based
inheritance is not enough: classes, besides their primary role of generators of
instances, still play the competing role of units of reuse. Therefore, a style of
programming oriented to reuse is not enforced by the language, but left to
the programmer’s skills. Traits have been originally proposed in the setting of
dynamically typed language. When static typing is also taken into account,
the role of unit of reuse and the role of type are competing, too.
We argue that, in order to support the development of reusable program com-
ponents, object oriented programming languages should be designed according
to the principle that each software structuring construct must have exactly one
role. We propose a realignment of the class-based object-oriented paradigm by
presenting programming language features that separate completely the dec-
larations of object type, behavior and generator. We illustrate our proposal
through a core calculus and prove the soundness of the type system w.r.t. the
operational semantics.

Key words: Type System, Inheritance, Composition, Flattening.

1 Introduction

It is common opinion that standard class-based inheritance does not support
low coupling and, therefore, does not support well code reuse. This phenomenon
is often described as the fragile base-class problem and it is well-described in the
work by Mikhajlov and Sekerinski [20]. A well-known technique to circumvent
the fragile base-class problem is to promote the use of interface-based polymor-
phism. This idea is also present in most of the design patterns, such as the GoF
design patterns [14], in order to make the patterns as higher-level as possible
with respect to the implementation details.

Class-based inheritance was criticized again recently by Schärli et al. [25, 10],
by pointing out that both single and multiple class-based inheritance are often
inappropriate as a reuse mechanism. They identify the problem in the fact that
classes play two competing roles. Namely, a class is both a generator of instances
(hence it must provide a complete set of basic features) and a unit of reuse

367

368 V. Bono, F. Damiani, E. Giachino

(hence it should provide a minimal set of sensibly reusable features). Schärli et
al. also observed that mixins [7, 17, 13, 3], which are subclasses parameterized
over their superclasses, are not necessarily appropriate for composing units of
reuse. The problem is due to the fact that, being based on the ordinary single
inheritance operator, mixing composition is linear. Indeed, the formulation of
mixins given by Bracha in Jigsaw [6] does not suffer of this problem,1 but most
of the subsequent formulations of the mixin construct do.

To overcome these problems, Schärli et al. proposed traits, composable pure
units of behavior reuse consisting only of methods, that can be composed in an
arbitrary order via operations ensuring that the composite unit (trait or class)
has complete control over the composition and must resolve conflicts explicitly.
However, both in the original proposal and (to the best of our knowledge) in
all the trait-based approaches that can be found in the literature (with the ex-
ception of the Fortress language proposal [1], currently under development),
traits live together with the traditional class-based inheritance. Therefore, be-
sides their primary role of generators of instances, classes can still play the
competing role of units of reuse, and a style of programming oriented to reuse
is not enforced by the language, but left to the programmer’s skills.

The original proposal of Schärli et al. does not address typing issues. Various
proposals for using traits in connection with static typing can be found in the
literature (we refer to [21] for a brief overview). In some of these proposals
(notably in the Scala [22] and in the Fortress [1] languages) each trait, like
each class, also defines a type. However, as a matter of fact, the role of unit
of reuse and the role of type are competing. For instance, in order be able to
define the subtyping relation on traits in such a way that a trait (or a class)
is always a subtype of the component traits, Scala and Fortress rule out
operations on traits such as method exclusion and renaming, limiting the reuse
potential of traits. The distinction between the role of type and the role of unit
of reuse, described in terms of type and class, dates back at least to Snyder [27]
(see also Cook et al. [9]).

Having in mind the need of promoting interface-based polymorphism and
arbitrarily composable units of reuse, we would like to go further and give
classes the role of object generators only.

We argue that, in order to support the development of reusable program com-
ponents, object oriented programming languages should be designed according
to the principle that each software structuring construct must have exactly one
role. We propose programming language features that separate completely the
declarations of object type, behavior and generator. Namely, we consider:

– Interfaces, as pure types.
– Traits, as pure units of behavior reuse.
– Classes, as pure generators of instances.

1 Jigsaw introduces very general operators for module manipulation. Some of them have been
later, independently, developed for traits.

On Traits and Types in a Java-like Setting 369

Interfaces can be defined by extending other interfaces (the interface hierarchy
induces subtyping). Traits can be defined by composing other traits. Classes
are defined by composing traits, implementing interfaces, and defining fields.

Note that there are no hierarchical dependencies among classes. Therefore,
a first outcome of the complete role separation is that problems of fragility in
a class hierarchy (that arise with class-based and mixin-based inheritance) are
avoided a priori : there is no class hierarchy. Since traits and classes do not
define types, another outcome of the complete role separation is that the use
of operations like method exclusion and renaming is not limited by the need
of ensuring that each trait (or class) is a subtype of the composing traits (see
Sect. 2).

Recently, Bergel et al. [4] pointed out several limitations of the trait model. In
order to overcome these limitations, they propose (in a Smalltalk-like setting)
to make traits stateful by allowing traits to have private fields that, through
a variable access operator, may be accessed from the clients possibly under a
new name, and possibly merged with other variables. Our proposal provides (in
a Java-like setting) an alternative solution to the limitations of the stateless
trait model. Also, Bergel et al. observed that: “An open question for further
study is whether trait composition can subsume class-based inheritance, leading
to a programming language based on composition rather than inheritance as
the primary mechanism for structuring code following Jigsaw [6] design.” Our
investigation addresses the previous question by providing a foundation for a
realignment of the class-based object-oriented paradigm to support the system-
atic structuring of code in “single-role” reusable units. Besides their power of
reuse, traits have attracted a great deal of attention in the programming lan-
guage research community because of their simple semantics. We believe that
our proposal is a step forward towards simplicity.

A preliminary version of the results presented in this paper appeared as [5].
Organization of the Paper. Section 2 illustrates our proposal through an
example. Section 3 presents the syntax of FRJ (a core calculus for reusable
units based on the constructs introduced above), outlines its type system and
its operational semantics, and states a type soundness result. We conclude by
discussing some related work and outlining possible directions for further work.

2 An Example

In this section we provide a simple example of code that cannot lead to unan-
ticipated reuse both in traditional class-based languages and in trait-based lan-
guages where a composite trait is a subtype of the component traits, but that
can be reused in an unanticipated way in a language based on our proposal.
We exploit a standard Java-like notation, in particular we use a more general
syntax for constructors than the one that will be presented in Section 3.1.

Consider the task of developing a class Stack that implements the interface:

370 V. Bono, F. Damiani, E. Giachino

interface IStack { boolean isEmpty(); void push(Object o); Object pop(); }

In a traditional class-based language (like, e.g., Java) it is natural to write a
class like:

class Stack implements IStack { List l; Stack() { l=new LinkedList(); }

boolean isEmpty() { return (l.size() == 0); }

void push(Object o) { l.addFirst(); }

Object pop() { Object o=l.getFirst(); l.removeFirst(); return o; }

}

Suppose that later on it becomes necessary to develop a class Stack’ that
implements the interface:

interface IStack’ { Boolean isEmpty(); void push(Object o); void pop();

Object top(); }

In a traditional class-based language there is no straightforward way to reuse
the code in class Stack and the simplest thing to do is to write a class like:

class Stack’ implements IStack’ { List l; Stack’() { l=new LinkedList(); }

boolean isEmpty() { return (l.size() == 0); }

void push(Object o) { l.addFirst(); }

void pop() { l.removeFirst(); }

Object top() { return l.getFirst(); }

}

To illustrate our proposal, we exploit a Java-like syntax (we still do not have
an implementation). In a class the only (implicitly) public methods are those
declared in the interfaces implemented by the class. All the other methods and
the fields are (implicitly) private. All the constructors must be declared and are
(implicitly) public. Moreover, for every library class (such as Object, Integer,
etc.) we assume an interface and a trait. The same name can be used to denote
the interface, the trait and the class. The Object interface is implicity extended
by any interface and the Object trait is implicity used by any class.

A class Stack, whose instance type is the interface IStack, can be naturally
written by defining separately instance behaviour and generation as follows:

trait TStack is { List l;

boolean isEmpty() { return (l.size() == 0); }

void push(Object o) { l.addFirst(); }

Object pop() { Object o=l.getFirst(); l.removeFirst(); return o; } }

class Stack implements IStack by TStack

{ List l; Stack() { l=new LinkedList(); } }

A class Stack’ that implements the interface IStack’ can be straightforwardly
written as follows by defining a trait TStack’ that reuses the trait TStack:

trait TStack’ is (TStack exclude pop)

+ { List l; void pop() { l.removeFirst(); }

Object top() { return l.getFirst(); } }

class Stack’ implements IStack’ by TStack’

{ List l; Stack’() { l=new LinkedList(); } }

On Traits and Types in a Java-like Setting 371

ID ::= interface I extends Ī { S; }
S ::= I m (Ī x̄)

TD ::= trait T is TE

TE ::= { F̄; S; M̄ } | T | TE + TE | TE exclude m | TE alias m as m

| TE duplicate m as m | TE rename m to m | TE rename f to f

F ::= I f

M ::= S { return e; }
e ::= x | e.f | e.m(ē) | new C(ē) |(I)e

CD ::= class C implements Ī by TE { F̄; K }
K ::= C(Ī f̄) { this.f̄ = f̄; }

Fig. 1 FRJ: Syntax

The trait TStack’ above can be alternatively defined as follows:

trait TStack’ is (TStack rename pop to poptop)

+ { Object poptop(); void push(Object);

void pop() { poptop(); }

Object top() { Object o=poptop(); push(o); return o; } }

Note that, if traits were types and composed traits were subtypes of the com-
ponent traits, both the declarations of the trait TStack’ would not typecheck.

3 FRJ: a Calculus for Reusable Units

In this section we provide a formal account of our idea by presenting FRJ
(Featherweight Reusable Java), a minimal core calculus for interfaces,
traits and classes, in the spirit of FJ (Featherweight Java) [15].

3.1 Syntax

The syntax of our calculus, FRJ, is presented in Fig. 1. We also consider a
calculus, FFRJ (Flat FRJ), obtained by removing the portions of the syntax
highlighted in grey.

We use the overbar sequence notation according to [15]. For instance:
“f̄” denotes the possibly empty sequence “f1, ..., fn”, the pair “Ī x̄” stands
for “I1 x1, ..., In xn”, “Ī f̄;” stands for “I1 f1; ...; In fn;”, and the assignment
“this.f̄ = f̄;” stands for “this.f1 = f1; ...; this.fn = fn;”. The empty se-
quence is denoted by “•”.

Sequences of named elements (e.g., methods signatures, fields declarations,...)
are assumed to contain no duplicate names, the sequence of the names of the
elements of S is denoted by names(S), the subsequence of the elements of S with

372 V. Bono, F. Damiani, E. Giachino

the names n̄ is denoted by extract(n̄, S), and discard(n̄, S) denotes the sequence
obtained from S by removing the elements with the names n̄. Following [15],
we use a set-based notation for operators over sequences of named elements.
For instance, M = I m (Ī x){return e} ∈ M̄ means that the method declaration M
occurs in M̄. In the union and in the intersection of sequences of named elements,
denoted by S∪ Z and S∩ Z, respectively, it is assumed that if n ∈ names(S) and
n ∈ names(Z) then extract(n, S) = extract(n, Z).

The concatenation of two sequences S and Z is denoted by S·Z, where, if S and
Z are sequences of named elements, it is assumed that names(S)∩names(Z) = ∅.

A class table CT is a map from class names to class declarations. Similarly, an
interface table IT and a trait table TT map interface and trait names to interface
and trait declarations, respectively. A FRJ program is a 4-tuple (IT, TT, CT, e).
In presenting the type system and the flattening translation we assume fixed,
global tables IT, TT, and CT. We also assume that these tables are well-formed,
i.e., they contain an entry for each interface/trait/class mentioned in the pro-
gram, and the interface subtyping and trait reuse graphs are acyclic.

The distinguishing features of FRJ w.r.t. the original trait proposal [10] and
to other proposals of traits for Java-like setting [26, 18, 21] are the following:

– Classes and traits are not types and class-based inheritance is not present.
– Traits (and classes) can be typechecked in isolation (as in Chai2 [26]).
– A basic trait expression { F̄; S; M̄ } provides the methods M̄ and declares the

type of the required fields F̄ and methods S (that can can be directly accessed
by the bodies of the methods M̄).2

– In the symmetric sum operation (that merges two traits to form a new trait)
we require that the summed traits must be disjoint (that is, they must not
provide identically named methods).3

– The operation exclude, that forms a new trait by removing a method from
an existing trait, is the usual one (i.e., as in [10, 26, 18, 21]).

– We have the operations alias and duplicate that form a new trait by giv-
ing a new name to an existing method. The two operations are identical on
non-recursive methods. When a recursive method is aliased, its recursive in-
vocation refers to the original method (as in [10]). When a recursive method
is duplicated, its recursive invocation refers to the duplicate (as in the inter-
pretation of aliasing proposed in [18]).

– We have the operation rename that creates a new trait by renaming all the
occurrences of a required field name or of a required/provided method name
from an existing trait.4

2 Field requirements were not present in [10] and in [26, 18, 21]. They have been introduced
in [12] in the setting of ML-like languages.
3 According to other proposals, two methods with the same name do not conflict if they are
syntactically equal [10, 21] or if they originate from the same subtrait [18].
4 Method renaming is not present in [10] and in [26, 18, 21]. It has been introduced in [23]
in the setting of ML-like languages. At the best of our knowledge, required field renaming is
new.

On Traits and Types in a Java-like Setting 373

– The override operation, that layers additional methods over an existing trait,
is not present. It can be simulated by exclusion and symmetric sum.

– We use interfaces to explicitly declare the public methods of a class.

3.2 Typing

The FRJ type system combines nominal and structural typing. Within a basic
trait expression, the uses of method parameters are type-checked according to
the nominal notion of typing defined by the interface hierarchy, while the uses
of the this metavariable are type-checked according to a structural notion of
typing that takes into account the field and methods required by the trait and
the methods provided by the trait.

3.2.1 Types, Constraints and Subtying. Pure signatures, ranged over by
σ and ζ, are method signatures deprived of parameter names. For instance, the
pure signature associated to the signature I m(I1 x1, ..., In xn) is I m(I1, ..., In).

The syntax of nominal types is as follows: η ::= C | I . (I.e., a nominal
type is either a class name or an interface name.) The syntax of types for
expressions is as follows: θ ::= ⟨ F̄ ! σ ⟩ | η . The type of the expression
this is a pair ⟨ F̄ ! σ ⟩, specifying that this has the fields F̄ and methods with
(pure) signatures σ. The type of an object creation expression new C(· · ·) is the
class C. The type of any other expressions e is an interface name.

Besides assigning to each expression e a type describing the object yielded
by the evaluation of e, the FRJ type system infers also the constraints on
this imposed by its use within e. Constraints, ranged over by γ, are triples
⟨ F̄ ! σ ! Ī ⟩ specifying that the expression e selects the fields F̄ and the
methods σ on this, and requires that this has the nominal types (interfaces) Ī.
In particular, the interfaces in Ī are the types of the method formal parameters
to which this is passed inside the expression e. We recall that this will assume
a meaning according to the class where the traits will be used. The typing rule
for classes will check that such a class satisfies the constraints inferred for the
bodies of the methods declared in the composing traits.

The subtyping relation for nominal types is the reflexive and transitive
closure of the interface implementatation/extension relation declared by the
implements clauses in the class table CT and by the extends clauses in the
interface table IT. It is formalized by the judgement η1 <: η2 to be read: “η1
is a subtype of η2”.

3.2.2 Typing Rules. An environment Γ is either a finite mapping form vari-
able names (including this) to types, written “x̄ : Ī, this : ⟨ F̄ ! σ ⟩”, or the
empty mapping, written “•”. The typing rules for interface declarations, expres-
sions, method declarations, trait declarations and class declarations are syntax
directed, with one rule for each form of term, except that (following [15]) there

374 V. Bono, F. Damiani, E. Giachino

are three different rules for casts (to distinguish between upcasts, downcasts,
and stupid casts). The typing judgements are the following:

– ⊢ interface I extends Ī { S; } OK to be read: “the declaration of the
interface I is well-typed”.

– Γ ⊢ e : θ ! γ to be read: “under the assumption in Γ , the expression e is
well-typed with type θ and constraints γ”.

– this : ⟨ F̄ ! σ ⟩ ⊢ I m (Ī x̄){return e; } : µ where µ = ζ ! γ. To be read:
“under the assumption that this has fields F̄ and methods σ, the declaration
of method m is well-typed with type µ”. I.e., the method m has signature ζ
and its body enforces the constraints γ.

– ⊢ TE : µ̄ where µ̄ = µ1...µn (n ≥ 0). To be read: “the trait expression TE
is well-typed with type µ̄”. I.e., TE provides n methods with types µ1, ..., µn,
respectively.

– ⊢ trait T is TE : µ̄ to be read: “the declaration of trait T is well-typed with
type µ̄”.

– ⊢ class C implements Ī by TE { F̄; K } OK to be read: “the declaration of
the class C is well-typed”.

Note that, within a basic trait expression { F̄; S; M̄ }, we ask the programmer
to declare exactly the fields F̄ and the methods S selected on this within the
method bodies in M̄. Declaring the types of fields and methods has two benefits:
(i) it provides a form of documentation that enforces awareness of what it is
actually used in a program; (ii) it simplifies the inferred constraints. We decided
not to ask to declare the name of the interfaces that are used as types of this
within the method bodies in M̄, as this would not introduce any benefits to
counterbalance the overhead.

3.2.3 Well-typed FRJ programs. We write ⊢FRJ (IT, TT, CT, e) : η, to be
read: “the program (IT, TT, CT, e) is well-typed with type η”, to mean that the
interfaces in IT, the traits in TT and the classes in CT are well-typed, and the
expression e is well typed with type η and empty constraints under the empty
set of assumptions (i.e., the judgement • ⊢ e : η ! ⟨ • ! • ! • ⟩ holds).

3.3 Flattening and Reduction

Our traits enjoy the flattening property [21], i.e., when a class uses a trait the
semantics of the methods defined within the trait declaration is the same as if
the methods were defined within the class declaration.5 The semantics of FRJ
is specified by means of a flattening translation that maps a FRJ program into
a FFRJ program and of a reduction semantics for FFRJ programs.
5 Flattening just aims to provide a canonical semantics to traits, it is not an especially effective
implementation technique.

On Traits and Types in a Java-like Setting 375

!class C implements Ī by TE { F̄; K }" def
= class C implements Ī by { F̄; •; !TE" } { F̄; K }

!{ F̄; S; M̄ }" def
= M̄

!T" def
= !TE" if TT(T) = trait T is TE

!TE1 + TE2" def
= !TE1" · !TE2"

!TE exclude m" def
= discard(m, !TE")

!TE alias m as m′" def
= M̄ · (I m′(Ī x̄){return e; })

if !TE" = M̄ and I m(Ī x̄){return e; } ∈ M̄

!TE duplicate m as m′" def
= M̄ · (I m′(Ī x̄){return e[this.m

′
/this.m]; })

if !TE" = M̄ and I m(Ī x̄){return e; } ∈ M̄

!TE rename f to f′" def
= !TE"[f′/f]

!TE rename m to m′" def
= mR(!TE", m, m′)

mR(I n(Ī x̄){return e; }, m, m′) def
= I n[m

′
/m](Ī x̄){return e[this.m

′
/this.m]; }

mR(M1 · ... · Mn, m, m′)
def
= (mR(M1, m, m′)) · ... · (mR(Mn, m, m′))

Fig. 2 Flattening FRJ to FFRJ

3.3.1 Flattening Translation for FRJ. A FFRJ program is a FRJ pro-
gram with an empty trait table. The translation removes the trait table and
replaces the class table with a suitable one containing only FFRJ classes. The
translation is specified through the function !·", given in Fig. 2, that maps a
FRJ class declaration to a FFRJ class declaration and a trait expression to a
sequence of method declarations. We will write !CT" to denote the class table
containing the translation of all the classes in CT. The clauses in Fig. 2 are self-
explanatory. Note that the clause for field renaming is simpler than the clause
for method renaming (which uses the auxiliary function mR); this is due to the
fact that fields can be accessed only on this.

3.3.2 Reduction for FFRJ. A FFRJ program is a 4-tuple (IT, •, CT, e). A
FFRJ class “class C implements Ī by { F̄; •; M̄ } { F̄; K }” can be understood
as the Java class “class C implements Ī { F̄; K M̄ }”. Following FJ [15], we
give the semantics of FFRJ by means of a reduction relation of the form e→ e′,
to be read “expression e reduces to expression e′ in one step”. We write →⋆

to denote the reflexive and transitive of →. Values are defined by the following
syntax: v ::= newC(v̄) .

3.4 Properties

The flattening translation preserves the type of programs.

Theorem 1 (Flattening Preserves the Type of Programs).
If ⊢FRJ (IT, TT, CT, e) : η, then ⊢FRJ (IT, •, !CT", e) : η.

376 V. Bono, F. Damiani, E. Giachino

To prove the type soundness result for FFRJ we need to consider a suitable
notion of typing for runtime expressions. As for FJ [15], the syntax of runtime
expressions is the same of expressions. Constraints are not needed to prove
the type soundness for FFRJ, therefore the typing for runtime expressions do
not consider constraints. An environment for runtime expressions ∆ is either
a finite mapping from variable names (including this) to types, written “x̄ :
Ī, this : C”, or the empty mapping, written “•”. The typing judgement for
runtime expressions is ∆ ⊢′ e : η to be read: “under the assumption in ∆, the
runtime expression e is well-typed with type η”.

The type soundness result comes in two parts: first it relates the typing of
expressions with the typing of runtime expressions, then it proves the type
soundness with respect to the runtime expression typing.

Theorem 2 (Well-typed FFRJ expressions are well-typed runtime ex-
pression with a more specific type).
If • ⊢ e : η, then • ⊢′ e : η′ for some η′ such that η′ <: η.

The following theorem can be proved by using the standard technique of subject
reduction and soundness theorems.

Theorem 3 (FFRJ Type Soundness).
If • ⊢′ e : η and e→⋆ e′ with e′ a normal form, then e′ is: Either a value v with
• ⊢′ v : C and C <: η; Or an expression containing (I)new C(ē) where C ̸<: I.

Following FJ [15], we say that a well-typed program (IT, TT, CT, e) is cast-safe
if the type derivations involved in ⊢FRJ (IT, TT, CT, e) : η include no downcasts
or stupid casts. The following results hold.

Theorem 4 (Flattening Preserves Cast-Safeness).
If (IT, TT, CT, e) is cast-safe, then (IT, •, !CT", e) is cast-safe.

Theorem 5 (No Typecast Errors in Cast-Safe FFRJ Programs).
If (IT, •, !CT", e) is cast-safe and e →⋆ e′ with e′ a normal form, then e′ is a
value.

4 Conclusions, Related and Further Work

The competing roles played by the same software structuring construct compli-
cate the semantics and limits the reuse potential in mainstream object-oriented
class-based programming languages.

To the best of our knowledge, the conflict between the roles of unit of reuse
and generator of instances was firstly described by Schärli et al. [25, 10]. We
claim also that the roles of unit of reuse and type are competing (see Sect. 1).
In this respect, we propose to increase both the simplicity and the flexibility of
the object-oriented paradigm by adopting programming language features that

On Traits and Types in a Java-like Setting 377

separate completely the declarations of object type, behavior, and generator. We
developed a hybrid nominal/structural type system that allows to typecheck
traits in isolation and proved its soundness.

The literature related to our proposal has been partially quoted through
the paper. We add here comparisons and remarks concerning the type system
and the recent proposals on trait-based metaproprograming [24] and stateful
traits [4].

Sophisticated hybrid nominal/structural type systems have been already
proposed [11, 19, 24]. In particular, in [24], the combination of nominal and
structural types is conceptually similar to ours, but exploited at a different
level. Namely, it is exploited to type trait functions, that provide a mechanism
(termed trait-based metaproprograming) to obtain reusable class-member-level
patterns. Another important difference between our proposal and the one in [24]
is that, in the latter, traits play also the competing role of type, which instead
we want to avoid.

Stateful traits [4] were introduced (in the setting of Smalltalk-like lan-
guages) to avoid duplication of code connected directly with field initialization
and manipulation. Our traits are stateless, however, since they can have re-
quired fields, it is possible to avoid the same kind of duplication of code that
motivated the introduction of stateful traits. Moreover required fields names
are unimportant because we provide a field rename operation. As byproducts,
since required field renaming works synergically with method renaming, exclu-
sion, aliasing, and duplication, we obtain more reuse potential.

In further work, we would like to formulate our proposal in a Smalltalk-like
setting (this would allow a careful comparison with the stateful trait proposal),
to extend our type system to deal with generics, and to adapt our proposal to
deal with dynamic trait substitution (see Chai3 [26]). We also plan to develop
prototypical implementations.

A special form of reuse is at the base of the contemporary agile software
development methodologies [2]. Such methodologies are based on an iterative
approach, where each iteration may include all of the phases necessary to re-
lease a small increment of a new functionality: planning, requirements analysis,
design, coding, testing, and documentation. While an iteration may not add
enough functionality to guarantee the release of a final product, an agile soft-
ware project intends to be capable of releasing new software at the end of every
iteration, but this means that the next iteration will reuse the software produced
in the previous ones. We believe that an interesting future research direction
is to investigate whether the programming language features proposed in this
paper may help in writing software following an agile methodology. In this re-
spect, we plan both to develop a trait-oriented agile methodology, suitable to
be used directly within trait-based languages, and some trait-mining strategies,
in order to re-engineer class-based libraries into trait-based ones. Some work in
this respect was already done in the Smalltalk-like setting [8, 16].

378 V. Bono, F. Damiani, E. Giachino

4.0.1 Acknowledgements. We thank Davide Ancona, Stéphane Ducasse,
Paola Giannini, Oscar Nierstrasz, Betti Vennneri, Elena Zucca and the anony-
mous referees for comments, suggestions, and bibliographic references.

References

1. The Fortress language specification. http://research.sun.com/projects/plrg/fortress.pdf.
2. The Agile Alliance. Manifesto for Agile Software Development. http://agilemanifesto.

org/.
3. D. Ancona, G. Lagorio, and E. Zucca. Jam—designing a Java extension with mixins.

ACM TOPLAS, 25(5):641–712, September 2003.
4. A. Bergel, S. Ducasse, O. Nierstrasz, and R. Wuyts. Stateful traits. In Advances in

Smalltalk — Proceedings of 14th International Smalltalk Conference (ISC 2006), volume
4406 of LNCS, pages 66–90. Springer, 2007.

5. V. Bono, F. Damiani, and E. Giachino. Separating Type, Behavior, and State
to Achieve Very Fine-grained Reuse. In Electronic proceedings of FTfJP’07
(http://www.cs.ru.nl/ftfjp/), 2007.

6. G. Bracha. The Programming Language JIGSAW: Mixins, Modularity and Multiple
Inheritance. PhD thesis, Department of Comp. Sci., Univ. of Utah, 1992.

7. G. Bracha and W. Cook. Mixin-based inheritance. In ACM Symp. on Object-Oriented
Programming: Systems, Languages and Applications 1990, volume 25(10) of SIGPLAN
Notices, pages 303–311. ACM Press, October 1990.

8. D. Cassou, S. Ducasse, and R. Wuyts. Redesigning with traits: the nile stream trait-based
library. In Proc. International Conference on Dynamic Languages, pages 50–79, 2007.

9. W.R. Cook, W.L. Hill, and P.S. Canning. Inheritance is not subtyping. In ACM Symp.
on Principles of Programming Languages 1990, pages 125–135. ACM Press, 1990.

10. S. Ducasse, O. Nierstrasz, N. Schärli, R. Wuyts, and A. Black. Traits: A mechanism for
fine-grained reuse. ACM TOPLAS, 28(2):331–388, 2006.

11. K. Fisher and J. Reppy. Inheritance-based subtyping. Information and Computation,
177(1):28–55, 2002.

12. K. Fisher and J. Reppy. A typed calculus of traits. In Electronic proceedings of FOOL
2004, 2004.

13. M. Flatt, S. Krishnamurthi, and M. Felleisen. Classes and mixins. In ACM Symp. on
Principles of Programming Languages 1998, pages 171–183. ACM Press, 1998.

14. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

15. A. Igarashi, B. Pierce, and P. Wadler. Featherweight Java: A minimal core calculus for
Java and GJ. ACM TOPLAS, 23(3):396–450, 2001.

16. A. Lienhard, S. Ducasse, and G. Arévalo. Identifying traits with formal concept analysis.
In Proc. 20th Conference on Automated Software Engineering (ASE’05), pages 66–75.
IEEE Computer Society, 2005.

17. M. Van Limberghen and T. Mens. Encapsulation and composition as orthogonal operators
on mixins: A solution to multiple inheritance problems. Object Oriented Systems, 3(1):1–
30, 1996.

18. L. Liquori and A Spiwack. Feathertrait: A modest extension of featherweight java. ACM
TOPLAS. To appear.

19. D. Maleyery and J. Aldrich. Combining structural subtyping and external dispatch. In
Electronic proceedings of FOOL/WOOD 2007, 2007.

20. L. Mikhajlov and E. Sekerinski. A Study of the Fragile Base Class Problem. In Proc.
ECOOP ’98, volume 1445 of LNCS, pages 355–382. Springer-Verlag, 1998.

On Traits and Types in a Java-like Setting 379

21. O. Nierstrasz, S. Ducasse, and N. Schärli. Flattening traits. JOT (www.jot.fm), 5(4):129–
148, 2006.

22. M. Odersky. The Scala Language Specification, version 2.4. Technical report, Program-
ming Methods Laboratory, EPFL, Switzerland, 2007.

23. J. Reppy and A. Turon. A foundation for trait-based metaprogramming. In Electronic
proceedings of FOOL/WOOD 2006, 2006.

24. J. Reppy and A. Turon. Metaprogramming with traits. In ECOOP 2007, volume 4609
of LNCS, pages 373–398. Springer, 2007.

25. N. Schärli, S. Ducasse, O. Nierstrasz, and A. Black. Traits: Composable units of behavior.
In ECOOP 2003, volume 2743 of LNCS, pages 248–274. Springer, 2003.

26. C. Smith and S. Drossopoulou. Chai: Traits for java-like languages. In ECOOP’05, LNCS
3586, pages 453–478. Springer, 2005.

27. A. Snyder. Encapsulation and inheritance in object-oriented programming languages.
In ACM Symp. on Object-Oriented Programming: Systems, Languages and Applications
1986, volume 21(11) of SIGPLAN Notices, pages 38–45. ACM Press, 1986.

5 FRJ Typing Rules

The typing rules use the auxiliary functions given in Fig. 3: fields (that returns
the sequence of the fields declared in a class C), interfaces (that when applied
to an interface name I returns the name I itself, and when applied to a class
name C returns the sequence of the interface names implemented by the class
C), methods (that returns the sequence of the methods declared in a class C)
and mPSig (that returns the sequence of the pure signatures of the methods
associated to a sequence of method non-pure signatures, or interfaces, or method
declarations).

Fields lookup (function fields)

fields(C) = F̄ if CT(C) = class C · · · { F̄; C(F̄){· · · } }

Interfaces lookup (function interfaces)

interfaces(C) = Ī if CT(C) = class C implements Ī by · · ·
interfaces(I) = I

Methods lookup (function methods)

methods(C) = M̄ if CT(C) = class C · · · by { · · · ; •; M̄ } { · · · }

Method pure signatures lookup (function mPSig)

mPSig(I m (Ī x̄)) = I m (Ī)
mPSig(S1; ...; Sn;) = mPSig(S1) · ... · mPSig(Sn)
mPSig(I) = mPSig(Ī) ∪mPSig(S;) if IT(I) = interface I extends Ī { S; }
mPSig(I1, ..., In) = mPSig(I1) ∪ ... ∪mPSig(In)
mPSig(S {return e; }) = mPSig(S)
mPSig(M1...Mn) = mPSig(M1) · ... · mPSig(Mn)
mPSig(C) = mPSig(methods(C))

Fig. 3 FRJ: Auxiliary function fields, interfaces, methods and mPSig

380 V. Bono, F. Damiani, E. Giachino

The typing rule for interface declarations, the typing rules for expressions
and method declarations, the typing rules for trait expressions and trait dec-
larations, and the typing rule for class declarations are given in Fig.s 6, 4, 5
and 7. Some of the typing rules use assumptions of the form “E ok” to mean
that the expression E (involving operations on sequences of named elements)
yields a (well defined) sequence of named elements. For instance, the asser-
tion “(σ ∪ ζ) ok” holds if and only if n ∈ names(σ) and n ∈ names(ζ) imply
extract(n,σ) = extract(n, ζ).

Expression typing:

Γ ⊢ x : Γ (x) ! ⟨• ! • ! •⟩ (T-Var)

Γ ⊢ this : ⟨ F̄ ! ... ⟩ ! ⟨• ! • ! •⟩ extract(f, F̄) = I f

Γ ⊢ this.f : I ! ⟨ I f ! • ! • ⟩
(T-Field)

Γ ⊢ e : θ ! ⟨ F̄(0) ! σ(0) ! Ī(0) ⟩
θ = Γ (this) = ⟨ ... ! σ ⟩ implies I m (I1, ..., In) = extract(m, σ)
θ ̸= Γ (this) implies I m (I1, ...,In) = extract(m,mPSig(interfaces(θ)))

∀i ∈ 1..n, Γ ⊢ ei : θi ! ⟨ F̄(i) ! σ(i) ! Ī(i) ⟩
T = {i | i ∈ 1..n and θi = Γ (this)}
∀i ∈ 1..n− T , θi <: Ii ∀i ∈ T , σ ∪mPSig(Ii) ok

Γ ⊢ e.m(e1, ..., en) : I ! ⟨ ∪i∈0..nF̄
(i) ! ∪i∈0..nσ(i) ! (∪i∈0..nĪ

(i)) ∪ (∪i∈T Ii ⟩)
(T-Invk)

fields(C) = I1 f1; ...;In fn; ∀i ∈ 1..n, Γ ⊢ ei : θi ! ⟨ F̄(i) ! σ(i) ! Ī(i) ⟩
T = {i | i ∈ 1..n and θi = Γ (this) = ⟨ ... ! σ ⟩}
∀i ∈ 1..n− T , θi <: Ii ∀i ∈ T , σ ∪mPSig(Ii) ok

Γ ⊢ new C(e1, ...,en) : C ! ⟨ ∪i∈1..nF̄
(i) ! ∪i∈1..nσ(i) ! (∪i∈1..nĪ

(i)) ∪ (∪i∈T Ii ⟩)
(T-New)

Γ ⊢ e : η ! γ η <: I

Γ ⊢ (I)e : I ! γ (T-UCast)

Γ ⊢ e : J ! γ I <: J I ̸= J

Γ ⊢ (I)e : I ! γ (T-DCast)

Γ ⊢ e : η ! γ η ̸<: I I ̸<: η stupid warning

Γ ⊢ (I)e : I ! γ (T-SCast)

Method declaration typing:

this : ⟨ F̄ ! σ ⟩, x̄ : J̄ ⊢ e : θ ! ⟨ F̄′ ! σ′ ! Ī ⟩
θ = ⟨ F̄ ! σ ⟩ implies (σ ∪mPSig(J) ok and Ī′ = Ī ∪ J)
θ ̸= ⟨ F̄ ! σ ⟩ implies (θ <: J and Ī′ = Ī)

this : ⟨ F̄ ! σ ⟩ ⊢ J m (J̄ x̄){return e; } : J m (J̄) ! ⟨ F̄′ ! σ′ ! Ī′ ⟩
(M-Ok)

Fig. 4 FRJ: Typing rules for expressions and method declarations

On Traits and Types in a Java-like Setting 381

Trait expression typing:

mPSig(S) = σ mPSig(M1...Mp) = ζ1...ζp p ≥ 0

∀i ∈ 1..p, this : ⟨ F̄ ! σ · ζ1...ζp ⟩ ⊢ Mi : µi µi = ζi ! ⟨ F̄(i) ! ζ(i) ! Ī(i) ⟩
F̄ = ∪i∈1..pF̄

(i) σ = discard(names(ζ1...ζp), (∪i∈1..pζ
(i)

))

ζ1...ζp ∪ (∪i∈1..pζ
(i)

) ∪mPSig(∪i∈1..pĪ
(i)) ok

⊢ { F̄; S; M1...Mp } : µ1...µp

(T-TEbasic)

⊢ trait T · · · : µ̄

⊢ T : µ̄ (T-TE)

⊢ TE1 : µ1...µp ⊢ TE2 : µp+1...µp+q

p, q ≥ 1 ∀i ∈ 1..p + q, µi = ζi ! ⟨ F̄(i) ! σ(i) ! Ī(i) ⟩
∪i∈1..p+q F̄

(i) ok ζ1...ζp+q ∪ (∪i∈1..p+qσ(i)) ∪mPSig(∪i∈1..p+q Ī
(i)) ok

⊢ TE1 + TE2 : µ1...µp+q
(T-TEsum)

⊢ TE : µ̄ · µ · µ̄′ names(µ) = m

⊢ TE exclude m : µ̄ · µ̄′ (T-TEex)

⊢ TE : µ1...µn n ≥ p ≥ 1 ∀i ∈ 1..n, µi = ζi ! ⟨ F̄(i) ! σ(i) ! Ī(i) ⟩
names(ζp) = m m′ ̸∈ names(ζ1...ζn) ζp[m

′
/m] ∪ (∪i∈1..nσ(i)) ok

µ = ζp[m
′
/m] ! ⟨ F̄(p) ! σ(p) ! Ī(p) ⟩

⊢ TE alias m as m′ : µ1...µnµ
(T-TEal)

⊢ TE : µ1...µn n ≥ p ≥ 1 ∀i ∈ 1..n, µi = ζi ! ⟨ F̄(i) ! σ(i) ! Ī(i) ⟩
names(ζp) = m m′ ̸∈ names(ζ1...ζn) ζp[m

′
/m] ∪ (∪i∈1..nσ(i)) ok

µ = ζp[m
′
/m] ! ⟨ F̄(p) ! σ(p)[m

′
/m] ! Ī(p) ⟩

⊢ TE duplicate m as m′ : µ1...µnµ
(T-TEdu)

⊢ TE : µ1...µn n ≥ 1 ∀i ∈ 1..n, µi = ζi ! ⟨ F̄(i) ! σ(i) ! Ī(i) ⟩
ζ = ζ1...ζn σ = σ(1) ∪ ... ∪ σ(n) m ∈ names(ζ ∪ σ) m′ ̸∈ names(ζ)

(ζ ∪ σ)[m/m′] ∪mPSig(∪i∈1..nĪ
(i)) ok

∀i ∈ 1..n, µ′
i = ζi[m

′
/m] ! ⟨ F̄(i) ! σ(i)[m

′
/m] ! Ī(i) ⟩

⊢ TE rename m to m′ : µ′
1...µ′

n

(T-TEreM)

⊢ TE : µ1...µn n ≥ 1 ∀i ∈ 1..n, µi = ζi ! ⟨ F̄(i) ! σ(i) ! Ī(i) ⟩
F̄ = F̄(1) ∪ ... ∪ F̄(n) f ∈ names(F̄) F̄[f

′
/f] ok

∀i ∈ 1..n, µ′
i = ζi ! ⟨ F̄(i)[f

′
/f] ! σ(i) ! Ī(i) ⟩

⊢ TE rename f to f′ : µ′
1...µ′

n

(T-TEreF)

Trait declaration typing:

⊢ TE : µ̄

⊢ trait T is TE : µ̄
(T-Ok)

Fig. 5 FRJ: Typing rules for trait expressions and trait declarations

382 V. Bono, F. Damiani, E. Giachino

Interface declaration typing:
mPSig(I) ok

⊢ interface I extends J̄ { S } OK
(I-Ok)

Fig. 6 FRJ: Typing rule for interface declarations

Class declaration typing:

⊢ TE : µ1...µp p ≥ 0 ∀i ∈ 1..p, µi = ζi ! ⟨ F̄(i) ! σ(i) ! Ī(i) ⟩
∪i∈1..pF̄

(i) = J̄ ḡ ζ1...ζp ⊇ ((∪i∈1..pσ(i)) ∪mPSig(Ī))

∀I′ ∈ ∪i∈1..pĪ
(i), ∃I ∈ Ī, I <: I′

⊢ class C implements Ī by TE { J̄ ḡ; C(J̄ ḡ) { this.ḡ = ḡ; } } OK (C-Ok)

Fig. 7 FRJ: Typing rule for class declarations

6 FFRJ Reduction Rules

The FFRJ reduction rules are given in Fig. 8 (the auxiliary functions fields,
methods and interfaces are given in Fig. 3).

Evaluation contexts and redexes:

E ::= [] | E.f | E.m(ē) | v.m(v̄, E, ē) | (I)E | new C(v̄, E, ē)
r ::= (new C(v̄)).f | (new C(v̄)).m(v̄) | (I)(new C(ē))

Reduction rules:

fields(C) = I1 f1; ...;In fn

E[(new C(v1, ...,vn)).fi]→ E[vi]
(R-Field)

I m (Ī x̄) { return e; } ∈ methods(C)

E[(new C(v̄)).m(ū)]→ E[e[ū/̄x, new C(v̄)/this]]
(R-Invk)

∃J ∈ interfaces(C), J <: I

E[(I)(new C(ē))]→ E[new C(ē)]]
(R-Cast)

Fig. 8 FFRJ: Reduction rules

