
Static and dynamic typing for the termination of mobile
processes

Romain Demangeon1, Daniel Hirschkoff1, and Davide Sangiorgi2

1 ENS Lyon, Université de Lyon, CNRS, INRIA – France
2 Dipartimento di Informatica, Università di Bologna – Italia

Abstract. A process terminates if all its reduction sequences are finite. We propose
two type systems that ensure termination of π-calculus processes.
Our first type system is purely static. It refines previous type systems by Deng and
Sangiorgi by taking into account certain partial order information on names so to
enhance the techniques from term rewriting (based on lexicographic and multiset or-
derings) that underpin the proof of termination. The second system is mixed, in that
it combines a static and a dynamic analysis. During the static analysis, processes
are annotated with assertions. These are then used at run time to monitor the execu-
tion of processes. An exception may be raised if certain conditions that may lead to
divergence are met.
We illustrate the expressiveness of the solutions proposed with a few examples of
programming idioms that were beyond reach for previous type systems.

1 Termination of Concurrent Processes

Following the introduction of the π-calculus, a lot of research has been put into the
study of languages for process mobility in which computing is exchange of messages
between processes. Programs of these languages often produce dynamic recursive
structures, that is, systems consisting of a variable number of components (at run time,
new components may be created, and existing ones may be removed).
In this paper we study the problem of termination for mobile processes. We focus

on the π-calculus, the commonly accepted model for them. A process terminates if all
its internal runs are finite; that is, the process has no infinite sequence of reductions.
Termination is a fundamental property in sequential languages. It is also important in
concurrency. For instance, termination can be used to guarantee that interaction with
a resource will eventually end (avoiding denial of service situations), or to ensure that
the participants in a transaction will eventually reach an agreement. Unfortunately,
termination is also a hard property to ensure, both in functional languages and in con-
currency. Termination is particularly hard in the π-calculus, due to the expressiveness
of this formalism. A number of programming language features can be encoded into
the π-calculus, including functions, objects, and state (in the sense of imperative lan-
guages) [8]. Thus the notoriously hard problems of termination for these features hit
the π-calculus too.
Previous work on termination in the π-calculus relies on type systems to guaran-

tee the property. Languages of terminating processes are proposed in [10] and [7]. In

413

414 R. Demangeon, D. Hirschkoff, D. Sangiorgi

both cases, the proofs of termination make use of logical relations, a well-known tech-
nique from functional languages. The languages of terminating processes so obtained
are however rather ‘functional’, in that the structures allowed are similar to those de-
rived when encoding functions as processes. For this reason, subsequent work [3, 2]
has explored type systems in which termination is proved using techniques from term
rewriting systems, essentially defining a measure (a ‘weight’) that decreases with re-
ductions. These type systems maintain however limitations on the form of recursive
structures handled.
To explain the kind of problems encountered, consider a tree-like data structure,

where search along the tree may involve recursive calls on all the subtrees of a given
node. Termination of a call to the search procedure should intuitively follow from the
acyclicity of the data structure. However, the tree cannot be type checked in [3], for
the following reason. The type systems in [3] are based on an assignment of levels to
π-calculus names, where a level is a positive integer. Since all nodes in a tree play the
same role, names used in different nodes must have the same type and hence also the
same level. As a consequence, when a search at a given node triggers several searches
in subtrees of the node, the weight of the process (roughly, the multiset of the levels of
the names in the “active” nodes) may increase (since the number of active nodes may
be bigger). This breaks the reasoning needed in the proof of termination.
The contribution of the present paper is twofold. First, we refine the type systems in

[3] so to be able to handle more complex recursive structures. The main improvement
is given by the addition, into the type system, of a partial order that is used to com-
pare names with the same level. While this possibility was already suggested in [3],
only a very restrictive form of it had been investigated. In the present paper the idea
is explored in depth. As we illustrate in Section 3, setting the balance between partial
order and levels (or weight) is delicate, as counterexamples easily arise as soon as we
abandon a purely lexicographical ordering between the weight and partial order infor-
mation. Major problems are updating the partial order when new names are created,
and ensuring that only well-founded partial orders are generated (a non-terminating
computation could be produced following the step-by-step generation of an infinite
descending path).
All type systems mentioned above are purely static: the whole type analysis is made

before the processes are run. There is a tradeoff between expressiveness and complex-
ity of the type systems (here complexity refers both to the intricacy of the typing rules
and to the actual complexity of the type inference problem). We think that our new
static type system is justified by the gain in expressiveness. We do not present, in
contrast, other static type systems that we have examined, as the overall gain is more
dubious.
We discuss, instead, as the second main contribution of the paper, an alternative

approach: a simple and efficient static type system enhanced with dynamic (i.e., run
time) checks. The static type system we adopt only exploits information about the level
of names; however it annotates the positions where extra information (a partial order),
is needed to justify termination. At runtime, these annotations are used to perform
dynamic checks. Correctness of the resulting mixed type system is stated as follows:

Static and dynamic typing for the termination of mobile processes 415

if the first phase succeeds on a process, then the resulting annotated process cannot
exhibit an infinite computation: its execution either terminates or raises an exception.
The advantage of dynamic typing is that only the parts of a process that are actually

executed need to be analysed. This may considerably reduce the type constraints gen-
erated, especially in computations with data dependencies and/or non-determinism.
For instance, in our case, dynamic typing reduces the risk of generating non-well-
founded paths in the partial order over the names. We illustrate the expressive power
of the mixed type system on some non-trivial examples. They include recursive struc-
tures created throughmerges of smaller structures, like, for instance, trees created from
smaller trees via append operations (where a tree may be appended onto one or more
leaves of another tree). In previous type systems, manipulations of this kind are not
allowed, intuitively because all names connecting components of a recursive structure
must be created locally. This forbids extensions of the structure with components (or
just names) coming from the outside.
The price to pay with dynamic typing is the time for the additional checks at run

time and the space for the data structure needed in the checks. In our mixed type sys-
tem, the time for a dynamic check is at most linear in the number of annotated names
created (the annotated names are those in positions that have been marked during the
initial phase of static typing). The mixed system could be used in cases where the
termination property is important and other, purely static, type systems have failed.
In type systems, the idea of extending static analyses with forms of dynamic check-

ing is certainly not new. Works on the addition of dynamic types to statically typed
languages include [1, 4]. We can also mention stack inspection, as, e.g., in [5], where
checks on the access to resources are made at run time. Similar mechanisms are also
employed in incremental garbage collectors, through read- or write-barriers, to prevent
the program from accessing data that need to be processed by the collector (see [9]). In
the present work, we use the phrase ‘dynamic typing’ by analogy with the aforemen-
tioned approaches, although the analysis that we make at runtime boils down to some
lightweight sanity checks on partial orders.

2 The π-Calculus

We let a,b,c, . . . , p,q, . . . ,x,y,z range over an infinite set of names. Processes, ranged
over using P,Q, are described by the following grammar (we use notation ñ to range
over possibly empty tuples of names):

P ::= 000
∣∣ P1|P2

∣∣ (νc)P
∣∣ P1+P2

∣∣ a(x̃).P
∣∣ a⟨ṽ⟩.P

∣∣ !a(x̃).P .

The constructs of input, replicated input and restriction are binding. We sometimes
call a bound name a variable and a free name a channel. We implicitly suppose that
in all processes bound names are pairwise distinct and distinct from all free names.
In an input a(x̃).P and an output a⟨ṽ⟩.P we call a the subject name. As usual, trailing
occurrences of 000 are omitted, and emissions and receptions of empty tuples of names

416 R. Demangeon, D. Hirschkoff, D. Sangiorgi

along a are respectively abbreviated a.P and a.P. The reduction relation of the calculus
is standard (see Appendix 6).

Strict partial orders. As the rules of our type system heavily rely on partial orders,
we first introduce some notations for partial orders on names. We useR to range over
strict partial orders on names, and dom(R) is the domain of the order (the set of related
elements). In the sequel, the phrase ‘partial order’ will always be used to denote a strict
partial order, since we are only interested in these. Partial orders will be represented as
the set of all pairs of related elements. However, for writing convenience, we usually
indicate only a subset of the pairs, namely a subset whose transitive closure gives the
induced partial order. For instance, the set {(a,b),(b,c)} stands for the (strict) partial
order {(a,b),(b,c),(a,c)}.

3 A purely static type system

3.1 Previous Type Systems: a Motivating Example

We recall here the basic ideas behind the type systems of [3, 2], using an example that
also illustrates some of the limitations of these systems on recursive structures. Here
and in the sequel, we shall use extensions of the π-calculus of Section 2 for the presen-
tation of examples: the additional constructs are standard, and do not raise any partic-
ular difficulty for type checking termination. The example is about the implementation
of a symbol table as a binary tree. Each node in the tree is a simple π-calculus process.
The process T0 below is the generator of nodes. An output node⟨a, l,r,s,e⟩ produces
a node that stores a string s whose key is e, that is connected to its parent node (or to
the environment, in case of the root node) with name a, and to its children nodes with
names l and r. A tree at a (that is, a tree whose root uses a for interactions with the
outside) is searched for a value v via requests of the form a⟨search,v,ans⟩ where ans
is a return channel. When the search reaches a node, if the value is found in the node,
then the corresponding key is sent back on ans; otherwise the request is concurrently
propagated to both subtrees of the node. (We omit the details of a search operation that
fails.)

T0
def= !node(a, l,r,s,e).a(mode,v,ans).

if mode= search then
if v= s then ans⟨e⟩ | node⟨a, l,r,s,e⟩
else l⟨mode,v,ans⟩ | r⟨mode,v,ans⟩ | node⟨a, l,r,s,e⟩

else . . .

The type systems in [3, 2] recognise a system as terminating if the continuations ac-
tivated in an interaction (i.e., the processes underneath the interacting prefixes) have
a smaller “weight” than that of the output that has been consumed to trigger the in-
teraction. This notion of weight is formalised with an assignment of levels (positive

Static and dynamic typing for the termination of mobile processes 417

R ⊢ 000
R1 ⊢ P1 R2 ⊢ P2
R1+R2 ⊢ P1 | P2

R1 ⊢ P1 R2 ⊢ P2
R1+R2 ⊢ P1 + P2

R ⊢ P
R ⇓c⊢ (νc)P

R ⊢ P
⊢ a : ♯laS T̃ ⊢ ṽ : T̃ S ∗ ṽ⊆R

R ⊢ a⟨ṽ⟩.P

R +(S ∗ x̃) ⊢ P
⊢ a : ♯laS T̃ ⊢ x̃ : T̃

R ⊢ a(x̃).P

Fig. 1 Static system: typing rules (see main text for the typing of replication)

integers) to the types of the names. Now, consider the system composed by a tree at
a and a search request a⟨search,v,ans⟩. Names a, l and r play the same role in the
structure, and therefore must have the same level. As the consumption of the output at
amay produce outputs at l and r (the ‘else’ branch in T0), the overall weight of the sys-
tem increases (indeed, ensuring termination essentially boils down to controlling the
outputs that can be generated along computation, since outputs may be used to trigger
new copies of replicated processes). Due to this increase, T0 is not typable. (The sys-
tems of [3, 2] allow the weight of the derivatives of an interaction to be at most the
same as that of the initial process, and for this they rely on a rudimentary partial order
information on names; however, the weight may never increase, as is instead the case
for T0.)
In the new type system that we propose below, replications in which the weight

increases may be typed (indeed T0 is typable, see Section 3.3). The greater expres-
siveness is achieved by enforcing a tight coupling between weight and a well-founded
partial order. Increases in weight through reductions are possible, provided they are ap-
propriately compensated in the partial order. This schema, while intuitively simple, is
rather delicate. As an example of the possible problems (other examples will be given
later in the paper), consider the system

T1
def= u |v |U1 |U2 with

{
U1

def= !p(a,b,c).a.(b | c)
U2

def= !u.v.(w | p⟨w,u,v⟩)

where names w,u,v have the same level k and p has level k ′ < k (this can be imposed,
e.g., by adding extra processes in parallel). InU1, the weight increases underneath the
initial inputs at p and a; but the new outputs are smaller in the partial order, if we set a
above b and c. InU2, the weight decreases underneath the top two inputs. The system
seems to meet the termination conditions; however, it does not terminate (the outputs
at u and v triggerU2, which in turn triggersU1 and we are back to T1).

418 R. Demangeon, D. Hirschkoff, D. Sangiorgi

3.2 The Type System

Figure 1 presents the typing rules for our new system. As in [3, 2], the type system
follows the Church style, in the sense that each name is assigned a type a priori. We
write ⊢ a : T if T is the type so assigned to name a. We add the termination analysis
on top of the simply-typed polyadic π-calculus. Accommodating other standard type
constructs would be straightforward; indeed, in examples, we sometimes use primitive
types for values (integers and booleans, with the related if-then-else operator in the
syntax of processes) and, in one case, recursive types. The grammar for types is given
by

T ::= ♯lS T̃ .

In ⊢ p : ♯lS T̃ , integer l is called the level of p, written lvl(p) = l; andS is the partial
order associated to tuples of names carried along p, in which the i-th component is
represented by integer i. For instance, if S = {(2,3)}, then the second component of
a tuple should be above the third one; thus an output p⟨u,v,w⟩.P is typable only if v is
abovew in the partial order with which the output is typed.We letS range over partial
orders on integers of this kind, and use operator ∗ to ‘project’ them onto a relation on
names. For example, ifS = {(1,2),(4,3)}, then, ifR = S ∗ (u,v,w, t), we have uRv
and tRw.
We need some further notations to define the type system. Two partial orders R 1

andR2 are compatible ifR1∪R2 yields a partial order. IfR1 andR2 are compatible
then R1+ R2 is the partial order (induced by) R1 ∪R2; if they are not compatible,
thenR1+R2 is undefined.R ⇓c stands for the relation obtained by removing all pairs
involving c after closingR by transitivity.
The typing judgements for processes are of the form R ⊢ P, where R is a partial

order. They are defined by the rules of Figure 1, plus the rules for replication below.
The rules of Figure 1 are similar to those in [3]. The typing of replication, however,
is different. We comment on the main typing rules. In the rule for output, the partial
order R must include S ∗ ṽ, which is the partial order derived from the type of the
subject a. Similarly, in the rule for input, the partial order is extended with constraints
on bound names of the input as derived from the type of its subject. We now present
the two rules for replication. They are defined on processes of the form !κ .P, where
κ is a sequence of inputs, such as a1(x̃1).a2(x̃2) . . .an(x̃n); moreover the sequence is
maximal, in the sense that the outermost process operator in P is not an input. If κ =
a1(x̃1).a2(x̃2) . . .an(x̃n), then Mκ is the multiset of the names a1, . . . ,an that occur in
subject position in κ . Moreover, if ♯ liSi

T̃i is the type of ai, for i= 1, ..,n, thenRκ stands
for (S1 ∗ x̃1)∪ · · ·∪ (Sn ∗ x̃n). For a given multiset M of names, M|l is the multiset of
names inM whose level is equal to l, and card(M) is the cardinality ofM.

[Rep1]

R ⊢ κ .P ∃l > 0 s.t.

⎧
⎨

⎩

(i) ∀ j > l,Mκ | j = os(P)| j
(ii) ∀ j ≥ l,rs(P)| j = /0
(iii) os(P)|l !Mκ |l

R ⊢!κ .P

Static and dynamic typing for the termination of mobile processes 419

[Rep2]

R ⊢ κ .P ∃l > 0 s.t.

⎧
⎪⎪⎨

⎪⎪⎩

(i) ∀ j > l,Mκ | j = os(P)| j
(ii) ∀ j ≥ l,rs(P)| j = /0
(iii) card(Mκ |l)≤ card(os(P)|l)
(iv) Mκ |l (Rκ)mul os(P)|l

R ⊢!κ .P

Although the definition of rules [Rep1] and [Rep2] is complex, the checks made are
fairly simple. The rules differ only in conditions (iii) and (iv). Besides the expected
condition on the typing of κ .P, the most important aspect is the comparison between
Mκ , the multiset of the subjects of the inputs in κ , and os(P), the multiset of the
subjects of the outputs in P not occurring under a replication. In the two rules, l is
the maximal level on which the weights of Mκ and os(P) differ (at higher levell they
are the same: condition (i)). In [Rep1], intuitively, levels are sufficient to guarantee
termination. We indeed check in (iii) that, at level l, Mκ strictly contains os(P), as a
multiset. This condition enforces two properties: first, the weight decreases at level l
when consuming the sequence κ ; second, the partial order cannot be used to produce
diverging computations, by compensating the loss in weight with an increase in the
partial order.
In rule [Rep2] (that uses the same notations as [Rep1]), condition (iii) says that at

level l the weight ofMκ is not bigger. Hence weight alone is not sufficient to guarantee
termination, and the partial order becomes crucial: we check in (iv) that, at level l,
Mκ dominates os(P) according to the strict partial order associated to the multiset
extension of Rκ . Precisely, Mκ |l (Rκ)mul os(P)|l holds if Mκ |l ̸= os(P)|l , and there is
a multiset C included in Mκ and os(P) s.t. for all b ∈ os(P)|l \C, there is a ∈Mκ |l \C
with aRb.
In both rules, the remaining condition (ii) ensures that no name is created at level l

or higher; the need for this technical condition will be shown in the second example of
Section 3.3.

3.3 Examples

We present two examples that illustrate some of the technicalities of the type system.
The first example explains the need for condition (iv) in rule [Rep1]. Consider the
system T1 in Section 3.1. The system diverges. We explain why it is rejected by our
system, supposing, as we did in Section 3.1, that we must have lvl(a) > lvl(p); e.g.,
p has level 1 and all other names have level 2. This way, we can typeU 2 using [Rep1]
(two inputs at level 2 ‘weight more’ than one at level 2 and one at level 1). ForU 1, since
the weight is increasing, we must resort to the partial order, and impose that the first
component of tuples transmitted on p dominates the two other components (so that
name a dominates b and c), and we can use [Rep2]. However, this renders the typing
ofU2 invalid, because condition (iv) of [Rep1] is not satisfied: Mκ |2 = {u,v} does not
contain os(P)|2 = {w}. It can be shown, more generally, that for any assignment of
levels to names, T1 cannot be typed.

420 R. Demangeon, D. Hirschkoff, D. Sangiorgi

Another delicate aspect of the type system is the control of the creation of new
names. In a replication !κ .P, a new name that is created should have a level smaller
than the maximal level that decreases when moving from κ to P (this is imposed by
condition (ii) in [Rep1] and [Rep2]). The need for this constraint is illustrated by the
following process.

T2
def= !p(a,e, f).a.(e | f | p⟨a,e, f ⟩) | !p(a,e, f).e. f .(νc)(c | p⟨c,e, f ⟩) .

Without the constraint on the creation of new names, T2 could be typed, by setting the
level of p to 1, the level of all the other names to 2, and annotating the type of p with
a partial order that forces a to be above e and f . But T2, when put in parallel with
u | p⟨u,v,w⟩ (which would also be typable), diverges:

T2 | u | p⟨u,v,w⟩ →→ T2 | v | w | p⟨u,v,w⟩ →→ (νc)
(
T2 | c | p⟨c,v,w⟩

)

At the end, c plays the role played by u in the initial state. In the second replication in
T2, where the new name c is created, the maximal level that decreases is 2 (at level 2,
two outputs are consumed to reach the body of the replication, namely e and f , and
only one output is produced, namely c). The newly created name has precisely level 2,
hence typing fails.

Process T0 presented in Section 3.1 can be type-checked, by assigning type Ta to
names a, l,r, type Tans to ans, and type Tnode to node, with

Ta = ♯3(M,S,Tans) , Tans = ♯2(K) , Tnode = ♯1{(1,2),(1,3)}(Ta,Ta,Ta,S,K) ,

where S is the type of the value v (strings in the example), K the type of the key
associated to a value, M the type of tags indicating the method that is invoked on the
tree. In the typing, the critical part is the ‘else’ branch in T0; here the input on a at
level 1 is traded for two outputs, on names l and r, at the same level, and we rely on
the partial order derived from p to conclude the typing ([Rep2] – a dominates both l
and r). Note that at the higher level, level 3, the weight does not change, as the input
at node is followed by an output on the same channel.

3.4 Soundness of the Type System

Theorem 1. If R ⊢ P then P terminates.

Proof (Sketch). Suppose P is non-terminating, i.e. there exists an infinite derivation
D : P1 = P→ P2 → . . . We write κ1, . . . ,κn for the (finitely many) prefix sequences
occurring in P. The typing for P determines, for each κ i, a level, written lvl(κi), which
is the maximal level at which either the order or the weight decreases (this is integer l
in [Rep1] and [Rep2]).
Some steps in D correspond to a communication that erases the last input pre-

fix of one of the κis – we call such steps gaps; there are necessarily infinitely

Static and dynamic typing for the termination of mobile processes 421

many gaps, otherwise no divergence could arise. Since there are finitely many κ is,
at least one of the κi is involved in an infinite number of gaps in D . We let k =
max{lvl(κi).κi is fired an infinite number of times in D}. We focus on reductions that
involve gaps at level k to derive a contradiction.
By definition of k, and because P is typable, there exists a step in D after which:

(i) no new name is created at a level ≥ k (and hence the support of the partial order
involving free names remains the same at level k); (ii) no output occurring at a level
strictly greater than k is triggered. After that step, there are necessarily infinitely many
gaps involving some κ at level k along which the order decreases: if this was not the
case, there would exist a step after which all such gaps would correspond to a strictly
decreasing weight, which is impossible. Since for such gaps the partial order cannot
grow (condition (iv) in [Rep1]), and since the support of the partial order remains the
same, we derive a contradiction (Rmul is well-founded whenever R is). ⊓#

The proof of Theorem 1 departs considerably from the correctness proof of the sys-
tems in [3]. The strategy of the latter proof is less robust, because it exploits additional
syntactical hypotheses about prefixes in processes to rearrange reductions in an infi-
nite computation. In the present proof, we extract some ordering information from a
diverging computation in order to derive a contradiction.

4 The Mixed Type System

In this section we discuss another approach to typing termination. We present a mixed
system in which the type checks are performed in two separated phases: a phase that
precedes execution, and the phase of execution itself. Below, these two phases are re-
ferred to as static and dynamic, respectively; correspondingly we distinguish between
static and dynamic typing.
The static typing, besides making the type checks, inserts into the processes asser-

tions on names of the form [a > b]. We call a process with assertions an annotated
process. The grammar for annotated processes is the same as that of ordinary pro-
cesses in Section 2, with the addition of the production [a> b]P for assertions. We use
A,B, . . . to range over annotated processes.
The assertions are needed in the dynamic typing. Precisely, at run time we check

that the transitive closure of the assertions encountered during execution is well-
founded. Thus the operational semantics is defined on pairs (A,R) where A is an
annotated process andR a partial order (as usual, represented by a set of pairs whose
reflexive and transitive closure induces the partial order).
Failure in the dynamic checks occurs when the addition of a new assertion intro-

duces a cycle; in this case the special term ⊥ is produced, meaning that an exception
has been raised. We call ⊥ and the pairs (A,R) configurations. We first define the
dynamic system, and then the static system.

422 R. Demangeon, D. Hirschkoff, D. Sangiorgi

4.1 The dynamic system

The operational semantics on ordinary processes is extended to configurations as ex-
pected, and we write !→ for the reduction relation on configurations. The only new rule
is the following (see Appendix 6.2 for a complete presentation).

[a> b]A,R !→
{
A,(R ∪{(a,b)}) ifR∪{(a,b)} is a partial order
⊥ otherwise

An annotated process A is divergent if there is an infinite sequence of reductions ema-
nating from (A, /0) (where /0 is the empty relation).

4.2 The static system

The static type system takes an ordinary process, performs some type checks on it,
and returns an annotated process. Judgements for processes are of the form ⊢ P! A,
meaning that P is well typed and A is the annotated version of P that is produced.
The rules are presented in Figure 2. As in Figure 1, the main termination analysis

is performed in the rule for replication. To type a replication !a(x̃).P, we insert an
assertion whenever we encounter an output in P that is not under a replication and
whose subject has the same level as a; in this situation, levels alone are not sufficient
to guarantee termination, and further checks, via the assertions, are postponed at run
time.
We explain the notations used in the rule for replication. If A is an annotated pro-

cess and a a name, then C(A,a) stands for the annotated process obtained from A by
inserting an assertion [a> b] in front of each output (not guarded by replication) whose
subject name b has the same level as a. Intuitively, [a > b] is a sanity check: a has to
dominate b according to the partial order to guarantee that the process does not loop
(see examples in Section 4.4). We write lvl(os(P)) and lvl(rs(P)) for the sets of the
levels of the names in os(P) and rs(P), respectively. Thus la≽ lvl(os(P))means that la
is greater than, or equal to, the level of each name in os(P); and l a ≻ lvl(rs(P)) means
that la is strictly greater than the level of each name in rs(P).

Remark 1. In the rule for replication, only the initial input of the replication is exam-
ined. The system can be made more powerful by taking into account sequences of
inputs, along the lines of the type system of Section 3 (where sequences are indicated
by the κ prefix). We have not done so for simplicity of presentation and for efficiency:
as discussed in Section 4.5, inference for the present system is polynomial. It would
become NP-complete with sequences (as a matter of fact, it can be proved along the
lines of [2] that type inference is NP-complete for the inference problem for the type
system of Section 3).
Since we do not take sequences into account, the systems of Sections 3 and 4 are

incomparable: none of them captures more processes than the other.

Static and dynamic typing for the termination of mobile processes 423

⊢ P! A ⊢ a : ♯la T̃ ⊢ ṽ : T̃
⊢ a⟨ṽ⟩.P! a⟨ṽ⟩.A

⊢ P! A ⊢ a : ♯la T̃ ⊢ x̃ : T̃
⊢ a(x̃).P! a(x̃).A

⊢ P! A ⊢ Q! B
⊢ P | Q! A | B

⊢ P! A ⊢ Q! B
⊢ P+Q! A+B

⊢ P! A
⊢ (νc)P! (νc)A

⊢ 000! 000

⊢ P! A ⊢ a : ♯la T̃ ⊢ x̃ : T̃ a /∈ os(A)
la ≽ lvl(os(P)) la ≻ lvl(rs(P)) A′ =C(A,a)

⊢!a(x̃).P! !a(x̃).A′

Fig. 2 The static type analysis in the mixed system

4.3 Soundness

Theorem 2. If ⊢ P! A, then A has no diverging computation.

For lack of space, we omit the proof of this result, that follows the same general
strategy as the proof of Theorem 1.
The following proposition says that a process and its annotated version perform the

same reductions, unless the annotated one raises an exception. Relation→∗ (resp. *→∗)
is the reflexive transitive closure of → (resp. *→). We write erase(A) for the process
obtained by removing the assertions from A.

Proposition 1. Suppose⊢P!A. If P→∗ P′, then either A, /0 *→∗ A′,R with erase(A′)=
P′ for some R, or A, /0 *→∗ ⊥. Conversely, if A, /0 *→∗ A′,R, then P→∗ P′ for some P′
with erase(A′) = P′.

4.4 Examples

The first example shows a divergent process that passes the static phase of the mixed
system and produces a failure exception at run time. Let

R def= !p(a,b,c).(!a.b | !b.c | !c.a) | p⟨u,v,w⟩ | u .

R is typable: we have a derivation for

⊢ R! A def=!p(a,b,c).(!a.[a> b].b | !b.[b> c].c | !c.[c> a].a) | p⟨u,v,w⟩ | u

by assigning the same level to a,b,c. At run time we have the following (deterministic)
sequence of reductions:

424 R. Demangeon, D. Hirschkoff, D. Sangiorgi

!build(a, s0,e0). (νstate) (
state⟨nil,nil, s0,e0⟩
| !a(chan,mode).state(l, r, s,e).chan(v,ans,n).

if mode= merge then
if l = nil then state⟨n, r, s,e⟩
else if r = nil then state⟨l,n, s,e⟩
else (νchan′) (l⟨chan′,merge⟩.chan′⟨v,ans,n⟩.state⟨l, r, s,e⟩

+ r⟨chan′,merge⟩.chan′⟨v,ans,n⟩.state⟨l, r, s,e⟩)
else . . .)

Fig. 3 Merging tree structures

(A, /0)→→ (A | !u.[u> v].v | !v.[v> w].w | !w.[w> u].u) | [u> v].v, /0)
→→ (A | !u.[u> v].v | !v.[v> w].w | !w.[w> u].u) | [v> w].w,R1)
→→ (A | !u.[u> v].v | !v.[v> w].w | !w.[w> u].u) | [w> u].u,R2)
→ ⊥

whereR1 is {(u,v)} andR2 is {(u,v),(v,w)}. Process A eventually produces⊥ as the
three inner replications create a cycle in the relation.
The next example illustrates an advantage of dynamic typing on data-dependent or

non-deterministic computations. Let

Q def= (Q0 | p⟨u,v⟩ | u | g) where Q0
def= !p(a,b).(!a.b | (g.!b.a+g.b)) .

When the output at p is consumed we obtain the process

Q′ def= Q0 | !u.v | (g.!v.u+g.v) | u | g .

If the output on g synchronises with the left summand, a loop is produced by the two
replications. If the right summand is selected, the divergence is avoided. A static type
system would necessarily reject Q, due to the potential loop in the two replications. In
our mixed system, with appropriate choice of levels, Q passes the static analysis. At
run time, one computation of Q will yield⊥, the other will not. We omit the details for
lack of space.
We now discuss the typing of recursive structures as those in Section 1 and Sec-

tion 3.1: trees with operations of remote allocation, that allow one to merge two trees
by attaching the root of a tree to a leaf of another tree. To type the tree T0 of Section 3.1,
we need to take into account sequences of inputs in replications, that is, replications
of the form !κ .P as we do in the type system of Section 3. (Precisely, in the subterm
!node(a, . . .).a(. . .) . . ., we need to compare the sum of the levels of names node and
a against the weight of the continuation.) This can be easily done, as discussed in Re-
mark 1, by strengthening the typing rule for replication in the static phase of the mixed
system. Alternatively, we can keep the present typing rules and make some modifica-
tions to the programs. We discuss this solution in the remainder. Figure 3 presents the
modified tree structure. The topmost replication, !build(a,s 0,e0), acts as a constructor,
invoked for the creation of a new node; this new node carries values e 0,s0, and interacts
with the parent node via channel a. The state of this node is represented by the floating

Static and dynamic typing for the termination of mobile processes 425

message on state (in which the first two components are the names for accessing the
children, and are set to the special value nil if the node is a leaf). We only show the
code for the merge operation: the code for a search can be adapted from the example
in Section 3.1. When merge is invoked, the transmitted channel should be attached to
a leaf; if there is room, this happens in the current node; otherwise themerge is nonde-
terministically delegated to one of the children. (This is a simplified version of merge:
the new tree is attached anywhere in the tree, without, for instance, ensuring that the
tree remains well-balanced.) The code above is accepted by the static analysis of the
mixed type system1 modulo the insertion of just a few annotations: the highest level
is affected to names a, l,r, and an annotation [a > l] (resp. [a > r]) is inserted before
the output at l (resp. at r). The resulting annotated process does not lead to failure
exceptions at run time.
Themixed system remains, of course, incomplete— there are terminating processes

whose annotated version yields ⊥— as the problem of the termination of a process is
not decidable.

4.5 Efficiency

The static analysis of themixed system can be made in time that is polynomialw.r.t. the
size of the process being checked, by adapting the type inference algorithms in [2] (the
modifications are mild). (Our system is more flexible than the one of [2], in that, e.g.,
we allow constraints relating a name received in some input prefix and a name defined
above that prefix, but this does not affect the overall inference procedure for levels,
which remains polynomial.)With such an algorithm, the static analysis introduces only
the necessary assertions. More precisely, if the termination of a process can be proved
by only relying on levels and weights (without referring to a partial order), then the
static analysis will introduce no assertions and there will be no dynamic checks at run
time.
Note that a trivial (and linear) static analysis would assign the same level to all

names, and add assertions in front of all outputs prefixes. This would however mean
that: all type checks are performed at run time; useful weight information is lost, so
that the final termination analysis is rather rough.
The inference problem would become NP-complete if the system were refined by

taking into account sequences of inputs underneath a replication as suggested in Re-
mark 1 (this is proved by adapting the NP-completeness result for the system with
sequences of inputs in [2]).
Concerning the efficiency of dynamic checks, each time a new constraint is added

to theR component of a configuration, we have to check for acyclicity of the resulting
relation. This can be done via a depth-first traversal of R, whose cost is linear in
#R + |R|, where #R (resp. |R|) stands for the size of dom(R) (resp. the number of

1 Recursive types are needed for typing, independently from the termination analysis; as mentioned
in Section 3.1, recursive types, as well as other common type constructs, are straightforward to ac-
commodate.

426 R. Demangeon, D. Hirschkoff, D. Sangiorgi

pairs in R). In [6], an online algorithm is shown, that allows one to perform the same
task in linear amortised time in #R only.

5 Conclusion

In this paper we have investigated type systems for termination in which techniques of
previous systems based on a lexicographical measure are enhanced with partial orders
on names. The first system is purely static, the second mixes static and dynamic typing.
We have illustrated the expressiveness of the mixed system on a remote allocation

example in which a recursive structure is extended with names and substructures im-
ported from the environment. It would be difficult to handle this kind of system using
a purely static system, due to the mobility of the names involved. The reason is that,
intuitively, one cannot statically predict the precise name that is received in an input,
and therefore one must make a worst-case approximation, using a set of names, guided
by the type system. Further, in this situation, if a name is exported, then one has also
to foresee the possibility that the name is sent back, which can easily create cycles that
break the partial order on the names.

Acknowledgements. This work has been supported by the french ANR projects
“MoDyFiable” and “CHoCo”, by European Project FET-GC II IST-2005-16004 SEN-
SORIA, and by Italian MIUR Project n. 2005015785, “Logical Foundations of Dis-
tributed Systems and Mobile Code”.

References

1. M. Abadi, L. Cardelli, B. C. Pierce, and G. D. Plotkin. Dynamic typing in a statically typed
language. ACM Trans. Program. Lang. Syst., 13(2):237–268, 1991.

2. R. Demangeon, D. Hirschkoff, N. Kobayashi, and D. Sangiorgi. On the complexity of termination
inference for processes. In Proceedings of TGC’07, LNCS. Springer, 2008. to appear.

3. Y. Deng and D. Sangiorgi. Ensuring termination by typability. Inf. Comput., 204(7):1045–1082,
2006.

4. F. Henglein. Dynamic typing. In Proc. of ESOP’92, volume 582 of Lecture Notes in Computer
Science, pages 233–253. Springer, 1992.

5. T. Lindholm and F. Yellin. The JavaTM Virtual Machine Specification. Addison Wesley, 1997.
6. A. Marchetti-Spaccamela, U. Nanni, and H. Rohnert. Maintaining a topological order under edge
insertions. Inf. Process. Lett., 59(1):53–58, 1996.

7. D. Sangiorgi. Termination of processes. Mathematical Structures in Computer Science, 16(1):1–
39, 2006.

8. D. Sangiorgi and D. Walker. The pi-calculus: a Theory of Mobile Processes. Cambridge Univer-
sity Press, 2001.

9. P. R. Wilson. Uniprocessor garbage collection techniques. In Proc. of IWMM’92, volume 637 of
Lecture Notes in Computer Science, pages 1–42. Springer, 1992.

10. N. Yoshida, M. Berger, and K. Honda. Strong normalisation in the pi-calculus. Information and
Computation, 191(2):145–202, 2004.

Static and dynamic typing for the termination of mobile processes 427

6 Formal Definition of the Operational Semantics

6.1 π-calculus Processes

Structural congruence for the π-calculus is the least equivalence relation that is closed
under α-conversion, satisfies the laws of an abelian monoid for | and + (with 000 as
neutral element), and moreover validates the following axioms:

(νx)(νy)P ≡ (νy)(νx)P !P | P≡ !P (νz)000≡ 000 P+P≡ P

(νx)(P | Q)≡ (νx)P | Q if x is not a free name of Q

We moreover let ≡ be closed by parallel composition, restriction, and replication, but
not under prefixes (this is due to a technical reason related to the handling of κ in
Section 3). The reduction relation is defined as follows.

(x⟨ṽ⟩.P1+M1) | (x(z̃).P2+M2)→ P1 | P2{ṽ/z̃}

P1→ P′1
P1 | P2→ P′1 | P2

P→ P′

(νc) P→ (νc) P′
P1 ≡ P2→ P′2 ≡ P′1

P1→ P′1

6.2 Annotated Processes

Structural congruence for annotated processes is defined as above. If R is a relation
on names, we write ok(R) if R induces a partial order, and ¬ok(R) otherwise. The
reduction relation for configurations, written &→, is defined by the following rules.

(x⟨ṽ⟩.A1+M1) | (x(z̃).A2+M2),R &→ A1 | A2{ṽ/z̃},R

A1,R &→ A′1,R
A1 | A2,R &→ A′1 | A2,R

A,R &→ A′,R
νc A,R &→ νc A′,R

A1 ≡ A2 A2,R &→ A′2,R A′2 ≡ A′1
A1,R &→ A′1,R

ok(R ∪{(a,b)})
[a> b]A,R &→ A,R∪{(a,b)}

¬ok(R ∪{(a,b)})
[a> b]A,R &→ ⊥

