Regular n-ary Queries in Trees and Variable
Independence

Emmanuel Filiot and Sophie Tison

University of Lille 1, LIFL, UMR 8022 of CNRS, INRIA Lille - Nord Europe
Emmanuel .Filiot@lifl.fr Sophie.Tison@lifl.fr

Abstract. Regular n-ary queries in trees are queries which are definable by
an MSO formula with n free first-order variables. We investigate the variable
independence problem — originally introduced for databases — in the context of
trees. In particular, we show how to decide whether a regular query is equiv-
alent to a union of cartesian products, independently of the input tree. As an
intermediate step, we reduce this problem to the problem of deciding whether
the number of answers to a regular query is bounded by some constant, in-
dependently of the input tree. As a (non-trivial) generalization, we introduce
variable independence w.r.t. a dependence forest between blocks of variables,
which we prove to be decidable.

1 Introduction

Querying a tree consists of selecting nodes of its domain. This task has received
a special interest from the XML community as it is fundamental to informa-
tion extraction and document transformation. Several formalisms have been
proposed to express unary queries [13], but less work has been done on n-ary
queries, ie the selection of n-tuples of nodes [1, 10, 15]. Nevertheless, n-ary
queries are of special interest, for instance to select tuples of the form (name,
addr, email, phone, faxr) in an XML document representing a directory. Since
the arity of the query can easily get up to 10, efficiency becomes crucial to
evaluate (n-ary) queries.

On the other hand, the notion of variable independence has been introduced
in the context of (infinite) constraint databases [3, 5, 11, 12]. Query evaluation
can be improved considerably when variables are independent. In particular,
complexities of many evaluation algorithms on constraint databases are related
to some independence between the components of the output tuples. For in-
stance if the query can be decomposed into a Cartesian product of queries of
lower arities, then all sub-queries of the product can be evaluated indepen-
dently. Orthographic dimension has been proposed as a measure for variable
independence [11]. It corresponds to the size of the largest block of dependent
variables. It is shown in [5] that this notion is well-defined, since every pair of
decompositions can be intersected into a decomposition of lower maximal block
size.

429

430 E. Filiot, S. Tison

dir
person person
name email email name email email email
P | | N | | |
fn 1n . . fn 1n . . .

Fig. 1 A tree representing a directory

However, in the context of constraint databases, the structure is infinite but
fixed. A natural question is whether these results carry over into the context of
an infinite number of finite tree structures. The notion of variable independence
is also closely related to the representation of the set of answers of an n-ary
query. In particular, if the variables are independent, this allows to represent
the set of answers as a Cartesian product of sets of (sub)answers of lower sizes.
More generally, aggregated answers have been introduced in [14] as a compact
representation of the set of answers. Basically, these are multipartite dags such
that each part corresponds to a free variable, and the branching structure of
the parts is a tree. This branching structure somehow reflects the structure of
the input tree. Consider for instance the tree of Fig. 1 representing a directory.
Data are omitted in this picture. Consider the ternary query ¢ which selects
all triples (z,y, z) where z is labeled person, y is the first name of this person,
and z one of its emails. Once x is selected, then y and z are independent. The
set of answers to this query can be represented as a 3-partite graph with sets
of vertices {V,,V, V.}, where there is a directed edge from a node u of V; to
a node v of V,, if v is the name of u. Similarly, edge relations between V,, and
V. correspond to the (person, email) relations of the input tree. A person may
have several emails, making this representation more compact than the set of all
answers. Moreover, as argued in [14], this representation keeps the information
on how the components of the output tuples are related in the tree. It is also
particularly appropriate for post-processing tasks, such as answer searching,
answer browsing, statistical computing, answer enumeration, and cascade-style
querying. It raises the fundamental question of how compact this representa-
tion is. We answer this question by extending variable independence to relative
independence. In particular, it allows more complex dependencies between vari-
ables, as emphasized by the previous example. We measure compactness in the
settings of data-complexity, as we want to be independent of the query formal-
ism.

To achieve the formal study of variable independence, we choose Monadic
Second Order Logic to express n-ary queries, as it is often used as a yardstick
logic in the context of trees [13].

Regular n-ary Queries in Trees and Variable Independence 431

We show that variable independence is decidable for MSO queries in trees,
and that a decomposition is computable. We reduce this problem to testing
whether a query is bounded, i.e. its number of answers is bounded by some
constant independent of the input tree. We prove this problem to be decid-
able. We show that the notion of orthographic dimension is also well-defined
in the context of trees. Finally, we introduce variable independence w.r.t. to a
dependence forest, which introduces dependencies between blocks of variables.

Note that in the context of trees, a restricted notion of variable independence
has been investigated in [15] and proved to be equivalent to non-ambiguity of
tree automata.

Acknowledgments We are very grateful to the anonymous referees for their
valuable comments, to Bruno Courcelle who pointed out some references and
to Slawomir Staworko for his careful re-reading.

2 Preliminaries

Although XML documents are usually modeled as unranked trees [13], we con-
sider finite binary trees only. All our results can easily be lifted to unranked
trees via a binary encoding [13].

Binary trees We consider a finite alphabet X' consisting of symbols ranged
over by a, f,g. A binary tree t over X' is inductively defined by the following
grammar: ¢ == a | a(t,t) ae X
The set of binary trees over X' is denoted by T's;. The set of nodes Ny of a tree
t € Ty is a set of words over {0,1}. We write € for the empty word and w.u’
for the concatenation of u and u’. The set N, is inductively defined by N, = ¢
and Nty = {€f U {bu | b€ {0,1}, u € Ny, }. Nodes u € N; for which there
is some b € {0,1} such that u.b € N; are called inner-nodes. Other nodes are
called leaves, and the node € is called the root of t.

Let X’ be another finite alphabet. Let t € T, and ' € T be two binary trees
such that N; = Ny. The product tree t x t' is the tree over X x X’ inductively
defined by: a x b = (a,b), for all a € X,b € X', and f(to,t1) X g(ty,ty) =
(f,g)(to X t6,t1 X tll), for all f €l ,gc¢€ 2/, to,t1 € T; and t6,t/1 € T'sr. More
generally, we can define the product of n trees modulo associativity of x.
Trees are also viewed as structures over the signature consisting of the binary
successor symbols Sy and S; and the unary symbols lab,, for all a € X, inter-
preted by their intuitive meanings.

MSO Monadic Second Order (MSO) logic extends first-order logic with
quantification over sets. We consider first-order (resp. second-order) variables
ranged over by z,y (resp. X,Y). MSO formulas consists of atomic formulas
labo(z), So(z,y), Si(x,y) or x € X, and are closed by boolean connectives A, -
and quantification 3z, 3X. We let ¢, p = ¢ denotes the satisfaction relation and

432 E. Filiot, S. Tison

say that the formula ¢ holds in the tree ¢t under the variable assignment p. We
refer the reader to [13] for more details about the semantics of MSO.

Definition 1 (regular n-ary queries). Let n > 0. An n-ary query q is a
mapping from trees t € Ty into subsets of N/*. It is regular (or MSO-definable)
if there is an MSO-formula ¢(z1,...,x,) with n free first-order variables such
that for all trees t, we have: q(t) = {(p(z1),...,p(xn)) | t,p E d(x1,...,20)}

If n =0 (resp. n = 1, n = 2), ¢ is called Boolean (resp. unary, binary). We
also say that ¢ defines ¢ and denote ¢ by gg.

Those queries are called regular since there is a close correspondence between
MSO-definable queries and tree automata. In particular, it is well-known that
every MSO-definable n-ary query ¢(z1,...,z,) on trees over X can be repre-
sented as a tree automaton A over the alphabet X' x {0,1}™ [15, 19, 4]. More-
over, we can assume that A is canonical, i.e. for any tree t € L(A), and any
i € {1,...,n}, there is exactly one node of ¢ such that the (¢ + 1)-th component
of its label is 1 [19, 4]. The following holds: for all its nodes uy,...,u, of ¢,
t= o(ur, ... up) iff E X xuy X X xu, € L(A), where for alli € {1,...,n}, xu,
is the tree on {0, 1} such that Ny = N, and all nodes except u; are labeled 0.

3 Boundedness Properties of Regular Queries

In this section, we prove intermediate results which are useful for Section 4, but
might be of independent interest.

Let ¢(x1,...,2,) be an MSO formula whose free variables are first-order. We
say that ¢ is bounded if there is K € N such that for all t € T’s;, the number of
assignments p of variables x;s into N; such that ¢, p = ¢ is bounded by K.

Lemma 1. Given an MSO formula ¢(x1,...,x,) with n free first-order vari-
ables x1, ..., xy, it is decidable whether ¢ is bounded and, in this case, a bound
is computable.

Proof. As said at the end of Section 2, ¢ can be represented as a canonical
tree automaton A over X' x {0,1}". Now, we can easily transform A in linear
time into a bottom-up transducer T4 which takes trees t; over X' as inputs and
outputs trees to over {0,1}" such that Ny, = Ny, and ¢; X t2 € L(A). Since
for all trees t, we have |Ta(t)| = |go(t)|, it suffices to test whether |T4(t)| is
bounded by some constant, which is decidable in polynomial time (in the size
of T4). This is called finite valuedness in [17, 18]. Moreover, for all fixed k € N,
one can decide in non-deterministic polynomial time whether the number of

images by T4 is greater than k [17, 18] (with a constant factor which is several

exponentials in the size of k). Moreover, the bound is lesser than 927 (Tal go;

some polynomial p independent of T4. Hence, based on a dichotomy algorithm,
one can compute the smallest upper bound. The time complexity however is
several exponentials in the size of Ty. O

Regular n-ary Queries in Trees and Variable Independence 433

Concerning time complexity, it is known that the size of the tree automaton
associated with ¢ might be non-elementary in the size of ¢ [19], making the
whole procedure possibly non-elementary. However, if the query is given by a
canonical tree automaton A, testing boundedness becomes polynomial in the
size of A, since testing finite valuedness of a tree transducer can be done in
polynomial time [18, 17].

Lemma 1 could also be deduced from a result of [2]. This paper considers
an extension of MSO on infinite trees with bounding quantifiers. In particular,
for any MSO formula ¢(X), the bounding quantified formula BX.4(X) holds
in an infinite tree ¢, if there is a bound b € N such that the size of any subset
of the set of nodes of ¢ that satisfies)(X) is bounded by b.

Two fragments are proved to be decidable: formulas of the form —BX.1(X),
where 1) is in MSO, and formulas built from arbitrary MSO formulas and B, 3, vV
and A.

We can easily reduce our problem to satisfiability of some formula in the first
fragment. First, boundedness of an n-ary query reduces to boundedness of all its
projections. Hence, we only need to consider unary queries. Now, from a formula
¥(x) in one free variable, we construct a closed formula ~ such that i(x) is
bounded iff « is unsatisfiable. The formula + is a conjunction v = 1 A 2. The
first formula 7; checks whether the model is a tree (possibly infinite) of the form
#(t1, #(ta, #(ts, .. .), for some fresh symbol # & X and t1,t2,t3,... € Tx are
finite trees over X. The second formula 75 has the form -BX.y'(X), where v/ (X)
is an MSO formula which holds in #(t1, #(t2, #(ts, . . .) under some assignment
p if there is ¢ > 1 such that such that p(X) corresponds to the set of nodes u of
t; such that t; = ¢ (u). The formula + is defined by first choosing some node
xo labeled # and then relating ¢ (z) under xo.

However, we cannot benefit from this reduction if the query is given by a tree
automaton (in term of time complexity).

An equivalence relation on n-tuples is a 2n-ary query , often denoted =, such
that for all trees t, = (¢) is an equivalence relation on N;*. We let =; stands
for = (t). It is regular if = is regular. We say that = is of bounded index if for
all trees ¢, the number of =;-equivalence classes is bounded by some constant
which does not depend on the tree. We can define a regular query which selects
the minimal representatives of the equivalence classes, for some MSO-definable
order on tuples. Hence, as a corollary of Lemma 1, we get:

Corollary 1 (bounded index property). Let = be a reqular equivalence re-
lation on n-ary tuples. It is decidable whether = is of bounded index.

Proof. Let t be a tree, we define a total order <, on N/*. It suffices to start from
a total order on IV; and to extend it to a lexicographic order <; on N;*. Take
for instance the lexicographic order on words over {0, 1} which is a total order
on Ny. We can easily show that the query ¢t —<; is regular. Now, we define the
n-ary query qmin : t — {u | Vo' € N}, u =, v = u <; w'}. The query gmin
is regular. Finally it suffices to verify boundedness of ¢, which is decidable
by Lemma 1. O

434 E. Filiot, S. Tison

Beyond Trees Deciding boundedness of an MSO formula can be done for classes
of structures which are images of a regular set of trees by an MSO-transduction.
We refer the reader to [6] for a definition of MSO-transductions. Given a set
of integers I C N, we say that I is linear if there are integers ag,...,a, € N
such that I = {ao + Z?:l oz | x1,...,x, € N} It is semi-linear if it is a
finite union of linear sets. Let o be a signature and C' be a class of o-structures,
0 an MSO-transduction from binary trees to o-structures such that C is the
image by @ of a set of binary trees. In [6], Courcelle proves® that given an MSO
formula ¢(X) over the signature o with one free second-order variable X, the
set {#p(X) | M,p E ¢(X), M € C} is semi-linear, and we can compute the
coefficients of the polynomials if the transduction € is known (#p(X) denotes
the cardinality of p(X)). This is the case for instance for the class of graphs of
clique-width less than k, for any fixed k [8]. To decide boundedness of an MSO
formula ¢(z) (where z is first-order), it suffices to compute the above coefficients
for the formula @(X) =Vz, x € X < ¢(x). The formula ¢(z) is bounded iff the
coefficients g of the linear sets are the unique (possibly) non-null coefficients.
Finally, boundedness of a formula ¢(z1, . . ., x,) reduces to boundedness of every
projection of ¢ on a single variable z;, for all 7 € {1,...,n}. Hence, boundedness
is decidable, for instance, for structures of clique-width less than k&, for any fixed
k, or for unranked trees. However, to decide the bounded index property, we
need an MSO-definable total order.

4 Variable Independence

The definition of variable independence was originally defined over a fixed struc-
ture [3, 12]. We state it over the class of binary trees. We let ¢ be an MSO
formula with free variables x1,...,2,, and P = {B,..., Bx} be a partition of
{z1,...,2,}. We write Tp,, i = 1,...,k, to denote the tuple formed by vari-
ables of B; given in order. We say that ¢ conforms to P, denoted ¢ ~ P, if ¢
is equivalent to a formula of the form \/;V:1 ®i1(Te) N+ A ¢ k(Tp,), where
N is a natural and ¢;; are MSO formulas with free variables in B;. Note that
if we require N to be equal to 1, the problem becomes easy, since it suffices to
test whether ¢ is equivalent to the conjunction of the & projections of ¢ on the
variables from each block B;.

W.l.o.g., we assume that free variables of ¢ are ranked in order given by
Bi,...,By. In other words, we assume x1,...,%, = Tp,,...,Zp, (modulo as-
sociativity). Now, for any ¢ € {1,...,k}, and any tuples of variables T, 7 such
that [T = [g] = |Bil, we let ¢,(7,7) be the formula defined by:

I Courcelle proves a more general result where several free variables are allowed

Regular n-ary Queries in Trees and Variable Independence 435

VL (T,7) = VTp, ... VTp, VTp,., ...VTp, O(Tpy;- -, TB 1, T TB1s - TBy)
>
¢(§Bu o 7531‘—17?’531'4-1’ cee 7§Bk)

For any i € {1,...,k}, and any tree t € T, we let R! be the binary relation
on NP defined by Rt = {(@w,v) | t = Y%, (@,7)}. Intuitively, @ and T are
equivalent if one can substitute u with v, in any tuple selected by ¢ whose i-th
block is w, and conversely.

Lemma 2. Leti € {1,...,k} and t € Tx,. The following are true:

1. R! is an equivalence relation on Nt‘Bi‘;
2. if ¢ 1s equivalent to some formula of the form \/j\f:1 $i1(TB)N NP (T,),
then the number of R:-equivalence classes is bounded by 2V .

Proof. We only prove the second point, as the first is easy. Given some natural
i € {1,...,k}, some tree ¢t and some node tuples u, v of length |B;|, we let u =! ©
if there is some set F' C {1,..., N} (possibly empty) such that for all j € F', we
have ¢ ': Qﬁj’i(ﬂ) A qﬁj,i(i), and for all j e {1, ceey N}\F, we have ¢): _‘(Zsj,i(ﬂ) A
=¢,;,:(0). We can easily prove that =! is an equivalence relation on NtlBi| which
has at most 2V equivalence classes. We now prove that =! is a refinement of
R, which will be sufficient to conclude. Let u, 7 be two node tuples of length
|B;| such that w =! v. Let wy,...,W;—1, Wit1, ..., Wk be node tuples. We have
t @@, W1, T Wit - W) HE £ VL) G (@) A Ada(@) A= A
.k (@) iff (by definition of =t) ¢ = /1Ly ¢j1 (@1) A+ Adyji (D) A+ A bk (W)
iff t & ¢(wn,...,Wi—1,0,Wit1,...,W). Hence we get (u,v) € RL. O

Lemma 3. If for alli € {1,...,k}, there is some m; € N such that for all trees
t € T, the number of equivalence classes of Rt is bounded by m;, then ¢ ~ P.

Proof. Let i € {1,...,n}. We define a successor relation between equivalence
classes, then we introduce formulas clﬁ(T),l =1,...,m;, to define the I-th equiv-
alence class of Rf, in any tree t € T’s.

As already seen in the proof of Corollary 1, there is an MSO-definable total
order < on node tuples. We now define a successor relation S; between the

minimal representatives (for <) of the equivalence relation defined by wé. Now,
let the formula min/, () holds if T is the minimal representative of some equiv-

alence class. It can be defined by V7, 1/125 (Z,7) — T <7. The relation S; is now
defined by the following MSO formula:

S5(7,9) =T <7 Amink(T) Amink () A—(32,T < Z <7 Amink(Z))

We let so(T) stand for 3z, Sé(?, 7) and (%), | € N stands for 37, s,-1(7) A
S;(y, 7). We now define cl!(Z) by 37, s(7) A wé(T, y), for all 1 <1 < m;.
Intuitively s;(T) holds in ¢ under some assignment p if p(T) is the minimal

436 E. Filiot, S. Tison

representative of the [-th equivalence class of R!, while clé (Z) holds in t under
p if p(T) belongs to the I-th equivalence class of R!.
Finally, we let L be the set of tuples of naturals [= (Iy,...,[3) such that 1 < [; <
mg,i=1,...,k, and we denote by 3' (%) the formula 3% . .. Tx, ¢(T1,To,...,Tp)A
/\;?:1 cléj (T;). We let ¢ be the formula 8'(Z1) A cl2(T2) -+ - A CZL’C (ZTr). We now
prove that ¢ is equivalent to \/7., ¢'.

Let t € Tx and wy,...,u; node tuples of ¢ such that ¢t &= ¢(uy,...,).

For all i € {1,...,k}, we necessarily have ¢ = 9, (u;, ;). Hence, there is some
natural /; € {1,...,m;} such that ¢ = di@),i=1,....k Let 1= (l,...,1).
It is easy to see that t = ¢! (T, Uz, . . ., Ug)-

Conversely, suppose there is some tuple | = (I1,...,l;) € L such that ¢t |
@' (w1, ..., u). In particular, we have ¢t |= (5'(;), hence there are some node
tuples uh, ..., u}, such that ¢ = ¢(u1,uh,...,u;), and for each ¢ € {2,...,k},
= clﬁi (w}). We now prove by induction that for all p € {2,...,k}, we have ¢
= @@, -, TUp, Ty iy - - -, Uy,)- It is true for p = 1 by hypothesis. Suppose that it
is true at rank p > 1. Since ¢ |= cl;‘i:f (Up+1), we also have t = wgﬂ (Tpy1,Tp4 1)
By induction hypothesis, we have t |= ¢(y, ..., Uy, Uy 1, - - -, Uy), and by defi-

nition of wgﬂ, we easily get t |= @(Ur, ..., Tp, Ups1, Uy, - - -5 Ty)- O
As a consequence of Lemma 2 and 3, and Corollary 1, we get the main result:

Theorem 1. Given an MSO formula ¢ with free variables x1,...,z, and a
partition P of {x1,...,z,}, it is decidable whether ¢ ~ P holds or not. If it
holds, a decomposition of ¢ is computable.

Orthographic Dimension The notion of orthographic dimension has been
introduced in [11] to measure the degree of independence between variables,
over a fixed database. We define it for any tree structure. Given a for-
mula ¢(z1,...,2,), the orthographic dimension dy of ¢ is defined by d, =
minp . gp maxpep |B.

Theorem 1 gives us a naive algorithm to compute dg: for each partition P of
{1,...,n}, test whether ¢ ~ P and compute mazpcp |B|. But as we next show,
we can restrict the tests to 2-partitions.

Given two partitions P, P’ of {1,...,n}, we write PM P’ for the refinement of P
and P’. Formally, we have PMP'={BNB' | B€ P,B' € P'} — @. Theorem 1
of [5] states well-definedness of the notion of orthographic dimension, for first-
order logic on any vocabulary, over a fixed structure. In particular, it means
that there is a unique partition whose largest block is equal to the orthographic
dimension, such that the formula conforms to it. However, the proof given in
[5] also works if the structure is not fixed. Moreover, it also works as soon as
the logic contains first-order quantifiers, negations, and Boolean connectives.
Hence, it also proves the following:

Theorem 2. Let ¢ be an MSO formula inn free first-order variables x1, . .., x,,
and P, P’ be two partitions of {1,...,n}. If ¢ ~ P and ¢ ~ P’, then ¢ ~ PMP’.

Regular n-ary Queries in Trees and Variable Independence 437

Now, let P = {P |P is a 2-partition of {1,...,n} and ¢ ~ P}. From Theorem
2, we can deduce that the orthographic dimension of ¢ is the size of the largest
block of MpepP. Moreover, by Theorem 1, we can compute a decomposition
which corresponds to the orthographic dimension.

Relation to the Answer Set Representation If ¢ ~ P, then for any tree t € Ty,
we can represent q,(t) by an aggregated answer of size O(n|t|%¢), computable
in time O(n|t|%) (¢ is assumed to be fixed). Indeed, ¢ is equivalent to a (com-
putable) formula of the form:\/i]\;1 ¢i1(xp,) N ...\ ¢ir(rp,) for some natural
N. For every i € {1,...,N}, and j € {1,...,k}, we compute an automaton
A; j over X x {0,1}!P5] such that we can compute in time O([t||Ps]|4; ;|) the
set qg, ,;(t) [7]. The answer representation can be identified to the collection of
k-tuples (qg, , (), .-, q¢, (1))

5 Relative Variable Independence

In this section, we generalize variable independence w.r.t. a partition to variable
independence w.r.t. a dependence forest on free variables. Consider for instance
the tree of Fig. 1, and let ¢(x,y,2) be an MSO formula, where x denotes a
person, y its first name and z one of its emails. Once the interpretation of x
is fixed, then y and z are independent. We call this relative independence. Let
T be the tree z(y, z), we say that ¢ conforms to T', denoted ¢ ~ T. We next
show that relative independence is decidable as a consequence of Theorem 1.
As a slight generalization, we allow dependence forests to specify dependences
between sets of variables instead of single variables. For example, if a formula
¢(z,y, z,w) conforms to some dependence forest {z, y}({z}, {w}), it means that
once x and y are selected, then z and w are independent.
Formally, let V = {x1,...,2,} be a finite set of variables. A dependence forest
F over V is a forest whose nodes are labeled by subsets of 2V and such that the
set of labels occurring in F' form a partition of V. If F' has only one root, then it
is called a dependence tree. We often denote by {T1, ..., T)} a dependence forest
consisting of the dependence trees T7, ..., Tk, and by V/(F) a dependence tree
comnsisting of a dependence forest F rooted by a set V' C V. Although we take
a graph point of view, we use the same notations as for binary trees to denote
the set of nodes of some forest F' over V and its labeling function, respectively
by Np and labp : Np — 2V. Finally, we confuse the set and tuple notations for
variables, so that we sometimes write V = T, for some tuple of variables T.
Let ¢(x1,...,2,) be an MSO formula in n free first-order variables z1, ..., z,.
Let p be a mapping from Np into MSO formulas. We say that p is admissible
for F if for all nodes u,v € Np, if u is the parent of v, then p(v) is an MSO
formula 1 whose free variables are labp(u) U labp(v); if u is the root of F, then
we require that p(u) is an MSO formula whose free variables are labp(u). If p

438 E. Filiot, S. Tison

is admissible, we naturally extend it to an MSO formula p(F) = A, cn, #(u)
in free variables z1,...,T,.

Definition 2. We say that ¢ conforms to F', denoted ¢ ~ F, if there is a finite
sequence fi1, ...,y of admissible mappings for F' such that ¢ is equivalent to

\/i]il wi(F).

We prove decidability of relative independence. We start by a base lemma
(Lemma 4), for forests of the form Z({y,z}). Then we give a recursive algo-
rithm for the general case, that uses Lemma 4 and Theorem 1.

Lemma 4. Given an MSO formula ¢(T,7,Z) with free variables T,7,Z, it is
decidable whether ¢ is equivalent to some disjunction of the form \/_; (T, 7) A
Bi(Z, Z), for some naturaln, and MSO formulas a;, B; fori=1,...,n. Moreover
if it holds, a disjunction is computable.

Proof. Intuitively, we fix the interpretation of T by extending the alphabet with
Boolean tuples. This gives a formula ¢z(7,z), and we test whether ¢z(7,z) ~
{v.z}.

More formally, we first transform ¢(Z, ¥, Z) into ¢z(7, Z), interpreted on trees

over the alphabet X x {0,1}™, where m = |Z|, such that the following property
holds (Py): for all trees ¢, all nodes u1,...,u,;, € N¢, and all node tuples v, w,
we have t = ¢(u1, ..., Un, T, W) iff £ X Xy, X -+ X Xu,, F ¢z(0, W), where the
trees x., are defined at the end of Section 2.
This can be done by repeating exhaustively the following transformation rule
on ¢: replace each atom of the form P(T1,x,T2), where z is the i-th component
of T and is a free occurrence in ¢, by Jz, V(f,E)GExBi lab(ﬁg) () A P(T1,,T2),
where B; C {0,1}™ is the set of Boolean tuples whose i-th component is 1
for i = 1,...,m. Hence, ¢(%,7, Z) rewrites to some formula ¢Z(7,z). We define
¢z by O A Pean, Where @eqn is a sentence which ensures that all models ¢ €
T's« (0,13 of ¢z are canonical (ie all nodes except one have their i-th component
set to 07 =1,...,n). We call R; the transformation from ¢ to ¢z.

Then it suffices to test whether ¢z(y,Z) ~ {7,Z}, which is decidable by
Theorem 1. If it holds, then ¢z(7y,Z) is equivalent to some formula of the
form ¥z(y,2) = Vi, @iz(H) A Biz(2), for some MSO formulas «; 7, ;7. We
next consider the following transformation rule Rs: replace each atom of the
form lab5(x) by labs(z) A Ay,—; @i = x, where b; denotes the i-th com-
ponent of b, i = 1,...,m. Suppose that T = z1,...,2,,. Applying exhaus-
tively this transformation rule on vz leads to a formula (T, 9, z) of the form
Vi, &i(T,y) AB; (T, Z) interpreted on trees over X. We have the following prop-
erty (P): for all trees ¢, all nodes uq, ..., uy, € N, and all node tuples T, w, we
have t = ¢ (u1, ..., Um, 0, W) iff t X Xy, X+ X Xu,, FE Vz(0,).

Finally, we prove this algorithm to be correct. Suppose that it returns a
decomposition. By combining properties P; and P, we can prove correctness
of this decomposition. Conversely, suppose that ¢ is equivalent to some formula
of the form \/]_, &;(Z,y) A B;(T,Z). It is easy to see that ¢z is equivalent (here

Regular n-ary Queries in Trees and Variable Independence 439

Algorithm 1 Testing Relative Independence
procedure D(¢,F)

2: case F is a leaf or is of the form Z(7):
return ¢
4:
case F is of the form {Z1,...,ZT}:
6: test whether ¢ ~ {T1,...,Tx} as in the proof of Theorem 1 and return a decomposi-

tion. Otherwise breaks.

8: case I is of the form z(7, z):
test whether ¢ ~ Z(y,Z) as in the proof of Lemma 4 and return a decomposition.
Otherwise breaks.
10:
case F is of the form Z(y(F'), F"):
12: Z',Z" « sets of variables occurring in F’, F"
Vi ai(@3,7) A Bi(@2") — D(6,5({7 U, 2"}))
14: return \/, D(oy, 5(F',Z)) AD(B;, Z(F"))

16: case F is of the form {T1,...,Tx}:
for i€ {1,...,k} do
18: T; < set of variables occurring in T;
k j (= _ _
Vic, /\j:l af ;) < D(#,{Z1,. .., %k })
20: return \/?_; D(a},T1) A - AD(aF, T})

we use canonicity of its models) to \/7_, a; 7(y) A B z(Z), where ¢z, ; z(y) and
Bi,z(Z) are obtained by applying the rewrite rule R; on respectively ¢, o;(T,7)
and (;(T,z). Hence, ¢z ~ {7,z}, and the proof follows since the algorithm of
the proof of Theorem 1 is sound. O

Now, we extend the result of Lemma 4 to full independence forests:

Theorem 3. Given a formula ¢ in free variables V. = {x1,...,2,} and a de-
pendence forest F' over V, it is decidable whether ¢ ~ F holds or not.

Proof. Consider Algorithm 1. The inputs are a formula ¢ with free variables V'
and a dependence forest F' over V. The symbols 71, ..., Ty denote dependence
trees while F’, F"" denote (possibly empty) dependence forests.

First note that the algorithm terminates. Indeed, the number of nodes of the
forest strictly decreases at each recursive call except for the 4th case when F”
is empty, but in this case the height of the forest strictly decreases.

Now, we can prove (inductively and by using Theorem 1 and Lemma 4 for the
basic cases) that if this algorithm returns a formula, then it is a decomposition
of the input formula ¢ w.r.t. the input forest F. It suffices to push up the
disjunctive connectives to get a sequence of admissible mappings for F'.
Conversely, let ¢ (resp. F') be an input formula (resp. an input dependence
forest), such that we have ¢ ~ F. We prove by induction that the algorithm
outputs a decomposition. We use the fact that the decomposition is not arbi-
trary, but has a particular form, derived from the algorithms given in the proofs

440 E. Filiot, S. Tison

of Theorem 1 and Lemma 4. The first case is obvious, and the two next cases
have already been proved. First remark that we have the following property
(*): let F be a dependence forest, 1,72 two formulas, a a sentence and 3(T) a
formula such that T is a label of F. If 73 ~ F and ~2 ~ F', we have y1 V3 ~ F,
Ay ~F, -y ~F aANy ~F,and B(T) Ay ~ F.

Suppose that F is of the form Z(g(F’), F"). Since ¢ ~ F, in particular,
¢ ~T(yuz,z"), where z’,Z" are defined as in Algorithm 1. Now, we inspect
the proof of Lemma 4. Let ¢z be the result of applying the rewriting rule
R; of this proof. It is clear, by hypothesis, that we have ¢z ~ {y U7z, z"}.
Hence, algorithm of the proof of Theorem 1 outputs a decomposition of the
form \/leL BL(7,Z') Al (Z"), exactly as defined in the proof of Theorem 1. We
let 9/~ be the result of applying exhaustively the rewrite rule Ro of the proof of
Lemma 4 on v, for all formulas 1. Hence, D(¢, T(yUZ’,z")) returns the formula
Vier (8@ 5.7) A (e ll2) 1(z,7")). It remains to prove that formulas (81)~!

and (cl?)! satisfy (81)~! ~ 7(Z, F’') and (cll2)™1 ~ (F”). We only prove
it for formulas (cI2)~!, as the proof for formulas (31)~! is analogous So let
us fix some natural lo. By going back to the definition of formula cl2 , we can
prove that (cI5?)~1 is equivalent to a formula of the form I = 3z, (T, Zo) A
v, §(Z,u,z") < ¢(T,u,zy), for some . Now, since ¢ ~ F, it easy to see that ¢
is equivalent to a formula of the form ¥ = \/!"_, €} (Z,7,%') A€Z(T,z"), such that
el ~y(T, F') and €2 ~ T(F") for i = 1,...,n. We replace in I" the formula ¢ by
¥, and, after a series of rewritings (by pushing up disjunctions and pushing down
quantifiers), we can prove that (cll2)* is equivalent to a formula of the form
VI @E@)V Vo, 0@ A Aip 2@, "), for formulas 7,7
depending only on i and P. The conclusion follows by property () and the fact
that every €? satisfies €2 ~ T(F").

Suppose now that F' is of the form {T4,...,Tx}, let T; be the variables
occurring in T; for ¢ = 1,...,k, and let P = {Z1,...,ZTx}. Since ¢ ~ F,
in particular, ¢ ~ P. Hence D(¢, P) outputs a decomposition of the form
Vier B (@) A 2 (T2) A ... Al (Ty), exactly as defined in the proof of The-

orem 1. We have to prove that for all I = (Iy,...,l;) € L, we have 5{ ~ T,
and cléi ~ T; for i = 2,...,k. This is sufficient, since by induction hypothe-
sis, D will output a decomposition of every ﬂ{ and clﬁi. We only prove it for
formulas ¢l (Z;), as it is similar for formulas 8. Let us fix some [and i. We
come back to the definition of clzl, and we can easily show that it is of the
form 3y, v(7) A 1,%(@, 7), for some formula « which selects the minimal repre-
sentatives of the [;-th equivalence class of the relation defined by w where 1)’ @
has been defined in Sectlon 4. Now, since ¢ ~ F', ¢ is equivalent to a formula
of the form ¥ = \/p 1 /\] L € (T;) such that every €} satisfy), ~ T}. Next, in
Jy,~v(y)/\1/1¢(x“ 7), we replace ¢ by ¥ (1/14) can be Vlewed as the result of applying
the function ¢ on ¢, and we just replace ¥}, (i,) by ¥y (%i,7)). We get a for-
mula equivalent to clﬁi which, after a series of rewritings preserving equivalence
(by moving up disjunctions and pushing down quantifiers), rewrites to a formula

Regular n-ary Queries in Trees and Variable Independence 441

(equivalent to ¢I'*) of the form Vioe1 27T)VV oc 1.y Y AN peq —60(Ti),
for some closed formulas ¢, 1 depending on p and Q. The conclusion follows
by using property (*) and the fact that every ¢, satisfies €, ~ T;. O

Similarly as the case of variable independence, if ¢(z1,...,x,) conforms to
F, then for any tree t € T, g4 (t) can be represented by an aggregated answer of
size O(n|t|®) (¢ is assumed to be fixed, and necessarily |F| < n). The parameter
b denotes the maximal sum of the size of a label of F' plus the size of the label
of its father if it exists.

Note that variable independence w.r.t. a dependence forest subsumes variable
independence w.r.t. a partition, since a partition can be viewed as a dependence
forest consisting of a set of leaves. Moreover, as stated by the next theorem,
there is an MSO formula ¢ such that there is no dependence forest F' such
that: (i) labels of F are singletons (ii) ¢ ~ F. Nevertheless, we know that on
trees, every MSO formula is equivalent to an existentially quantified Boolean
combination of MSO formulas in two free variables [16, 10].

Theorem 4. There is an MSO formula ¢ such that there is no dependence
forest F' whose labels are singletons and such that ¢ ~ F.

Proof. Let <y be an MSO formula which holds in a tree if y is a descendant
of x. It is well-known that it can easily be defined as the reflexive and transitive
closure of S; V S5, this closure being definable in MSO.

Now, let ¢(z,y,z) be an MSO formula defined by:

Hr,y,z) =3 a=xzha=yAa=xz
AVo' o fzhd =y = o Za
AVo! o <zNhd Rz = o <a

For all trees ¢ and all nodes u,v,w of ¢, we have t = ¢(u,v,w) iff the least
common ancestor of u and v is equal to the least common ancestor of v and w.

We now prove by applying algorithm 1 that there is no forest F' whose labels
are singletons such that ¢ ~ F, by proving it for each forest over {z,y, z}. Let
n > 0 and t,, be the tree over the alphabet {a} inductively defined by ¢y = a and

tn = a(t,—1,a). For all n, we denote by vg,v1,...,v, the nodes 1", 171 ... ¢
respectively, and, if n > 0, by wi,...,w, the nodes 1"71.2,1"72.2,...,2 re-
spectively.

1. F={z,y,z} or F = {z,y(2)} or F = {z, 2(y)}. We apply algorithm 1. The
formula wé(x, 2') is defined by Vy, z ¢(x, y, z) < ¢(a',y, z). We prove that for
all n, and all 4, j < n, v; # v; implies ¢, }~= wé(vi, vj). Indeed, if v; # v; such
that desc(v;, v;), then we have ¢ = ¢(vi, vi,v;) but ¢t = ¢(v;,v;,v;). Hence,
the number of classes of the equivalence relation defined by Tﬁé is at least n,
which is unbounded. So Algorithm 1 breaks;

2. F = {y,z(2)} or F = {y,z(z)}. The formula ¢3(y,y’) is defined by
Va,y,z ¢(x,y,2) « ¢(x,y',z). We prove that for all n, and all i,j < n,
v; # vj implies &, wi(vi, v;). Indeed, if v; # v; such that desc(v;, v;), then

442 E. Filiot, S. Tison

we have t = ¢(v;,v;,v;) but ¢ = ¢(vj, v, v;). Hence, the number of classes of
the equivalence relation defined by 1/13) is at least n, which is unbounded. So
Algorithm 1 breaks;

3. F ={z,y(x)} or F = {z,2(y)}. Those cases are symmetric to the previous
ones.

4. F = z(y,2). We let ¥(y,vy') = Vz,0.(y,2) < ¢(y',2) where ¢, has been
defined in the proof of Lemma 4. By definition of Algorithm 1, if the equiva-
lence relation defined by 1 has an unbounded index, then the algorithm fails.
This is what we next prove. Let n < 0. We fix = by a Boolean in the tree t,:
we let t;, be the tree over {a} x {0,1} such that N;, = Ny and all nodes
are labeled (a,0) except vy which is labeled (a,1). It is easy to see that for
all ¢ > 1, we have t), = ¢,(v;, w;) and for all j > i, we have t], = ¢g(v;, w;.
Hence there are at least n equivalence classes for the relation defined by .
So Algorithm 1 breaks.

5. F = y(z, 2). Similarly to the previous case, we fix a variable. Let ¢(z,2) =
Yz, ¢y(x, 2) <> ¢y(x, 2"). Let t, be the tree defined in the previous case. Hence
y is fixed to denote the node vg. We can prove that for all ¢ > 0, we have
t, = ¢y(vi, w;) but for all j > i, we have t], ¥~ ¢,(v;, w;). Hence there are
at least n equivalence classes for the relation defined by . So Algorithm 1
breaks.

6. F = z(x,y). This case is symmetric to the previous one. O

Further Extensions First note that all the results presented in the paper also
hold for FO-queries, as we do not use second order variables in decompositions
(but in this case we need to add in the tree structure a total order on the nodes).
We would like to investigate independence problems for more general classes of
structures C'. Indeed, we can give two sufficient conditions for relative indepen-
dence to be decidable on C: (i) boundedness of an MSO formula with first-order
variables is decidable on C, (ii) there is a computable MSO-definable total or-
der on the elements of the structures of C'. The first point has already been
detailed in Section 3, while the second point is studied in [9]. This is the case
for instance for unranked tree structures, over the signature consisting of the
first-child and next-sibling predicates, and predicates to test the labels.
Finally, we would like to extend independence w.r.t. a dependence forest to
independence w.r.t. a dependence graph. The techniques presented here do not
seem to be easily extendable to graphs, even for a clique of size 3 for instance.
In particular, we cannot use an inductive proof based on Lemma 4 anymore.

References

1. A. Berlea. On-the-fly tuple selection for XQuery. In International Workshop on XQuery
Implementation, Ezxperience and Perspectives, June 2007.

2. M. Bojanczyk. A bounding quantifier. In 14th Annual Conference of the EACSL on
Computer Science Logic, 2004.

Regular n-ary Queries in Trees and Variable Independence 443

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

. J. Chomicki, D. Goldin, G. Kuper, and D. Toman. Variable independence in constraint

databases. IEEE Transactions on Knowledge and Data Engineering, 15(6):1422-1436,
2003.

H. Comon, M. Dauchet, R. Gilleron, C. Léding, F. Jacquemard, D. Lugiez, S. Ti-
son, and M. Tommasi. Tree automata techniques and applications. Available on:
http://www.grappa.univ-lille3.fr /tata, 2007.

S. Cosmadakis, G. Kuper, and L. Libkin. On the orthographic dimension of definable
sets. Inf. Process. Lett., 79(3):141-145, 2001.

. B. Courcelle. Structural properties of context-free sets of graphs generated by vertex

replacement. Inf. Comput., 116(2):275-293, 1995.

B. Courcelle. Linear delay enumeration and monadic second-order logic. 2007. To appear
in Discrete Applied Mathematics.

B. Courcelle and S. Oum. Vertex-minors, monadic second-order logic, and a conjecture
by seese. J. Comb. Theory Ser. B, 97(1):91-126, 2007.

Bruno Courcelle. The monadic second-order logic of graphs x: linear orderings. Theor.
Comput. Sci., 160(1-2):87-143, 1996.

E. Filiot, J. Niehren, J.-M. Talbot, and S. Tison. Polynomial time fragments of xpath
with variables. In ACM Symposium on Principles of Database Systems, 2007.

S. Grumbach, P. Rigaux, and L. Segoufin. On the orthographic dimension of constraint
databases. In 7th International Conference on Database Theory, pages 199-216. Springer-
Verlag, 1999.

L. Libkin. Variable independence for first-order definable constraints. TOCL, 4(4):431—
451, 2003.

L. Libkin. Logics over unranked trees: an overview. Logical Methods in Computer Science,
3(2):1-31, 2006.

Holger Meuss, Klaus U. Schulz, and Frangois Bry. Towards aggregated answers for
semistructured data. In ICDT ’01: Proceedings of the 8th International Conference
on Database Theory, pages 346-360, 2001.

J. Niehren, L. Planque, J.-M. Talbot, and S. Tison. N-ary queries by tree automata.
In 10th International Symposium on Database Programming Languages, volume 3774,
pages 217-231, 2005.

T. Schwentick. On diving in trees. In 25th International Symposium on Mathematical
Foundations of Computer Science, pages 660-669, 2000.

H. Seidl. Ambiguity, valuedness and costs. 1992. Habilitation Thesis.

H. Seidl. Equivalence of finite-valued tree transducers is decidable. Math. Syst. Theory,
27(4):285-346, 1994.

J. W. Thatcher and J. B. Wright. Generalized finite automata with an application to a
decision problem of second-order logic. 2:57-82, 1968.

