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1 Introduction

The theory of one-dimensional (word) languages is well founded and investi-
gated since fifties. From several years, the increasing interest for pattern recogni-
tion and image processing motivated the research on two-dimensional or picture
languages, and nowadays this is a research field of great interest. A first attempt
to formalize the concept of finite state recognizability for two-dimensional lan-
guages can be attributed to Blum and Hewitt ([7]) who started in 1967 the study
of finite state devices that can define two-dimensional languages, with the aim
to finding a counterpart of what regular languages are in one dimension. Since
then, many approaches have been presented in the literature following all clas-
sical ways to define regular languages: finite automata, grammars, logics and
regular expressions.

In 1991, a unifying point of view was presented in [13] where the family of
tiling recognizable picture languages is defined (see also [14]). The definition of
recognizable picture language takes as starting point a well known characteriza-
tion of recognizable word languages in terms of local languages and projection.
Namely, any recognizable word language can be obtained as projection of a lo-
cal word language defined over a larger alphabet. Such notion can be extended
in a natural way to the two-dimensional case: more precisely, local picture lan-
guages are defined by means of a set of square arrays of side-length two (called
tiles) that represents the only allowed blocks of that size in the pictures of the
language (with special treatment for border symbols). Then, we say that a pic-
ture language is tiling recognizable if it can be obtained as a projection of a
local picture language. The family of all tiling recognizable picture languages is
called REC. Remark that, when we consider words as particular pictures (that
is pictures in which one side has length one), this definition of recognizability
coincides with the one for the words, i.e. the definition given in terms of finite
automata.

The family REC can be characterized by several formalisms such as dif-
ferent variants of tiling systems, on-line tessellation automata, Wang systems,
existential monadic second order logic, ”special” regular expressions, etc. (see
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[10, 14, 16, 19]). The number of different characterizations indicates that (tiling)
recognizable picture languages form a robust a therefore somewhat natural class
to study. Further this class inherits most of the important properties from the
class of regular word languages (see also [16]). Moreover tiling recognizable pic-
ture languages have been considered and appreciated in the image processing
and pattern recognition fields (see [9]).

On the other hand, recognizable picture languages do not share some prop-
erties that are fundamental in the theory of recognizable word languages. The
first big difference regards the complement operation. It be proved (see [14])
that, contrary to the one-dimensional case, the family REC is not closed un-
der complementation. As a consequence, it is interesting to consider the fam-
ily REC ∪ co−REC of picture languages L such that either L itself or its
complement cL is tiling recognizable. One has that REC is strictly included
in REC ∪ co−REC. An interesting problem (the complement problem) is to
search for conditions on a picture language L such that both L and cL are tiling
recognizable.

The non closure under complementation is related to the fact that the defini-
tion of recognizability in terms of tiling systems, i.e. in terms of local languages
and projections, is implicitly non-deterministic. However, contrary to the one-
dimensional case, does not exist a unique and clear notion of determinism in
two dimensions (see [1]). A notion that indeed can be naturally expressed in
terms of tiling systems is the notion of ambiguity. Informally, a tiling system is
unambiguous if every picture has a unique counter-image in its corresponding
local language. Observe that an unambiguous tiling system can be viewed as a
generalization in two dimensions of the definition of unambiguous automaton
that recognizes a word language. A recognizable two-dimensional language is
unambiguous if it is recognized by a unambiguous tiling system.

We denote by UREC the family of all unambiguous recognizable picture
languages. Obviously it holds true that UREC ⊆ REC. Remark that, in the
one dimensional case, UREC is equal to REC. In [3], it is shown that it is
undecidable whether a given tiling system is unambiguous. Furthermore some
closure properties of UREC are proved. The main result in [3] is that, for
pictures, UREC is strictly included in REC. In other words, there exist picture
languages in REC that are inherently ambiguous.

The aim of this paper is to shed new light on the relations between the
complement problem and the unambiguity in the family of recognizable picture
languages. Remark that the interest for such relations was also raised by W.
Thomas in [24].

Following some ideas in [15], we present a novel general framework to study
properties of recognizable picture languages and then use it to study the rela-
tions between classes REC∪co−REC, REC and UREC. The strict inclusions
among these classes have been proved in [8], [20], [3], respectively, using ad-hoc
techniques. Here we present again those results in a unified formalism and proof
method with the major intent of establishing relations between the complement
problem and unambiguity in the family of recognizable picture languages.
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We consider some complexity functions on picture languages and combine
two main techniques. First, following the approach of O. Matz in [20], we con-
sider, for each positive integer m, the set L(m) of pictures of a language L
having one dimension (say the vertical one) of size m. Language L(m) can be
viewed as a word language over the alphabet (of the columns) Σm,1. The idea
is then to measure the complexity of the picture language L by evaluating the
grow rate, with respect to m, of some numerical parameters of L(m). In order
to specify such numerical parameters we make use, as a second technique, of
the Hankel matrix of a word language. The parameters are indeed expressed
in terms of some elementary matrix-theoretic notions of the Hankel matrices
of the word languages L(m). In particular, we consider here three parameters:
the number of different rows, the rank, and the maximal size of a permutation
sub-matrix.

We state a main theorem that establishes some bounds on corresponding
complexity functions based on those three parameters, respectively. Then, as
applications for those bounds we analyze the complexity functions of some
examples of picture languages in the case of unary alphabet. By means of those
languages we re-prove the strict inclusions of families REC ∪ co−REC, REC
and UREC even in the case of unary alphabet.

Moreover we show an example of a language in REC that does not belong
to UREC and whose complement is not in REC. This language introduces
further discussions on relations between unambiguity and non-closure under
complement.

2 Recognizable Two-dimensional languages

In this section we introduce some definitions about two-dimensional languages
and their operations. Then we recall definitions and basic properties of tiling
recognizable two-dimensional languages firstly introduced in 1992 in [13] that
correspond to family REC. Furthermore, we give the definition of unambiguous
recognizable picture languages and of class UREC. The notations used together
with all the results and proofs mentioned here can be found in [14].

Let Σ be a finite alphabet. A picture (or two-dimensional word) over Σ is
a two-dimensional rectangular array of elements of Σ. Given a picture p, let
p(i, j) denote the symbol in p with coordinates (i, j), moreover the size of p is
given by a pair (m, n) where m and n are the number of rows and columns of p,
respectively. The set of all pictures overΣ of size (x, y) for all x, y ≥ 1 is denoted
by Σ++ and a two-dimensional language over Σ is a subset of Σ++. Very often
we will refer to two-dimensional languages as picture languages. Remark that
in this paper we do not consider the case of empty pictures (i.e. pictures where
the number of rows and/or columns can be zero). The set of all pictures over Σ
of fixed size (m, n), with m, n ≥ 1 is denoted by Σm,n. We give a first example
of a picture language.
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Example 1. Let L be the language of square pictures over an alphabet Σ:

L = { p | p has size (n, n), n > 0 }.

Between pictures and picture languages there are defined two different con-
catenation operations along the horizontal and vertical directions called column
concatenation and row concatenation, respectively. Notice that they are partial
operations because they are defined between pictures with same number of rows
(for the column concatenation) or same number of columns (for row concate-
nation). Furthermore, by iterating the concatenation operations, we obtain the
column and row closure or star.

In order to describe recognizing strategies for pictures, it is needed to identify
the symbols on the boundary. Then, for any picture p of size (m, n), we consider
picture p̂ of size (m+2, n+2) obtained by surrounding p with a special boundary
symbol # ̸∈ Σ. We call tile a square picture of dimension (2, 2) and given a
picture p we denote by B2,2(p) the set of all blocks of p of size (2, 2).

Let Γ be a finite alphabet. A two-dimensional language L ⊆ Γ++ is local if
there exists a finite set Θ of tiles over the alphabet Γ ∪{#} such that L = {x ∈
Γ++|B2,2(x̂) ⊆ Θ}. We will write L = L(Θ). Therefore tiles in Θ represent
all the allowed blocks of size (2, 2) for the pictures in L. The family of local
picture languages will be denoted by LOC. We now give an example of a local
two-dimensional language.

Example 2. Let Γ = {0, 1} be an alphabet and let Θ be the following set of tiles
over Γ .

Θ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 #
1 #

0 #
0 #

# #
0 0

# #
0 1

# #
# 1

# #
0 #

# 1
# 0

# 0
# 0

0 0
# #

0 1
# #

# 0
# #

1 #
# #

1 0
0 1

0 0
0 1

0 1
0 0

0 0
0 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

The language L(Θ) is the language of squares pictures (i.e. pictures of size (n, n)
with n ≥ 2) in which all diagonal positions (i.e. those of the form (i, i)) carry
symbol 1, whereas the remaining positions carry symbol 0. That is, pictures as
the following:

1 0 0, 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



Ambiguity and Complementation in REC 9

Notice that the language of squares over a one-letter alphabet is not a local
language because there is no “local strategy” to compare the number of rows
and columns using only one symbol.

Let Γ and Σ be two finite alphabets. A mapping π : Γ → Σ will be in the
sequel called projection. The projection π(p) of p ∈ Γ++ of size (m, n) is the
picture p′ ∈ Σ++ such that p′(i, j) = π(p(i, j)) for all 1 ≤ i ≤ m, 1 ≤ j ≤ n.
Similarly, if L ⊆ Γ++ is a picture language over Γ , we indicate by π(L) the
projection of language L, i.e. π(L) = {p′|p′ = π(p), p ∈ L} ⊆ Σ++.

A quadruple T = (Σ,Γ,Θ,π) is called tiling system if Σ and Γ are finite
alphabets, Θ is a finite set of tiles over Γ ∪ {#} and π : Γ → Σ is a projection.
Therefore, a tiling system is composed by a local language over Γ (defined by
the set Θ) and a projection π : Γ −→ Σ. A two-dimensional language L ⊆ Σ++

is tiling recognizable if there exists a tiling system T = (Σ,Γ,Θ,π) such that
L = π(L(Θ)). Moreover, we will refer to L′ = L(Θ) as an underling local
language for L and to Γ as a local alphabet for L. Let p ∈ L, if p′ ∈ L′ is such
that π(p′) = p, we refer to p′ as a counter-image of p in the underling local
language L′.

The family of all two-dimensional languages that are tiling recognizable is
denoted by REC. As first example consider the following.

Example 3. Let L be the language of square pictures (i.e. pictures of size (n, n))
over one-letter alphabet Σ = {a}. Language L is in REC because it can be
obtained as projection of local language in Example 2 by mean of projection
π(0) = π(1) = a.

We remark that a tiling system T = (Σ,Γ,Θ,π) for a picture language is
in some sense a generalization to the two-dimensional case of an automaton
that recognizes a word language. Indeed, in one-dimensional case, the quadru-
ple (Σ,Γ,Θ,π) corresponds exactly to the state-graph of the automaton: the
alphabet Γ is in a one-to-one correspondence with the edges, the set Θ describes
the edges adjacency, the mapping π gives the labelling of the edges in the au-
tomaton. Then, the set of words of the underlying local language defined by
set Θ corresponds to all accepting paths in the state-graph and its projection
by π gives the language recognized by the automaton. As consequence, when
rectangles degenerate in strings the definition of recognizability coincides with
the classical one for strings (cf. [11]).

The family REC is closed with respect to different types of operations. In
particular: the family REC is closed under alphabetic projection, under row
and column concatenation, under row and column stars and under union and
intersection operations (see [14]).
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2.1 Examples of recognizable languages

First family of examples of recognizable picture languages can be obtained as
immediate application of closure properties. In fact, as we do in the word case,
we can define sort of picture regular expressions starting from finite languages
and using operations of union, intersection, row and column concatenations and
closures and projection.

In this way we can list the following as recognizable two-dimensional lan-
guages: languages of pictures with odd number of rows, of pictures with even
numbers of as, of pictures with first row equal to the last row, of pictures that
contains to equal columns and so on.

In some sense we can consider all the properties of recognizable word lan-
guages and ”make” the corresponding two-dimensional ones and get a recogniz-
able two-dimensional language. But this does not exhausts the family of all rec-
ognizable two-dimensional languages! In fact going from one to two dimensions,
such generalization of finite automata can recognize much more properties.

As first example, consider the set of pictures over Σ = {{a, b} of size (n, 2n)
where the first row is the word anbn. The tiling system for this language is
quite straightforward. Furthermore, in [26] it is proved that even the language
of pictures over Σ = {{a, b} where the number of as is equal to the number
of bs (providing that the size (m, n) of the pictures is such that m ≤ 2n and
n ≤ 2m). Therefore in two dimensions we can ”count” within a recognizable
setting.

Another way to interpret a picture over a two-letters alphabet Σ = {{a, b},
more in the spirit of pattern recognition, is to consider, for example, the as as
background and the bs as the ”figure”. In [25] it is exhibited a tiling system for
the language of connected figures.

Very interesting is the examples of Chinese boxes in [9]. Pictures are defined
on {{0, 1} alphabet and contain rectangular frames or boxes, placed anywhere.
Frames may be nested one inside the other but they may not overlap, touch
each other, or touch the border. The perimeter of a frame are encoded by 1 and
the background by 0 symbols. It is proved that Chinese boxes are recognizable.
Remark that Chinese boxes can be viewed as the two-dimensional version of
the ”well-formed parenthesis languages” that is not regular in one-dimension.

A family of recognizable two-dimensional languages that is worthwhile to
consider are the languages of pictures on one-letter alphabet. This corresponds
also to consider the shapes of the pictures without looking to the inside contents.

Remark that, in this case, a picture is defined by a pair of positive numbers
corresponding to its size (m, n) and then a picture language is a set of pairs of
natural numbers. Furthermore, given a function f defined on the set of natural
numbers, one can consider the set of pictures of sizes (n, f(n)) for each n.
It can be proved that several families of functions are tiling recognizable like
polynomial and exponential functions (see [12] or [14]).
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Alternatively, given a set of natural numbers, one can consider the set of
square pictures of corresponding sizes. There are some surprising sets of recog-
nizable numbers. One for all, the set of primes is proved to be tiling recognizable
in [5] where it is also given a characterization involving the Turing Machine.

2.2 Ambiguity and complementation

The examples in previous section indicate that tiling systems are devices having
a strong expressive power. Let us observe that, in the one-dimensional case,
”well-formed parenthesis” and ”counting” are some kind of prototype concepts
for non recognizability. On the contrary, examples in the previous section show
that the natural extensions of such concepts to two-dimensions define picture
languages that are tiling recognizable. So the notion of (tiling) recognizability
appears to have, in two dimensions, a stronger expressive power with respect
to the one-dimensional case.

At the same time, recognizable picture languages do not share some proper-
ties that are fundamental in the theory of recognizable word languages. The first
big difference regards the complement operation. In [14], using a combinatorial
argument, it is showed that language in Example 6 is not tiling recognizable
while it is not difficult to write a picture regular expressions for its complement.
This proves the following theorem.

Theorem 1. REC is not closed under complement.

As consequence of this theorem, it is interesting to consider the family REC∪
co−REC of picture languages L such that either L itself or its complement cL
is tiling recognizable. Previous theorem states that REC is strictly included in
REC ∪ co−REC.

Closure by complement for a family of languages is usually related to the ex-
istence of a deterministic computational model recognizing the languages in the
family. Remark that the definition of recognizability in terms of tiling systems,
i.e. in terms of local languages and projections, is implicitly non-deterministic.
This can be easily understood if we refer to the one-dimensional case: if no par-
ticular constraints are given for the tiling system, this corresponds in general
to a non-deterministic automaton.

Contrary to the one-dimensional case, there are however some difficulties to
define determinism in two dimensions, since tiling systems are not computa-
tional models in strict sense. As remarked in [1], they are not effective devices
for recognition unless a scanning strategy for pictures is fixed (for a word the
natural scanning strategy is to read it from left to right). So in [1] is intro-
duced a notion of tiling automaton as a tiling system equipped with a scanning
strategy and, in this framework, some definitions of determinism are proposed.

Actually, a notion that can be naturally expressed in terms of tiling systems
is the notion of ambiguity. Informally, a tiling system is unambiguous if every
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picture has a unique counter-image in its corresponding local language. In a
more formal way, a tiling system T = (Σ,Γ,Θ,π) is unambiguous if for any
picture x ∈ L(T ) there exists a unique local picture y ∈ L(Θ) such that x =
π(y).

An alternative definition for unambiguous tiling system is that function π
extended to Γ++ → Σ++ is injective. Observe that an unambiguous tiling
system can be viewed as a generalization in two dimensions of the definition of
unambiguous automaton that recognizes a word language.

A recognizable two-dimensional language L ⊆ Σ++ is unambiguous if it is
recognized by an unambiguous tiling system T = (Σ,Γ,Θ,π). We denote by
UREC the family of all unambiguous recognizable two-dimensional languages.
Obviously it holds true that UREC ⊆ REC.

In [3], it is shown that it undecidable whether a given tiling system is unam-
biguous. Furthermore some closure properties of UREC are proved. The main
result in [3] is the following theorem.

Theorem 2. UREC is strictly included in REC.

This theorem shows that there exist languages in REC that are inherently
ambiguous.

In the sequel we will focus on possible relationships between Theorem 1
and Theorem 2, i.e. on the relations between the complement problem and the
ambiguity of a picture language. In next section we present a novel general
framework to study such a problem, by introducing some complexity functions
on picture languages.

3 Hankel matrices and complexity functions

In this section we introduce a novel tool to study picture languages based on
combining two main techniques: the Matz’s technique (that associates to a given
picture language L an infinite sequence (L(m))m≥1 of word languages) and the
technique that describes a word language by means of its Hankel matrix. As
results there will be the definitions of some complexity functions for picture
languages that will be used to state some necessary conditions on recognizable
picture languages.

We first describe a technique, introduced by O. Matz in [20]. Let L ⊆ Σ++ be
a picture language. For any m ≥ 1, we consider the subset L(m) ⊆ L containing
all pictures with exactly m rows. Such language L(m) can be viewed as a word
language over the alphabet Σm,1 of the columns, i.e. words in L(m) have a
”fixed height m”. For example, if
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p =

a b b a a
a a b b a
b b a b a
a a a a b

∈ L

then the word

w =

⎡

⎢⎢⎣

a
a
b
a

⎤

⎥⎥⎦

⎡

⎢⎢⎣

b
a
b
a

⎤

⎥⎥⎦

⎡

⎢⎢⎣

b
b
a
a

⎤

⎥⎥⎦

⎡

⎢⎢⎣

a
b
b
a

⎤

⎥⎥⎦

⎡

⎢⎢⎣

a
b
b
a

⎤

⎥⎥⎦

⎡

⎢⎢⎣

a
a
a
b

⎤

⎥⎥⎦

belongs to the word language L(4) over the alphabet of columns

Σ4,1 =

⎧
⎪⎪⎨

⎪⎪⎩

⎡

⎢⎢⎣

x
y
s
t

⎤

⎥⎥⎦ |x, y, s, t ∈ Σ

⎫
⎪⎪⎬

⎪⎪⎭
.

Observe that studying the sequence (L(m))m≥1 of word languages corre-
sponding to a picture languages L does not capture the whole structure of L
because in some sense it takes into account only its horizontal dimension. Nev-
ertheless it will be very useful to state some conditions for the recognizability
of the picture language L.

We first report a lemma given in [20]. Let L be a recognizable picture lan-
guages and let T = (Σ,Γ,Θ,π) a tiling system recognizing L.

Lemma 1. For all m > 1 there exists a finite automaton A(m) with γm states
that recognizes word language L(m), where γ = |Γ ∪ {#}|.

The proof of the above lemma constructs explicitly such non-deterministic
finite automaton A(m) = (Σ1,m, Qm, Im, Fm, δm) where Σ1,m is the alphabet
of the columns of height m over Σ; the set of states Qm is the set of all possible
columns of m. The transitions from a given state p to state q are defined by
using the adjacency allowed by the set of local tiles. This construction implies
directly the following corollary.

Corollary 1. If L ∈ UREC, then A(m) is unambiguous.

Hankel matrices were firstly introduced in [28] in the context of formal power
series (see also [6] and [27]). Moreover they are used under different name in
communication complexity (see [18]).

Definition 1. Let S ⊆ A∗ be a string language. The Hankel matrix of S is the
infinite boolean matrix HS = [hxy]x∈A∗,y∈A∗ where

hxy =
{

1 if xy ∈ S
0 if xy ̸∈ S.
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Therefore both the rows and the columns of HS are indexed by the set of strings
in A∗ and the 1s in the matrix gives the description of language S in the way
described above.

Let us observe that, in the case of one letter alphabet, the Hankel matrix
of a (string) language is a Hankel matrix in the classical sense, i.e. a matrix,
with rows and columns indexed by non negative integers, with constant skew
diagonals. In other words it is a matrix in which the (i, j)th entry depends only
on the sum i+j. Such matrices are sometimes known as persymmetric matrices
or, in older literature, orthosymmetric matrices.

Given an Hankel matrix HS , we call submatrix of HS a matrix KS specified
by a pair of languages (U, V ), with U, V ⊆ A∗, that is obtained by intersect-
ing all rows and all columns of HS that are indexed by the strings in U and
V , respectively. Moreover, given two Hankel submatrices K1

S and K2
S, their in-

tersection is the submatrix specified by the intersections of the corresponding
index sets respectively.

Moreover we recall some further notations on matrices. A permutation matrix
is a boolean matrix that has exactly one 1 in each row and in each column.
Usually when dealing with permutation matrices, one makes a correspondence
between a permutation matrix D = [dij ] of size n with a permutation function
σ = IN −→ IN by assuming that dij = 1⇔ j = σ(i).

Finally we recall that the rank of a matrix is the size of the biggest subma-
trix with non-null determinant (with respect to field Z). Alternatively, the rank
is defined as the maximum number of row or columns that are linearly inde-
pendent. Then, observe that, by definition, the rank of a permutation matrix
coincides with its size.

Given a picture language L over the alphabet Σ, we can associate to L an
infinite sequence (HL(m))m≥1 of matrices, where each HL(m) is the Hankel
matrix of string language L(m) associated to L.

We can define the following functions from the set of natural numbers N to
N ∪∞.
Definition 2. Let L be a picture language.
i) The row complexity function RL(m) gives the number of distinct rows of the
matrix HL(m);
ii) The permutation complexity function PL(m) gives the size of the maximal
permutation matrix that is a submatrix of HL(m);
iii) The rank complexity function KL(m) gives the rank of the matrix HL(m).

Notice the all the functions RL(m), PL(m) and KL(m) defined above are
independent from the order of the rows (columns, resp.) of the Hankel matrix
HL(m). In the sequel we will use any convenient order for the set of strings
that index the rows and the columns. We can immediately state the following
lemma.
Lemma 2. Given a picture language L, for each m ∈ N:

PL(m) ≤ KL(m) ≤ RL(m).



Ambiguity and Complementation in REC 15

Example 4. Consider the language L of squares over a two-letters alphabet Σ =
{a, b} described in Example 1. Observe that, for each m ≥ 0, L(m) is the finite
language of all possible strings of length m over the alphabet of the columns
Σm,1. Then consider the Hankel matrix of L(m): it has all its 1s in the positions
indexed by pairs (x, y) of strings such that |x|+ |y| = m. Now assume that the
strings that index the rows and the columns of the Hankel matrix are ordered
by length: we can have some non-zero positions only in the upper-right portion
of HL(m) that indexed by all possible strings of length ≤ m on the alphabet
Σm,1, included the empty word. More specifically, in this portion the matrix
HL(m) has all 0s with the exception of a chain of rectangles of all 1s from the
top-right to the bottom left corner. This is represented in the following figure
where the numbers 0, 1, . . . , m− 1, m indicate the length of the index words.

. . .

...

. . .
. . .

1

1

1

1

0 1 . . . m− 1 m

0

1

...

m−1

m

It is easy to verify that the number of different rows in HL(m) is equal to
m + 1 and this is also the number of rows of a permutation submatrix and this
is also the rank of HL(m).

Then for this language it holds that for all positive m:

PL(m) = KL(m) = RL(m) = m + 1.

Example 5. As generalization of the above Example 4, consider the language L
of pictures over an alphabet Σ of size (n, f(n)) where f(n) is a non-negative
function defined on the set of natural numbers, that is:

L = { p | p is of size (n, f(n)}.
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Similar arguments as in the above example show that, for each m ≥ 0, language
L(m) is a finite language (it contains all strings of length f(m) over the alphabet
of the columns Σm,1) and then, for all positive m: PL(m) = KL(m) = RL(m) =
f(m) + 1.

Example 6. Consider the language L of pictures over an alphabet Σ of size
(n, 2n) such that the two square halves are equal, that is:

L = { p ❡p | p is a square}.

Again, as in the Example 4, for each m ≥ 0, language L(m) is a finite language
(it contains all strings of length 2m over the alphabet of the columns Σm,1 of
the form ww). Then, doing all the calculations, one obtains that, for all positive
m, PL(m), KL(m) and RL(m) are all of the same order of complexity O(σm2

),
where σ is the number of symbols in the alphabet Σ.

We now state our main theorem that gives necessary conditions for a picture
language to be in REC ∪ co−REC, REC and UREC, respectively. Although
this is a re-formulation of corresponding three theorems given in [8], [20], [3],
respectively, here all the results are given in this unifying matrix-based frame-
work that allows to make connections among these results that before appeared
unrelated. A detailed proof can be found in [15].

Theorem 3.

i) If L ∈ REC ∪ co−REC then there exists a positive integer γ such that, for
all m > 0, RL(m) ≤ 2γ

m
.

ii) If L ∈ UREC then there exists a positive integer γ such that, for all m > 0,
KL(m) ≤ γm.

iii) If L ∈ REC then there exists a positive integer γ such that, for all m > 0,
PL(m) ≤ γm.

4 Separation results

In this section we state some separation results for the classes of recognizable
picture languages here considered. We start by showing that there exist lan-
guages L such that are neither L nor cL are recognizable.

Let Lf be a picture language over Σ with |Σ| = σ of pictures of size (n, f(n))
where f is a non-negative function over IN . In Example 5 it is remarked that
RLf (m) = f(m) + 1. Then, if we choose a function “greater” than the bound
in Theorem 3 - i), we obtain the following.

Corollary 2. Let f(n) be a function that has asymptotical growth rate greater
than 2γ

n

, then Lf ̸∈ REC ∪ co−REC.
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We now consider an example of picture language L over one letter alphabet
that, together with its complement cL, will be checked for the inequalities of the
Theorem 3. In such a way we show that, even in the case of one letter alphabet,
classes REC ∪ co−REC, REC and UREC are strictly separated.

The proofs of the following results are based on some arithmetic prop-
erties of the function F (n) that is introduced below (cf. [21]). Denote by
lcm(x1, x2, ..., xh) the lowest common multiple of the integers x1, x2, ..., xh. Con-
sider the function

G(m) = lcm(m + 1, m + 2, ..., 2m).

It holds the following.

Lemma 3. G(m) = 2Ω(m).

Consider now the function F (n) = G(2n) and the language

L = {(n, m) | m is not multiple of F (n) }.

Theorem 4. L ∈ REC.

We now calculate our complexity functions for language L. It is not difficult
to verify that, for all n > 0, the Hankel matrix HL(n) is such that in its sub-
matrix composed by the first F (n) rows and the first F (n) columns (i.e.the
rows and the columns indexed 0, 1, ..., F (n)) every element in the main skew
diagonal is equal to 0 and all other elements are equal to 1. We represent it
below.

0 1 2 3 . . . . . . . . . F (n)
1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 0 1
2 1 1 1 1 1 0 1 1
3 1 1 1 1 0 1 1 1
. . . 1 1 1 0 1 1 1 1
. . . 1 1 0 1 1 1 1 1
. . . 1 0 1 1 1 1 1 1
F (n) 0 1 1 1 1 1 1 1

On can easily check that, for all n > 0:

RL(n) = KL(n) > F (n)

and
PL(n) = 2.

Since L ∈ REC and F (n) = G(2n) = 2Ω(2n), from the inequality RL(n) >
F (n) it holds the following proposition.
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Proposition 1. The bound given in Theorem 3 - i) is tight.

From the inequality KL(n) > F (n) and Theorem 3 - iii), one derives the
following result.

Theorem 5. UREC is strictly included in REC.

This result was firstly proved in [3] and in the unary case in [4].
Consider now the language cL. For all n > 0, the Hankel matrix HcL(n) is

obtained from the matrix HL(n) by interchanging the zero’s and the one’s. It
follows that, for all n > 0,

RcL(n) = KcL(n) > F (n)

and
PcL(n) > F (n).

By the previous inequality and Theorem 3 - ii) it follows that cL ̸∈ REC
and then one has the following theorem.

Theorem 6. REC is strictly included in REC ∪ co−REC.

Therefore we can conclude that also in the unary case it holds the following
hierarchy:

UREC ⊈ REC ⊈ REC ∪ co−REC.

5 Final remarks and open questions

We presented an unifying framework based on Hankel matrices to deal with rec-
ognizable picture languages. As result, we stated three necessary conditions for
the classes REC∪co−REC, REC and UREC. The first natural question that
arises regards the non-sufficiency of such statements, more specifically the pos-
sibility of refining them to get sufficient conditions. Observe that the technique
we used of reducing a picture language L in a sequence of string languages
(L(m))m>0 on the columns alphabets Σm,1 allows to take into account the
”complexity” of a picture language along only the horizontal dimension. Then
the question is whether by combining conditions that use such both techniques
along the two dimensions we could get strong conditions for the recognizability
of the given picture language.

The novelty of these matrix-based complexity functions gives a common de-
nominator to study relations between the complement problem and unambiguity
in this family of recognizable picture languages. In 1994, in the more general con-
text of graphs, Wolfgang Thomas et. al. had pointed the close relations between
these two concepts. In particular, paper [24] ends with the following question
formulated specifically for grids graphs and a similar notion of recognizability
(here, we report it in our terminology and context).
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Question 1. Let L ⊆ Σ++ be a language in REC such that also cL ∈ REC.
Does this imply that L ∈ UREC?

As far as we know, there are no negative examples for this question. On
the other hand, we have seen a language L that belongs to REC such that
its complement does not and L itself is not in UREC. Then we can formulate
another question.

Question 2. Let L ⊆ Σ++ be a language in REC such that cL ̸∈ REC. Does
this imply that L ̸∈ UREC?

Remark that, since our language is on unary alphabet, the above questions
are meaningful also in this special case.

As further work we believe that this matrix-based complexity function tech-
nique to discriminate class of languages could be refined to study relations
between closure under complement and unambiguity. Notice that a positive
answer to any of a single question above does not imply that UREC is closed
under complement. Moreover observe that the two problems can be rewritten as
whether REC∩co−REC ⊆ UREC and whether UREC ⊆ REC∩co−REC, re-
spectively, i.e. they correspond to verify two inverse inclusions. As consequence,
if both conjectures were true then we would conclude not only that UREC
is closed under complement but also that it the largest subset of REC closed
under complement.
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