
Marking the chops:
an unambiguous temporal logic

Kamal Lodaya1, Paritosh K. Pandya2, and Simoni S. Shah2

1 The Institute of Mathematical Sciences, CIT Campus, Chennai 600113, India
2 Tata Institute of Fundamental Research, Colaba, Mumbai 400005, India

Correspondence pandya@tcs.tifr.res.in

Abstract. Interval Temporal Logic [11] is a highly expressive and succinct logic
whose satisfiability over finite words is non-elementary in the number of alternations
of chop and negation operators. All the sublogics of ITL with elementary decidabil-
ity known to us restrict this alternation depth. In this paper, we define a sublogic
of Interval Temporal Logic by replacing chops with marked chops but without any
restriction on the alternation depth. We show that the resulting logic admits unique
parsing of a word matching a formula, with the consequence that membership is in
LOGDCFL and satisfiability is in PSPACE. As our first result, we give an effective
model-preserving reduction from UITL to the partially ordered two-way determinis-
tic finite automata of Schwentick, Thérien and Vollmer [14]. We show that the size
of the resulting automaton is quadratic in the size of the formula. We also have an
exponential converse reduction from po2dfa to UITL. It follows from the work of
Schützenberger [13], Thérien and Wilke [19] that this unambiguous ITL has same
expressive power as the first-order logic with two variables [10].

1 Introduction

Two-variable first-order logic FO2 was first studied by Mortimer [10]. In recent years,
a lot of research has centred around this logic, on words [5], data [1], Mazurkiewicz
traces [7], trees [2], etc. In particular for words, the article by Tesson and Thérien
[18] reveals the many facets of the class of languages defined by sentences of this
logic. The logic was shown to be NEXPTIME-complete and equivalent to a natural
fragment of linear temporal logic called Unary TL by Etessami, Vardi and Wilke [5]
and to partially ordered two-way deterministic finite automata (henceforth po2dfa) by
Schwentick, Thérien and Vollmer [14]. Thérien and Wilke showed [19] that it corre-
sponds to the variety DA of unambiguous languages studied by Schützenberger [13].
Weis and Immerman [20] and Kufleitner and Weil [8] have recently examined the
quantifier alternation hierarchy within FO2[<].
A proper treatment of syntax, we feel, is lacking. Tesson and Thérien’s paper [18]

does give a rudimentary syntax in terms of deterministic and co-deterministic products,
which we close under boolean operations and call an deterministic or unambiguous
subclass of propositional interval temporal logic ITL [11].
ITL is a highly succinct logic for specifying properties of finite words. The uncon-

strained chop operator (similar to concatenation of star-free expressions) leads to high
decision complexity: the satisfiability of ITL is non-elementary in the number of al-

461

462 K. Lodaya, P.K. Pandya, S.S. Shah

ternations of the negation and chop operator [17]. Sublogics of ITL with elementary
satisfiability have been obtained by constraining this alternation depth in some manner.
UITL replaces chops with marked chops but without any restriction on their alterna-
tion depth with negation. Our first theorem is a consequence of the unique parsability:
membership of a word w in the language of a formula is in LOGDCFL and nonempti-
ness is in NP.
Also exploiting exploiting this unique parsability, an effective quadratic translation

from UITL to FO2[<] has been given by Shah [15]. From the work of Thérien and
Wilke [19] it follows that UITL is expressively contained in in the unambiguous lan-
guages of Schützenberger [13]. That it was an open problem whether this UITL syntax
matches the expressive power of FO2 we learnt from [8], which was written concur-
rently and independently of this paper. We answer the question positively in this paper.
Our second theorem is an O(n2) translation from a formula of our logic to a po2dfa

which accepts exactly the models of the formula. A partially ordered 2DFA [14] (also
called linear by Löding and Thomas [9]) is a two-way DFA which has the property
that once the automaton exits a state, it is never entered again. The translation from
formulae to automata illustrates the difficulty of working with weak models such as
po2dfa. To complete the characterisation of the expressive power, as our third theorem
we construct for each po2dfa a formula exactly specifying its language. This solves
the open problem mentioned above, as does the paper [8] using completely different
techniques. The constructed formula is exponential in the size of the automaton.
FO2[<] andUnary TL are at a remove from the very deterministic notion of po2dfa.

Our logic, which can be thought of as ITL but where the chop operator is forced to be
deterministic, is much closer to the automata. As a consequence, satisfiability drops
from nonelementary for ITL to PSPACE for our logic. In earlier work [6], we found that
such unambiguity considerably improves the computational performance of a validity
checking tool for ITL.
The idea of having deterministic temporal logics has been explored before. A

“marked” operator in temporal logic atnext was studied by Borchert and Tesson [3].
Kufleitner simplified it to deterministic marked next and previous modalities X a and
Ya to define a point-based linear temporal logic, and showed that it is expressively
complete for FO2[<] over Mazurkiewicz traces (and hence also over words) [7]. How-
ever, a concrete exploitation of this to give explicit and efficient reduction from logic
to automata seems new.
The rest of the paper is organized as follows. Section 2 defines the syntax and se-

mantics ofUITL. Section 3 discusses the partially ordered 2DFA and some expressions
we use as a convenient notation for them. Section 4 gives the reduction from formu-
lae of UITL to po2dfa. Section 5 gives the construction of a formula specifying the
language accepted by a po2dfa. We end with some perspectives.

Acknowledgements The authors thank Manfred Kufleitner, Pascal Weil and Meena Mahajan for
valuable inputs. The first author acknowledges the Indo-French project Timed-Discoveri for support.
The second and the third authors acknowledge partial support from the Microsoft Research Grant for
the project “formal specification and analysis of component-based designs.”.

Marking the chops 463

2 Unambiguous interval temporal logic: its syntax and semantics

We propose a fragment of ITL [11] where the chop operator is replaced bymarked chop
operators Fa and La. Our syntax derives from closing the ∗n,k-expressions of Tesson
and Thérien [18] under Boolean operations.
Fix an alphabet Σ . Let a ∈ Σ , A ⊆ Σ . Let D,D1,D2 range over formulas in UITL.

The abstract syntax of UITL is given below.

⌈⌈A⌉⌉ | ⌈⌈A⌉ | ⌈A⌉⌉ | ⌈A⌉ | D1∨D2 | ¬D | D1FaD2 | D1LaD2 | ⊕D | ⊖D

Let w be a nonempty finite word over Σ and let pos(w) = {1, . . . ,#w} be the set of
positions. Let INTV (w) = {[i, j] | i, j ∈ pos(w), i≤ j} be the set of intervals overs w.
The satisfaction of a formulaD is defined over intervals of a word model w as follows.

w, [i, j] |= ⌈⌈A⌉⌉ iff for all k : i≤ k ≤ j. w[k] ∈ A
w, [i, j] |= ⌈A⌉ iff for all k : i< k< j. w[k] ∈ A
w, [i, j] |= ⌈⌈A⌉ iff for all k : i≤ k < j. w[k] ∈ A
w, [i, j] |= ⌈A⌉⌉ iff for all k : i< k ≤ j. w[k] ∈ A
w, [i, j] |= D1FaD2 iff for some k : i≤ k ≤ j. w[k] = a and

(for all m : i≤ m< k. w[m] ̸= a) and
w, [i,k] |= D1 and w, [k, j] |= D2

w, [i, j] |= D1LaD2 iff for some k : i≤ k ≤ j. w[k] = a and
(for all m : k< m≤ j. w[m] ̸= a) and
w, [i,k] |= D1 and w, [k, j] |= D2

w, [i, j] |=⊕D iff i< j and w, [i+1, j] |= D
w, [i, j] |=⊖D iff i< j and w, [i, j−1] |= D

As usual, w |=D iff w, [1,#w] |=D and L(D) def= {w |w |=D} is the language defined
by D.
The proposition ⌈⌈A⌉⌉ states that letters of all positions in the interval (including

the endpoints) are in A. Similarly, ⌈A⌉ says that all the strictly interior positions in an
interval have only letters from A; thus it trivially holds for point (i.e. [i, i]) and unit (i.e.
[i, i+ 1]) intervals. By similar reasoning, ⌈ ⌉ def= ⌈⌈ /0⌉ holds only on point intervals,
and ¬⌈⌈ /0⌉∧⌈ /0⌉ only on unit intervals. The semantics of the “first” and “last” marked
chops and the “next” and “previous” operators should be clear.
The derived operators ∧,⊃,⇔ have their usual definitions. The constant ⊤ (de-

noting true) can be defined as ⌈⌈Σ⌉⌉. We take both these to be of constant size, but
in general the size of ⌈⌈A⌉⌉ is O(|A|). Conversely, ⌈⌈A⌉⌉ ⇔

∧
a/∈A¬(⊤Fa⊤). Similar

equivalences can be given for ⌈⌈A⌉, ⌈A⌉⌉ and ⌈A⌉. Negations can be pushed inwards to
the level of literals using ¬(D1FaD2)⇔ (⌈⌈Σ \ {a}⌉⌉∨ (⊤Fa¬D2)∨ (¬D1Fa⊤)) and
¬(⊕D)⇔⌈ ⌉∨⊕(¬D). All these translations are linear in the size of the formula. For
later use in Section 5, we also designate as simple formulae those made of the atomic
formulae and the marked chop operators Fa and La as well as operators ⊖ and ⊕ with
the Boolean operators being disallowed.

464 K. Lodaya, P.K. Pandya, S.S. Shah

Example 1. Consider the formula D def= (⊤La((¬(⊤Fb⊤))Fd⊤)) over the alphabet
Σ = {a,b,c,d}. Intuitively, it states that between the last occurrence of a and sub-
sequent first occurrence of d there is no occurrence of letter b. Thus it specifies the
language Σ ∗ac∗d{b,c,d}∗. ⊓$

Example 2. Formula ⌈ ⌉Fa(⊕(⌈ ⌉Fa(⊕(⌈ ⌉Fa⌈ ⌉)))) holds exactly for the word aaa.
Note that it is impossible to express this without using ⊕ or ⊖ operators. ⊓$

Following Kufleitner and Weil [8], we define two hierarchies of formulae. R 1 = L1
consists of the formulae made up of the four kinds of atomic formulae and the Boolean
operations, marked chops being disallowed. Rn+1 extends Ln by allowing Fa operators
(deterministic products) over formulas of Ln and closing under Boolean operations;
symmetrically, Ln+1 is the Boolean closure of La operators (co-deterministic prod-
ucts) over Rn. Thus UITL =

⋃
n
Rn =

⋃
n
Ln is the full deterministic/co-deterministic

hierarchy over the piecewise testable languages of Simon [16], which are character-
ized by R1 (e.g. see the survey of Diekert, Gastin and Kufleitner [4]). R 1, R2 and L2 are
known as J, R and L in the literature.

2.1 Unique parsing

Fdn3

⊤n5¬n4

⊤n7 ⊤n8

⊤n2

n1 La

Fbn6

Fig. 1 Syntax Tree of Formula in Example 1

It is convenient to represent UITL a formula D by its consider the syntax tree of
a formula D, where each interior node n is labelled by an operator and the subtree
rooted at n represents a subformula of D, denoted by Subf (n). For the root of the tree,
Subf (root) = D. For example, a node n with Subf (n) = D 1FaD2 has two children, say
n1 and n2 with Subf (n1) = D1 and Subf (n2) = D2. We will say n matches n1Fan2. A
leaf node n is labelled by one of ⌈⌈A⌉⌉,⌈⌈A⌉,⌈A⌉⌉,⌈A⌉.

Marking the chops 465

Fix a formula D and let Nodes be the set of nodes in its syntax tree with root being
the root node. LetMNodes⊂Nodes be the subset of nodes whose operator has the form
Fa, La,⊕, or⊖. For any node n, let Ancestry(n) be the sequence of Nodes encountered
on the unique path from n to the root node. For technical convenience we will append
two fresh nodes n◃ followed by n▹ to the ancestry. Formally, Ancestry(root) = n◃.n▹.
Also if n matches n1 op n2, then Ancestry(n1) = Ancestry(n2) = n.Ancestry(n). We
will follow the convention that n◃ is an L◃ operator and n▹ is an F▹ operator. Let
ℓAncestry(n) be the subsequence of nodes from n to the root which are labelled with
marked chops or ⊖ such that n is in their right subtree; rAncestry(n) is similarly de-
fined with left subtrees, marked chops and⊖.

Example 3. Consider the formula D in Example 1. Figure 1 gives the syntax tree
of D. At n4, we have Subf (n4) = ¬(⊤Fb⊤). It is easy to see that Ancestry(n7) =
n6n4n3n1n◃n▹ with rAncestry(n7) = n6n3n▹ and ℓAncestry(n7) = n1n◃. ⊓&

Next we consider the evaluation of D over a word w. For any word w and any sub-
formula of a formulaD we can associate a unique interval (or none) where the formula
must be evaluated. This interval is fixed by the context in which the subformula oc-
curs and does not depend upon the subformula itself. For example, the subformula
D1 = ¬(⊤Fb⊤) of D in Example 1 is associated with the interval which begins with
the last occurrence of a in w and it ends at the first subsequent occurrence of d. We
call this property unique parsability. Formally, given word w, we can associate with
each n ∈ Nodes either a unique interval [i, j] where Subf (n) needs to be evaluated,
or u denoting that the subformula of the node need not be evaluated. This is denoted
by Intvw(n). Moreover, for each n ∈ MNodes (which corresponds to a marked chop
operator) we associate a chopping position cPosw(n).

Definition 1. Intvw : Nodes→ INTV (w)∪ {u} and cPosw :MNodes→ pos(w)∪ {u}
are defined by induction on the depth of the node (from root) as follows.

– Intvw(root) = [1,#w].
– If n matches n1∨n2 then Intvw(n1) = Intvw(n2) = Intvw(n). Similarly, If n matches
¬n1 then Intvw(n1) = Intvw(n).

– If n matches n1Fan2 or n1Lan2 or ⊖n1 or ⊕n1 and Intvw(n) = u then Intvw(n1) =
Intvw(n2) = u and cPosw(n) = u.

– If n matches n1Fan2 or n1Lan2, Intvw(n) = [i, j] and if for all k : i ≤ k ≤ j we have
w[k] ̸= a then Intvw(n1) = Intvw(n2) = u and cPosw(n) = u.

– Let nmatch n1Fan2 with Intvw(n) = [i, j]. Let k : i≤ k≤ j be such that w[k] = a and
for allm : i≤m< k we havew[m] ̸= a. Then, Intvw(n1) = [i,k] and Intvw(n2) = [k, j].
Also, cPosw(n) = k.

– nmatches n1Lan2 with Intvw(n)= [i, j]. Let Let k : i≤ k≤ j be such thatw[k] = a and
for allm : k<m≤ j we havew[m] ̸= a. Then, Intvw(n1) = [i,k] and Intvw(n2)= [k, j].
Also, cPosw(n) = k.

– If n matches ⊕n1 or ⊖n1 and Intvw(n) = [i, i] then intv(n1) = u and cPosw(n) = u.
– If n matches ⊕n1 and Intvw(n) = [i, j] with i < j then intv(n1) = [i+ 1, j] and
cPosw(n) = i+1.

466 K. Lodaya, P.K. Pandya, S.S. Shah

– If n matches ⊖n1 and Intvw(n) = [i, j] with i < j then intv(n1) = [i, j − 1] and
cPosw(n) = j−1.

These definitions are extended to endmarker nodes n ◃ and n▹ as follows.
Intvw(n◃) = Intvw(n▹) = [1,#w]. Also, cPosw(n◃) = 1 and cPosw(n▹) = #w.

Proposition 1. Let Ancestry(n) = n1,n2, . . . ,nk for a node n. For all i, j such that 1≤
i ≤ j ≤ k, Intvw(ni) is u or included in Intvw(n j). Also, if ni is labelled Fa or La and
cPosw(ni) ̸= u then w[cPosw(ni)] = a. ⊓&

Using the notion of unique interval associated with a node, we can define the truth
value of a node n in word w as follows.

Definition 2. Define Valw : Nodes→ {t, f,u} as follows. (Observe that Valw(root) is
never u since Intvw(root) is always [1,#w].)

Valw(n) = u iff Intvw(n) = u
Valw(n) = t iff Intvw(n) = [i, j] and w, [i, j] |= Subf (n)
Valw(n) = f iff Intvw(n) = [i, j] and w, [i, j] ̸|= Subf (n)

Example 4. Consider the formula D with syntax tree as given in Figure 1. Con-
sider the word w = acdabacbcdbcbd with pos(w) = {1, . . . ,14}. Then, we have
Intvw(n1) = [1,14]. As n1 is labelled La we have cPosw(n1) = 6 and Intvw(n2) = [1,6]
and Intvw(n3) = [6,14]. Also, n3 is labelled Fd and we get cPosw(n3) = 10. This gives
us Intvw(n4) = [6,10] and Intvw(n5) = [10,14]. Then, Intvw(n6) = [10,14] and as n6
is labelled Fb we have cPosw(n6) = 6 and Intvw(n7) = [6,8] and Intvw(n8) = [8,10].
Note that n4 = ¬n6 and n6 = n7Fbn8 and n7 = ⊤ and n8 = ⊤. Hence, Valw(n7) = t,
Valw(n7) = t giving Valw(n6) = t and Valw(n4) = f. Similarly we can compute that
Valw(n1) = f. ⊓&

Theorem 1. Membership of a word w in the language of a formula D is NC1-hard and
in the class LOGDCFL. Nonemptiness of the language of a formula D is NP-hard and
in NP if the size of the alphabet Σ is fixed.

Proof. After pushing negations inward and constructing the syntax tree, the Val w func-
tion can be evaluated by a 2DPDA with auxiliary storage O(log(|D|+ |w|)) in time
O(poly(|D|+ |w|)). This yields a LOGDCFL procedure. If a formula D is satisfiable,
we can translate it to a sentence of FO2 of quadratic size [15] and use Weis and Im-
merman’s result [20] to show the existence of a model of size O((|D| 2)|Σ |). For a fixed
size alphabet Σ , guessing the model and verifying its truth value is an NP procedure.
For the lower bounds, a Boolean assignment over n variables can be coded as a

word of length n over a two-letter alphabet. The truth value of the i’th variable can
be accessed using the ⊕ modality, which is also used to say that a model is of size n.
These formulas are linear in n. Hence, any Boolean formula can be encoded as a UITL
formula by replacing each variable by its corresponding UITL formula. Now we use
the standard results for Boolean formulas. ⊓&

Marking the chops 467

2.2 Handling context

We can further refine the characterisation of the intervals of a node. The following
lemma relates intervals of nodes in an ancestry to their chopping positions in the same
ancestry. Figure 2 depicts some of these relationships.
Let w be a word and let i, j ∈ pos(w) with i ≤ j. Then, a /∈ w[i : j) will abbreviate

∀k : i≤ k < j. a ̸= w[k]. Similarly, we can define a /∈ w(i : j].

a1 a2 a3 ... ak ak+1

n

m1
m2

m3

mk

mk+1

Fig. 2 Right handle and its intervals

Lemma 1. For a node n, let ℓAncestry(n) = n1,n2, . . . ,np,np+1 and rAncestry(n) =
m1,m2, . . . ,mr,mr+1. (So np+1 = n◃ and mr+1 = n▹.) Then,

– Intvw(n) = [cPosw(n1),cPosw(m1)]. If either of these chopping positions is u then
Intvw(n) = u.

– cPosw(n1)≥ cPosw(n2)≥ . . .≥ cPosw(np)≥ cPosw(np+1) = 1, and
cPosw(m1)≤ cPosw(m2)≤ . . .≤ cPosw(mr)≤ cPosw(mr+1) = #w.

– Intvw(ni) = [cPosw(ni+1),cPosw(mk)] for some mk ∈ rAncestry(n). Also,
Intvw(mi) = [cPosw(nk),cPosw(mi+1)] for some mk ∈ ℓAncestry(n).

– If mi is a La node then w[cPosw(mi)] = a and a /∈ w(cPosw(mi) : cPosw(mi+1)].
– If mi is a Fa node then w[cPosw(mi)] = a and a /∈ w[cPosw(n1) : cPosw(mi)).
– If mi is ⊖ node then cPosw(mi+1) = cPosw(mi)+1.
– If ni is ⊕ node then cPosw(ni+1) = cPosw(ni)−1.

Proof. By induction on depth of n from the root. ⊓*

As opposed to the bottom-up evaluation of truth value, the identification of chop-
ping positions and subintervals is defined top-down. This enables us to find the context
necessary for checking whether a position m is within Intvw(n).

Definition 3. Let ℓHandle(n) be the smallest prefix of ℓAncestry(n) ending with an L
operator. Symmetrically let rHandle(n) smallest prefix of rAncestry(n) ending with an

468 K. Lodaya, P.K. Pandya, S.S. Shah

F operator. The sequence of labels of rHandle(n) will have the form H 1H2 . . .HkFak+1
where Hi is either Lai or ⊖. When clear from context we will often directly refer to
such a sequence of labels as rHandle(n). Given rHandle(n), and indices i, j such that
1≤ i ≤ j ≤ k+1 let rGap(n, i, j) be the count of ⊖ labels occurring within labels Hi
to Hj−1. For example, given rHandle(n) = La1 ⊖⊖⊖Fa5 we have rGap(n,1,4) = 2.
Symmetrically, we can define lGap(n, i, j) for ℓHandle(n). ⊓%

In our running example, rHandle(n7) = Fb (the label of n6) and ℓHandle(n7) = La,
the label of n1.

Definition 4. Let Intvw(n) = [i, j], rHandle(n) = H1H2 . . .HkFak+1 as in Definition 3
and let m be a position. Then define rwithin(n,m) as follows, and lwithin(n,m) sym-
metrically.

rwithin(n,m) def= ∃r1 ≤ r2 ≤ . . .≤ rk ≤ rk+1. (i≤ m≤ r1)
and (∀1≤ p≤ k+1. (Hp = Gap ⇒ w[rp] = ap))
and (∀1≤ i≤ j ≤ k+1. (r j− ri ≥ rGap(n, i, j))
and ak+1 /∈ w[i : rk+1)

Lemma 2 (Context). Let Intvw(n) = [i, j]. Then, for all m ∈ pos(w) we have
(a) i≤ m≤ j iff rwithin(n,m), and (b) i≤ m≤ j iff lwithin(n,m).

Proof. We prove (a). Let Intvw(n) = [i, j] and rHandle(n) = n1 . . .nk+1 with labels
H1H2 . . .HkFak+1 . Let jp = cPosw(np) for 1≤ p≤ k+1. As Intvw(n) ̸= u we also have
that cPosw(np) ̸= u as np is ancestor of n.
For the forward direction, suppose i≤m≤ j. Take r p = jp. Then, by Lemma 1, we

have r1 ≤ r2 ≤ . . . ≤ rk+1 and w[rp] = ap, for all p with Hp = Gap . Also, by Lemma
1, when np has label ⊖, then jp+1 = jp + 1. Hence, for any 1 ≤ p ≤ q ≤ n, we have
rq− rp ≥ rGap(n, p,q). Also denote Intvw(nk+1) = [bk+1,ek+1] then bk+1 ≤ i. Since
nk+1 is labelled Fak+1 , from its semantics we have that ak+1 /∈ w[i : jk+1). Hence the
result follows.
Conversely, suppose there exist r1 ≤ r2 ≤ . . . ≤ rk+1 such that i ≤ m ≤ r1 and for

all 1 ≤ p ≤ k+1 if Hp = Gap then w[rp] = ap and for all 1 ≤ p ≤ q≤ k+1 we have
rq−rp≥ rGap(n.p,q). We have to show thatm≤ j. Assume to the contrary thatm> j.
By Lemma 1, j1 = j and r1 ≥m. Hence, r1 > j1.
Consider any 1 ≤ p ≤ k such that rp > jp. There are two cases. In case 1, if p is

labelled Lap then by its semantics ap /∈ w(jp, jp+1]. Hence, as rp > jp and w[rp] = ap,
it follows that rp > jp+1 which implies that rp+1 > jp+1. In the second case, if p is
labelled with ⊖ then rGap(n, p, p+1) = 1 and hence r p+1− rp ≥ 1. Also, by Lemma
1, we have jp+1 = jp +1. Hence, as rp > jp, it follows that rp+1 > jp+1.
We already have that r1 > j1. Hence by induction and using the previous step we can

prove that rk+1 > jk+1. But by the condition that w[rk+1] = ak+1 and ak+1 /∈ w[i : rk+1)
we have that jk+1 = rk+1, which is a contradiction. Hence we conclude that m≤ j. ⊓%

Marking the chops 469

3 Partially ordered two-way deterministic finite automata

Partially ordered two-way DFA were introduced by Schwentick, Thérien and Vollmer
[14] to characterize the unambiguous languages.We present a variant of their definition
and propose a set of operators to compose these automata. Let Σ ′ = Σ ∪{◃,▹} include
two endmarkers. Given w ∈ Σ ∗, the two way automaton actually scans string w ′ = ◃w▹
with letters ◃ and ▹ at positions 0 and |w|+1 respectively.

Definition 5. A po2dfa over Σ ′ is a tupleM = (Q,≤,δ ,s, t,r) where (Q,≤) is a poset
of states such that r,t are the only minimal elements. s is the initial state, t is the
accept state and r is the rejecting state. The set Q \ {t,r} is partitioned into Ql and
Qr (the states reached from the left and the right) with s ∈ Ql . δ : ((Ql ∪Qr)×Σ)→
Q)∪((Ql×{▹})→Q\Qr)∪((Qr×{◃})→Q\Ql) is a transition function satisfying
δ (q,a)≤ q. ⊓)

If M is in a state q, reading a symbol a, it enters a state δ (q,a), and moves its
head to the right if δ (q,a) ∈ Ql , left if δ (q,a) ∈ Qr, and stays in the same position if
δ (q,a) ∈ {t,r}. The transition function is designed to ensure that the automaton does
not ”fall off” either end of the input. A transition with δ (q,a) < q is said to make
progress.
A po2dfa M running over word w is said to be in a configuration (q, p) if it is in a

state q and head reading the position p in word. The run of a po2dfa M on an input
word w starting with input head position p0 is a sequence (q0, p0),(q1, p1), ...(q f , p f)
of configurations such that:

– q0 = s and q f ∈ {t,r}, for all i(1≤ i< l), δ (qi,w(pi)) = qi+1, and
– pi+1 = pi+1 if qi+1 ∈ Ql or pi+1 = pi−1 if qi+1 ∈ Qr.

We abbreviate such a run by writing M(w, p0) = (q f , p f). The run is accepting if
q f = t; rejecting if q f = r. A pass is a contiguous partial run where the automaton
moves in one direction. An n-pass automaton is one which makes at most n passes on
any input before accepting or rejecting. The automatonM is said to be start-free if for
any w, M accepts w from some position iffM accepts w starting from any position.

3.1 Composition of automata

For the description of po2dfawe will use turtle expressions, which are extensions of
the turtle programs introduced by Schwentick, Thérien and Vollmer [14]. The syntax
follows and we explain the semantics below. Let A,B range over subsets of Σ ′.

E ::= Acc | Re j | A 1→ | A 1← | A B→ | A B← | E1?E2,E3

Automaton Acc accepts immediately without moving the head. Similarly, Re j re-
jects immediately. A B→ accepts at the next occurrence of a letter from B to the right,

470 K. Lodaya, P.K. Pandya, S.S. Shah

maintaining the constraint that the intervening letters are from A \B. If no such oc-
currence exists the automaton rejects at the right end-marker or if a letter outside A
intervenes, the automaton rejects at its position. Automaton A 1→ accepts one position
to the right if the current letter is from A, else rejects at the current position. A B← and
A 1← are symmetric in the leftward direction. The conditional construct E 1?E2,E3 first
executes E1 on w. On its accepting w at position j it continues with execution of E2
from j. On E1 rejecting w at position j it continues with E3 from position j.
Here are some abbreviations which illustrate the power of the notation: E 1;E2 =

E1?E2,Re j, ¬E1 =E1?Re j,Acc. Moreover, if E2 is start-free thenE1∨E2=E1?Acc,E2
and E1∧E2 = E1?E2,Re j. Notice that automata for these expressions are start-free if
E1 is start-free. We will use A

a→ for A {a}→, a→ for (Σ ′ a→) and 1→ for (Σ ′ 1→). Similarly
define a← and 1←. We will use the convention that a1, . . . ,ak denotes Σ ′ \ {a1, . . . ,ak}.

Proposition 2. Given turtle expression E we can construct a po2dfa accepting the
same language with number of states linear in |E|.

We have to resort to Section 2 for the correctness of the next construction.

Definition 6. Consider a node n with rHandle(n) = H1H2 . . .HkFak+1 as in Definition
3 and let A ⊆ Σ ′. Define the one-pass automata C +(n,A) and C +(n, 1→) as follows,
and symmetrically also C −(n,A) andC −(n, 1←). Let per f (Hi) be (ak+1

ai→) ifHi = Lai
and ak+1

1→ if Hi =⊖.

C +(n,A) = (ak+1
A→); per f (H1); . . . ; per f (Hk);(ak+1

ak+1→)
C +(n, 1→) = (ak+1

1→); per f (H1); . . . ; per f (Hk);(ak+1
ak+1→)

Since rHandle(n) and ℓHandle(n) are linear in the depth of n it follows that the
sizes of the C −(n),C +(n) automata are also linear in the depth of n.

Lemma 3. Let Intvw(n) = [i, j].

– Started at position i, C +(n,A) accepts iff ∃k. rwithin(n,k) and w[k] ∈ A and w[i :
k) /∈ A.

– Started at position i, C +(n, 1→) accepts iff i+1≤ j.

Symmetric properties hold for C −.

Proof. The context lemma (Lemma 2) proved the required “within” property. That the
automata check this “within” is easy to see. ⊓-

4 From formulae to automata

Now we are all set to construct a po2dfa M (D) which precisely accepts the word
models of a given formula D. Our turtle expressions are a convenient syntax for the

Marking the chops 471

two-way movement of po2dfa. For example, expression ▹→; a←; d→ denotes an automa-
ton which first finds the endpoint of the word (by looking for endmarker ▹) it then re-
verses its direction and searches for the first a in backward direction and then searches
in the forward direction for the first subsequent d. Clearly, such an automaton locates
the right endpoint of the interval of the subformula D 1 = ¬(⊤Fb⊤) of D in Example
1. In general, for each subformula D1 we can construct automata L (D1) and R(D1)
which locate the left and right endpoints of the unique interval associated with D 1.
Now it remains to check that the subword of this interval satisfies the subformula D 1.
D1 evaluates to true iff there is no (first) occurrence of letter b within its unique inter-
val. While turtle expressions lack a simple way of checking a property within a specific
subinterval,Lemma 3 shows how we can use “handles” to code this checking. Putting
all this together, we give a construction of a language equivalent po2dfa of size d 2 for
a formula of size d.

Definition 7. By induction on depth of a node n, define automataL (n) andR(n).

– L (root) = ◃←; 1→ andR(root) = ▹→; 1←.
– Let n match ¬n1. ThenL (n1) = L (n) andR(n1) = R(n).
– Let n match n1∨n2. ThenL (n1) = L (n2) = L (n) andR(n1) = R(n2) = R(n).
– Let n match n1Fan2. ThenL (n1) = L (n) andR(n2) = R(n).
Also,R(n1) = L (n); a→ andL (n2) = R(n1).

– Let n match n1Lan2. ThenL (n1) = L (n) andR(n2) = R(n).
Also,R(n1) = R(n); a← andL (n2) = R(n1).

– Let n match⊕n1. Then,L (n1) = L (n); 1→ andR(n1) = R(n).
– Let n match⊖n1. Then,L (n1) = L (n) andR(n1) = R(n); 1←.

Lemma 4. As the inductive automaton construction follows the inductive definition of
Intvw(n), it is immediate that for any node n with Intvw(n) = [i, j] (not u), for any
position k in w, L (n)(w,k) = (t, i) andR(n)(w,k) = (t, j). Thus,L (n) andR(n) are
start-free. Note that L (n) andR(n) grow linearly with the depth of n. ⊓(

Definition 8. We defineM (n) for each node n by induction on the height of n.

– If n is labelled ⌈⌈A⌉⌉ thenM (n) = L (n);C +(n,A)?Re j,Acc. The translations for
⌈⌈A⌉, ⌈A⌉⌉ and ⌈A⌉ are similar.

– For a Boolean expression,M (n) is defined by the corresponding turtle expression.
E.g. if n matches n1∨n2 thenM (n) = M (n1)∨M (n2).

– Let n match n1Fan2. LetM (n) = L (n);C +(n,a);M (n1);M (n2).
– Let n match n1Lan2. LetM (n) = R(n);C −(n,a);M (n1);M (n2).
– Let n match⊕n1. LetM (n) = L (n);C +(n, 1→);M (n1).
– Let n match⊖n1. LetM (n) = R(n);C −(n, 1←);M (n1).

Example 5. For the formula D def= ⊤La((¬(⊤Fb⊤))Fd⊤) of Example 1 we give the
construction of po2dfa. The formula is represented as syntax tree in Figure 1.

472 K. Lodaya, P.K. Pandya, S.S. Shah

– The root n1 matches n2Lan3. Hence, M (n1) = R(n1);C −(n1,a);M (⊤);M (n3).
AlsoL (n1) = ◃←; 1→ andR(n1) = ▹→; 1← giving C −(n1,a) = a←. Since n2 =⊤,
we haveM (n2) = Acc.

– n3 matches n4Fdn4 with n5 = ⊤. Hence M (n3) = L (n3);C +(n3,d);M (n4);Acc.
Now, L (n3) = R(n1);

a← and R(n3) = R(n1). Also rHandle(n3) = F▹. Hence,
C +(n3,Fd) = d→.

– n4 matches ¬n6. HenceM (n4) = M (n6)?Re j,Acc.
– Subf (n6) = ⊤Fb⊤. Hence, M (n6) = L (n6);C +(n6,b);Acc;Acc. We have
rHandle(n6) = Fd . Hence, C +(n6,Fb) = (d b→); d→ and L (n6) = L (n3) = ▹→
; 1←; a←. ⊓&

Theorem 2. Given a formula D, the language L(D) is accepted by the po2dfa automa-
ton M (root) of Definition 8 where root is the root node of parse tree of D. Moreover,
M (root) has O(|D|2) states.

Proof. Construct the syntax tree and let Intvw(n) = [i, j] for any node n. By induction
on the height of node n, for any word w, we prove thatM (n) accepts w iff Val w(n) = t.
Note that M (n) is start-free since eachM (n) is either Acc or it begins with L (n) or
R(n), which are start-free by the previous lemma. Below are the proofs of three cases,
the rest are similar.

– Let n= ⌈⌈A⌉⌉. Let Intvw(n) = [i, j]. Then,
Valw(n) = t
iff ∀k : i≤ k ≤ j : w[k] ∈ A
iff ∀k : i≤ k : w[k] /∈ A implies k /∈ Intvw(n)
iff not (∃k : i≤ k : w[k] /∈ A and rwithin(n,k))
iff the C +(n,A) automaton rejects starting from (w, i). (by Lemma 3)
iffM (n) accepts w.

– Let n match a Boolean expression. The result holds since the smaller automata are
start-free.

– Let n match n1Fan2. Let Intvw(n) = [i, j]. Then,
Valw(n) = t
iff w, [i, j] |= (Subf (n1))Fa(Subf (n2))
iff ∃k : i≤ k ≤ j s.t. w[k] = a and a /∈ w[i : k) and Valw(n1) = t

and Valw(n2) = t (giving Intvw(n1) = [i,k] and Intvw(n2) = [k, j])
iff ∃k s.t. rwithin(n,k) and w[k] = a and a /∈ w[i : k) and

M (n1) accepts w andM (n2) accepts w (by induction hypothesis)
iff C +(n,a) accepts (w, i) (by Lemma 3) andM (n1),M (n2) accept w.
iffM (n) accepts w

– Let n match⊕n1. Let intv(n) = [i, j] Then,
Valw(n) = t
iff i+1≤ j and w, [i+1, j] |= (Subf (n1))
iff i+1≤ j andM (n1) accepts w (By induction hypothesis)
iff rwithin(n, i+1) andM (n1) accepts w

Marking the chops 473

iff C +(n, 1→) accepts (w, i) andM (n1) accepts w
iffM (n) accepts w

The number of nodes in the syntax tree of a formula is linear in its size |D|. At each
node, at most O(|D|) states to the automaton are added before recursively translating
sub-nodes. Hence, the the number of states ofM (root) is O(|D|2). ⊓#

The complexities of membership and satisfiability problem for the logic UITL
were analysed in Theorem 1. Here we give alternate upperbounds on these complex-
ities which are obtained using the formula automaton construction. Note that even
when automaton based procedures have higher complexities, in practice, they are very
amenable to implementation.

Corollary 1. Membership of a word w in the language a formula D is in DTIME(|w|×
|D|2). The satisfiability of D can be checked in NSPACE(|D|2 log |D|).

Proof. Since the number of states of M (root) in the theorem above is O(|D| 2),
whether a word model w satisfies D can be checked in time O(|w|× |D|2) by simu-
lating the po2dfa.
We can also check satisfiability of D by reducing the po2dfa of size O(|D| 2) to a

one-way DFA of size O((|D|2)|D|2) using the standard 2DFA to 1DFA reduction. The
emptiness of this one-way DFA is contained in nondeterministic log((|D| 2)|D|2) space,
i.e.NSPACE(|D|2 log |D|). ⊓#

5 From automata to formulae

Fix a po2dfa M. We give the construction of a formula exactly specifying the language
of M. Consider a progress transition e of M. For simplicity, we assume that e is not
labelled by the endmarkers ▹ or ◃. We construct a formulaψ(e) such that the following
lemma holds. Its proof is by induction on the partial order.

Lemma 5. w |= ψ(e) iff there exists a partial run of M on w (starting at position 1)
and ending with the e transition. ⊓#

The formula ψ(e) =
∨

i∈I(e)ξi consists of finitely many disjoint disjuncts where
each ξi is a pointed simple formula. Such a formula does not use boolean operators,
has a pointer to one of its sub formulas. For example, see ψ(eb) in Example 6 Such
ψ(e) defines a class of words with a unique factorization [13]. For convenience a
pointed simple formula is represented as (T,n) with syntax tree T and pointer node n.
Fix a progress transition e with δ (p,c) = q such that the incoming progress transi-

tions into p are e1, . . . ,ek. Also assume that A= {a ∈ Σ | δ (p,a) = p} are the letters
on which the automaton loops in state p. Inductively assume that ψ(e i) has been con-
structed. Then, we define ψ(e) = ∨ {Extend(ξ ,e) | ξ ∈ ψ(ei),1 ≤ i ≤ k}. Here
Extend(ξ ,e) extends the partial runs satisfying ξ to their extensions ending with e. We
now define Extend(ξ ,e).

474 K. Lodaya, P.K. Pandya, S.S. Shah

An execution ending with one of the ei can be extended with finitely many steps
involving letters of A and then taking the transition e. Moreover the head moves
backwards iff p ∈ Qr (except at the last step where it moves in the direction of q).
To take the direction into account, let Extend(ξ ,e) = rExtend(ξ ,e) if p ∈ Ql and
Extend(ξ ,e) = ℓExtend(ξ ,e) if p ∈ Qr. We define these below.
Let the inorder traversal of T be n1,n2, . . . ,nr (thus n1 is the leftmost leaf and

nr is the rightmost leaf) and n = ni. It is easy to see that nodes n1 and n2 in in-
order traversal nodes are adjacent iff Intvw(n1) and Intv(n2) are adjacent. Then,
rExtend(T,ni)

def= rChange(T,ni) if ni = nr (last node in inorder), and rExtend(T,ni)
def= rChange(T,ni) ∨ rExtend(rSkip(T,ni),ni+1) otherwise.
The function rChange(T,ni) modifies (T,ni) by propagating a subalphabet (corre-

sponding to the selfloop of the state). If ni is labelled with any of the four atomic for-
mulas ⌈⌈B⌉⌉, or ⌈B⌉⌉, (or ⌈⌈B⌉ or ⌈B⌉), and c ∈ B, then the corresponding leaf node n i
is replaced by the subtree corresponding to ⊕(⌈⌈A∩B⌉Fa⌈B⌉⌉) (or⊕(⌈⌈A∩B⌉Fa⌈B⌉),
respectively). The new pointer points to the subformula to the left of Fa if q ∈ Qr and
to the right of Fa otherwise.” If c /∈ B, then rChange(T,ni) = ⊥. If ni is an Fc or Lc
node, then the parse tree remains unchanged. However, if n i is labelled Fb or Lb, for
some b ̸= c, then rChange(T,ni) =⊥.
The function rSkip(T,ni) alters (T,ni) as follows. If ni is labelled with any of the

atomic formulas ⌈⌈B⌉⌉, ⌈B⌉⌉, ⌈⌈B⌉ or ⌈B⌉, then this node is replaced by ⌈A∩B⌉. If n i
is a Fb or Lb node, then rSkip(T,ni) = T if b ∈ A and rSkip(T,ni) =⊥ if b /∈ A.
The base case of finding formula ψ(e) for an outgoing transition e from the initial

state s ∈Ql is ψ(e) def= rExtend((⌈⌈Σ⌉,1),e).

A B C D

ta b c d

Fig. 3 A simple automaton with reversals

Example 6. Consider the automaton given in Figure 3. In this automaton, we have the
conditions a /∈ A,b /∈ B,c /∈ C,d /∈ D, required for determinism, and we assume that
c∈ B∩A and a,b∈C. Let ea,eb,ec,ed be the edges labelled with a,b,c,d, respectively.
For convenience, a pointed simple formula T,n is denoted by underlining the sub-

formula of node n.

– ψ(ea) = rExtend(⌈⌈Σ⌉,ea) = ⌈⌈A⌉Fa⌈Σ⌉⌉.
– ψ(eb) = rExtend(ψ(ea),eb) = ⌈⌈A⌉Fa(⊕(⌈⌈B⌉Fb⌈Σ⌉⌉)).
– ψ(ec) = ℓExtend(ψ(eb),ec) = ℓExtend(⌈⌈A⌉Fa(⊕(⌈⌈B⌉Fb⌈Σ⌉⌉)),ec)

= ⌈⌈A⌉Fa(⊕(⊖(⌈⌈B⌉Lc⌈B∩C⌉⌉)Fb⌈Σ⌉⌉))

Marking the chops 475

∨ ℓExtend(⌈⌈A⌉Fa(⊕(⊖(⌈⌈B∩C⌉)Fb⌈Σ⌉⌉)),ec)
= ⌈⌈A⌉Fa(⊕(⊖(⌈⌈B⌉Lc⌈B∩C⌉⌉)Fb⌈Σ⌉⌉))
∨ lChange(⌈⌈A⌉Fa(⊕(⊖(⌈⌈B∩C⌉)Fb⌈Σ⌉⌉)))
∨ ℓExtend(⌈⌈A⌉Fa(⊕(⊖(⌈⌈B∩C⌉)Fb⌈Σ⌉⌉)),ec)
(The above step follows from the assumption that a ∈C)
= ⌈⌈A⌉Fa(⊕(⊖(⌈⌈B⌉Lc⌈B∩C⌉⌉)Fb⌈Σ⌉⌉)) ∨ f alse
∨ ⊖ (⌈⌈A⌉Lc⌈A∩C⌉⌉)Fa(⊕(⊖(⌈⌈B∩C⌉)Fb⌈Σ⌉⌉))
(The above step follows from the assumptions that a ̸= c and c ∈ A)

– ψ(ed) may be similarly worked out.

Theorem 3. Given an n-pass po2dfa M, there is a formula in Rn∪Ln of size exponen-
tial in the number of its transitions, which defines the language accepted by M.

Proof. Let E be the set of transitions leading into the accepting state t. Define the
formula F(M) def=

∨
e∈Eψ(e). Then by the previous lemma M accepts the language

L(F(M)). From the definition of Extend we see that the alternation between Fa and
La modalities takes place only when the automaton changes direction, hence the con-
structed formula is in Rn∪Ln.
For any transition e let depth(e) denote the length of the longest progress path

from the start state to e. By examining the construction, it can be seen that in
ψ(e) =

∨
i∈I(e)ξi the size of each ξi is linear in depth(e). However, each Extend(T,e)

gives rise to up to |depth(e)| disjuncts. Hence the number of disjuncts |I(e)| can be ex-
ponential in depth(e) as also the size of the F(M). ⊓+

This also shows that unambiguous polynomials over the piecewise testable languages
[16] are matched by deterministic and co-deterministic products, a result indepen-
dently obtained by Kufleitner and Weil [8]. From the main theorem of [8], we get
the corollary that there is an FO2[<] formula with n quantifier alternations for the
language ofM above.

References

1. M. Bojańczyk, C. David, A. Muscholl, T. Schwentick and L. Segoufin. Two-variable logic
on words with data, Proc. LICS, Seattle, 2006, 7–16.

2. M. Bojańczyk. Two-way unary temporal logic over trees, Proc. LICS, Wrocław, 2007.
3. B. Borchert and P. Tesson. The atnext/atprevious hierarchy on the starfree languages, Report
WSI-2004-11 (U. Tübingen, 2004).

4. V. Diekert, P. Gastin and M. Kufleitner. A survey on small fragments of first-order logic over
finite words, Int. J. Found. Comp. Sci., to appear.

5. K. Etessami, M.Y. Vardi and T. Wilke. First-order logic with two variables and unary temporal
logic, Inf. Comput. 179, 2002, 279–295.

6. S.N. Krishna and P.K. Pandya. Modal strength reduction in quantified discrete duration cal-
culus, Proc. FSTTCS, Hyderabad (R. Ramanujam and S. Sen, eds.), LNCS 3821, 2005, 444–
456.

476 K. Lodaya, P.K. Pandya, S.S. Shah

7. M. Kufleitner. Polynomials, fragments of temporal logic and the variety DA over traces, Theoret.
Comp. Sci. 376, 2007, 89–100.

8. M. Kufleitner and P. Weil. On FO2 quantifier alternation over words, Manuscript, , Jan 2008.
9. C. Löding and W. Thomas. Alternating automata and logics over infinite words, Proc. IFIP

TCS, Sendai (J. van Leeuwen, O. Watanabe, M. Hagiya, P.D. Mosses, T. Ito, eds.), LNCS
1872, 2000, 521–535.

10. M. Mortimer. On language with two variables, Zeit. Math. Log. Grund. Math. 21, 1975, 135–140.
11. B.C. Moszkowski and Z. Manna. Reasoning in interval temporal logic, Proc. Logics of pro-

grams, Pittsburgh (E.M. Clarke and D. Kozen, eds.), LNCS 164, 1983, 371–382.
12. J.-E. Pin and P. Weil. Polynomial closure and unambiguous products, Theory Comput. Syst.30,

1997, 383–422.
13. M.-P. Schützenberger. Sur le produit de concaténation non ambigu, Semigroup Forum 13,

1976, 47–75.
14. T. Schwentick, D. Thérien and H. Vollmer. Partially-ordered two-way automata: a new char-

acterization of DA, Proc. DLT ’01, Vienna (W. Kuich, G. Rozenberg and A. Salomaa, eds.),
LNCS 2295, 2002, 239–250.

15. S.S. Shah. FO2 and related logics, Master’s thesis (TIFR, 2007).
16. I. Simon. Piecewise testable events, Proc. GI Conf. Autom. Theory and Formal Lang., Kaiser-

slautern (H. Barkhage, ed.), LNCS 33, 1975, 214–222.
17. L.J. Stockmeyer and A.R. Meyer. Word problems requiring exponential time, Proc. STOC,

Austin, 1973, 1–9.
18. P. Tesson and D. Thérien. Diamonds are forever: the variety DA, Semigroups, algorithms,

automata and languages (G.M.S. Gomes, P.V. Silva and J.-E. Pin, eds.), (World Scientific,
2002), 475–500.

19. D. Thérien and T. Wilke. Over words, two variables are as powerful as one quantifier alternation:
FO2 = Σ2∩Π2, Proc. STOC, Dallas, 1998, 41–47.

20. P. Weis and N. Immerman. Structure theorem and strict alternation hierarchy for FO2 on words,
Proc. CSL, Lausanne (J. Duparc and T. Henzinger, eds.), LNCS 4646, 2007, 343–357.

