
A Unified View of Tree Automata and Term
Schematisations

Nicolas Peltier

LIG, CNRS
46, avenue Félix Viallet

38031 Grenoble Cedex, France
Nicolas.Peltier@imag.fr

Abstract. We propose an extension of tree automata, called N-automata,
which captures some of the features of term schematisation languages, for
instance the use of counter variables and parameters. We show that the sat-
isfiability problem is decidable for positive, purely existential, membership
formulae which permits to include the proposed formalism into most existing
symbolic computation procedures (such as SLD-resolution).

1 Introduction

Formalisms able to handle infinite sets of terms (and manipulate them) are
useful in various domains of computer science, for instance for preventing di-
vergence of symbolic computation procedures (such as resolution, superposi-
tion, etc.). Among these formalisms, tree automata (TA) play a central rôle,
mainly due to their nice computational properties [4]: the set of regular term
languages (i.e. the languages representable by a tree automaton) is closed under
all boolean operations (intersection, union and complement) and the emptiness
problem (i.e. the problem of deciding whether a given automaton denotes an
empty set of terms) is decidable. TA have many applications, for instance in
rewriting [7, 13] or constraint solving [12]. As for word automata, a TA can be
defined by a set of states and by a transition function, and the set of recognized
terms is specified by a final state. Alternatively, it can be seen as a set of (Horn)
monadic clauses satisfying some additional properties, where each predicate cor-
responds to a state. The recognized language is simply the interpretation of the
final predicate in the minimal model of this set of clauses. Using this view, TA
can be easily extended by considering non-monadic predicate symbols [1, 9, 10],
representing (synchronized) term tuple languages.

Other formalisms, called term schematisations (TS), have been proposed
during the 90’s to denote infinite sequences of structurally similar terms. The
idea is to denote infinite sequences of terms obtained by starting from a given
base term s and by iterating from s a particular “context” C[⋄], where ⋄ is
a distinguished subterm in C (denoting a “hole”). If C[x] denotes the term
obtained from C by replacing ⋄ in C by x, we get the sequence s, C[s], C[C[s]],
. . . Cn[s]. For instance, the set of terms x, g(g(x)), g(g(g(g(x)))), . . . , g2m(x) is

491

492 N. Peltier

obtained by iterating m times the context C = g(g(⋄)) on the base term x (m
denotes an arithmetic variable).

There exist several classes of term schematisation languages corresponding
to different classes of contexts: the recurrent terms [2] (unique context with
only one hole), the terms with integer exponents [3] (arbitrary contexts with
one hole), the R-terms [14] (contexts containing several holes) and the most
expressive language of primal grammars [8], in which the contexts can depend
on the rank in the iteration. Unification is decidable for all these languages.

There are important differences between TA and TS and the representable
languages are not comparable. TS allow one to denote terms containing several
occurrences of the same (non ground) term, which is not possible using TA1. For
instance, one can denote using a TS a list of the form [x, x, x, x, . . . , x], where
x is an arbitrary term. The list is obtained by iterating the context cons(x , ⋄)
on the base term nil . This set of terms cannot be denoted by a TA because
this would require an arbitrary number of equality tests. Moreover, TS use
arithmetic variables to count the number of iterations in the sequences. This
feature can be used for instance to denote the sequence (fn(gn(a)))n∈N which
is well known to be non regular, i.e. not representable be a (tree) automaton.

On the other hand, TA can denote many sets of terms that are not rep-
resentable by a TS. Indeed, a TS cannot denote a term containing an arbi-
trary number of variables: for instance it is not possible to denote the sequence
a, f(x1, a), f(x2, f(x1, a)), f(x3, f(x2, f(x1, a))), . . ., because the variables can-
not depend on the rank of the iteration2. Moreover, more flexible iterations can
be denoted using TA, with non-unique contexts, for instance one can denote
the term f(t1, f(t2, f(t3, . . . (f(tn, x)) . . .))) where for all i ∈ [1..n], ti ∈ {b, c}.
Such a term cannot be described using existing TS. More generally, one can
denote iterations combining different contexts.

A very natural question arises: is it possible to unify these two approaches?
The goal is to define a formalism that combines all the above features: use
of counter variables, indexed and non-indexed variables and non-unique con-
texts. Ideally, it should be strictly more expressive than both approaches, and
hopefully also more expressive than the union of the two languages, because
some “hybrid” terms representable neither by TA nor by TS could be denoted
by combining both approaches. Of course, a basic requirement is that both
emptiness and unification problems should remain decidable.

The present paper is a first answer to this problem. More precisely, we pro-
pose a (strict) extension of tree automata, called N-automata. We shall prove
that this formalism strictly subsumes the terms with integer exponents of [3].
Other, more expressive term schematisation languages are non comparable with
N -automata.

1 Some limited equality tests can be safely considered [4].
2 The formalism of non flat primal grammar does offer the possibility of considering “indexed”
(or marked) variables but unification is decidable only for flat primal grammars, i.e. for primal
grammars without indexed variables.

A Unified View of Tree Automata and Term Schematisations 493

As in [1, 9], we extend TA by adding additional parameters to the states.
Some of these parameters are arithmetic variables allowing one to count the
number of times the automaton enters some specific states. The other ones
denote standard terms, that are allowed to occur several times into the terms
recognized by the automaton. They play the same rôle as (non-indexed) vari-
ables in TS. The language recognized by the N -automaton depends on the value
of the above parameters.

We shall show that the emptiness problem is decidable for N -automata.
Moreover, the set of recognized languages is stable under intersection. More
generally, we define a notion of N+-formulae, which are positive and purely
existential logical formulae combining arithmetic (linear) equality with atoms
of the form p(t1, . . . , tn, s), meaning that s occurs in the language recognized
by the N -automaton at state p, using t1, . . . , tn as parameters (one can view
N+-formulae as existential, positive, “membership” formulae [5]). With these
semantics, we show that the satisfiability problem is decidable by providing
an algorithm transforming any (closed) N+-formula into a purely arithmetic
formula. N+-formulae subsume both emptiness and unification problems. To
the best of our knowledge there is no formalism sharing these features3. Our
results do not follow from the ones in [15] since the iterations we consider cannot
be expressed using positive formulae built on equality and subterm ordering,
nor from the ones in [11], because the (ground) rewrite rules in [11] are not
comparable with the iterations we use in the present paper, and also because
the considered problems are different.

Due to space restriction the proofs are not included.

2 Preliminaries

We denote by TΣ the set of terms constructed as usual on a set of function
symbols Σ and on a set of ordinary variables X and by TN the set of arith-
metic terms built on the function symbols 0, succ, + and on a set of arithmetic
variables XN disjoint from X ,Σ. As usual the term succn(0) is simply denoted
by n. A term (arithmetic or standard) is said to be ground iff it contains no
variable.

We shall consider predicate symbols whose arguments will be either natural
numbers or standard terms. Thus, we assume a set of predicate symbols Ω is
given with a function pr mapping each symbol p ∈ Ω to a profile pr(p), which is
a finite sequence τ1× . . .×τn where n denotes the arity of p and where for every
i ∈ [1..n], τi is either int (natural numbers) or t (standard terms). A predicate
is said to be monadic if its arity is 1. If O is a subset of Ω then Atom(O) denotes
the set of atoms of the form p(t1, . . . , tn) where p is a predicate symbol of profile

3 For instance the languages in [1] or [9] are very expressive, but lack the same decidability
results.

494 N. Peltier

(τ1, . . . , τn) and for all i ∈ [1..n], if τi = t then ti ∈ TΣ, and if τi = int then
ti ∈ TN .

A substitution is a function mapping each ordinary variable in X to a term
in TΣ and each arithmetic variable in XN to an arithmetic term in TN . As usual
a substitution can be extended to a homomorphism of TΣ, TN and Atom(Ω).
The image of a term t by a substitution σ is denoted by tσ. Two terms t, s are
said to be unifiable iff there exists a substitution σ s.t. tσ = sσ. As usual two
unifiable terms have a most general unifier. A substitution is ground if for all
variables x, xσ is ground.

A rule is a formula of the form H1 ∧ . . .∧Hn ⇒ C, where H1, . . . , Hn, C are
atoms such that all the variables occurring in H1, . . . , Hn also occur in C. C
is called the head of the rule and H1, . . . , Hn are the premises. We may have
n = 0, in this case H1 ∧ . . . ∧Hn ⇒ C is to be read as C.

The notions of interpretations, models etc. are defined as usual. It is well
known that any set of rules S has a minimal model, denoted by Mod(S).

3 N -Automata

For technical convenience we use a clausal view of tree automata. A tree au-
tomaton (in the usual sense) can be seen as a set of Horn monadic clauses. In
this section we extend the definition to handle (some classes of) non-monadic
predicate symbols.

3.1 Rules and Automata

We assume that the profile of every predicate symbol p (corresponding to a
state) is of the form τ1× . . .×τn×t. The last argument can be seen as the term
to be recognized by the automaton, and the first ones correspond to parameters.
We denote by Aint(p) the set of indices i ∈ [1..n] s.t. τi = int and by At(p)
the set of indices s.t. τi = t.

We associate to every predicate p:

– a unique natural number level(p) used to control the “dependencies” between
the predicates (recursive calls): if a predicate symbol p depends on another
predicate symbol q, then the level of q must be lower or equal to the one of
p.

– two disjoint sets Ac(p) ⊆ Aint(p) and A=(p) ⊆ At(p). The elements of
Ac(p) are called the counters of p. Intuitively, A=(p) denotes the set of non
arithmetic parameters that must be equal to the terms accepted by p (this
corresponds to a kind of equality test: at any state p one can test that the

A Unified View of Tree Automata and Term Schematisations 495

consider term is equal to a non arithmetic parameter, see Condition 1 below)
and Ac(p) denotes the arithmetic parameters used by p.

Definition 1. An N -rule is a rule H ⇒ p(t1, . . . , tn, s) satisfying the following
conditions.

1. For all i ∈ At(p), if i ∈ A=(p) then ti = s, otherwise ti is a variable occurring
only once in the head.

2. For all i ∈ Aint(p), ti is either ni or 0 or succ(ni), where ni is a variable
occurring only once in the head, and ti ̸= ni then i ∈ Ac(p).

3. s is either a term of the form f(x1, . . . , xk) where x1, . . . , xk are distinct
variables, or a variable and in this case H is empty.

4. If s is of the form f(x1, . . . , xk) then H =
∧k

i=1 qi(si
1, . . . , s

i
n, xi) where:

a. For all i ∈ [1..k], level(qi) ≤ level(p) and qi has the same profile as p.
b. For any i ∈ [1..k], j ∈ Aint(p), if tj = succ(nj), then si

j = nj or si
j = 0.

Otherwise we have either si
j = tj or si

j = 0. Moreover, if si
j ̸= tj then

j ∈ Ac(p).
c. For any i ∈ [1..k], j ∈ At(p), si

j = tj .
d. There exists at most one i ∈ [1..k] s.t. the two following conditions hold:

level(qi) = level(p) and there exists j ∈ Ac(qi) s.t. si
j ̸= 0.

Moreover, for all j ∈ Ac(p) and for all l ̸= i, we must have sl
j = 0. A

rule containing such a literal is called inductive and in this case the lit-
eral qi(si

1, . . . , s
i
n, xi) satisfying the above conditions is called the principal

literal4.
e. If level(qi) = level(p) then Ac(qi) = Ac(p) and A=(qi) = A=(p) = ∅.

In the particular case where n = 0, our definition coincides with the standard
rules of tree automata (all the predicate symbols have the same level and there
is no inductive rule).

Example 1. Here are examples of N -rules:

p(x, n, m, y1) ∧ r(x, 0, m, y2) ∧ p(x, 0, m, y3) ⇒ p(x, succ(n), m, f(y1, y2, y3))
q(x, 0, m, y) ⇒ p(x, 0, m, g(y))
r(h(y), n, m, y) ⇒ q(h(y), n, m, h(y))
r(x, n, m, y) ⇒ r(x, n, succ(m), i(y))

r(x, n, 0, a)

We have
level(p) = 2, level(q) = level(r) = 1. Aint(p) = Aint(q) = Aint(r) = {2, 3},

At(p) = At(q) = At(r) = {1}. Ac(p) = {2}, Ac(q) = ∅, Ac(r) = {3}, A=(p) =
A=(r) = ∅, A=(q) = {1}. The first and fourth clauses are inductive and the
first literal is principal in these clauses.

4 This condition is the most complex and non-intuitive one. Roughly speaking, it states
that the counter variables can only be used along one position in the term. The remaining
subterms should not depend on the variables in Ac(p).

496 N. Peltier

The reader can check that the minimal model of the above set of rules is the
set of terms of the form p(h(v), n, m, u), q(h(v), n, m, h(v)), r(t, n, m, v)
where t ∈ TΣ, n, m ∈ N, v = im(a) and u =
f(f(. . . (f(f(g(h(v)), v, g(h(v)), v, g(h(v))), . . . , v, g(h(v)) . . .), v, g(h(v))))).

On the other hand the following rules are not N -rules:

q(x, n, m, y)⇒ p(g(x), n, m, f(y)) Condition 1 is violated
p(x, n, n, y)⇒ p(x, n, n, g(y)) Condition 2
p(x, n, m, y)⇒ p(x, n, m, f(y, y)) Condition 3, f(y, y) non linear
p(x, n, m, y) ∧ q(x, n, m, y)⇒ p(x, n, m, g(y)) Condition 4, y occurs twice
p(a, n, m, y)⇒ p(x, n, m, g(y)) Condition 4.c, a should be x
p(x, n, m, y1) ∧ r(x, n, m, y2)⇒ p(x, s(n), m, j(y1, y2)) Cond. 4.d, arg. 2 of r is not 0

A rule is called a p-rule if its head is of the form p(t) for some vector of
terms t.

Definition 2. An N -automaton A is a pair (SA, ρA), where SA is a set of
predicate symbols (of arity > 0) and ρA is a set of N -rules built on the set of
predicates SA s.t. for every p ∈ SA:

– ρA contains at most one inductive p-rule.
– There exists no pair of distinct rules with unifiable heads (in the usual setting

this means that the automaton is deterministic).

For any n + 1-ary predicate symbol p ∈ SA, (t1, . . . , tm) is said to be a p-
vector iff m = n and for every i ∈ [1..n], ti ∈ TΣ if i ∈ At(p) and ti ∈ TN if
i ∈ Aint(p). This implies that p(t1, . . . , tm, s) is an atom (where s denotes an
arbitrary term in TΣ).

Definition 3. (Accepted Language) Let A be an automaton and p ∈ SA. For
any p-vector t, we denote by pA(t) the set of terms s s.t. Mod(ρA) |= p(t, s).
pA(t) is the language recognized by A at state p with parameters t.

Note that by definition, if s ∈ pA(t1, . . . , tn) then for every i ∈ A=(p), we
have ti = s.

We need to introduce some additional notations. Let A be an N -automaton.
We write p ≥A q iff there exists a p-rule H ⇒ p(t) s.t. q occurs in H . ≥∗

A
denotes the reflexive and transitive closure of ≥A. An index i is said to be an
inductive counter for p if there exists a predicate symbol q s.t. p ≥∗

A q and i
is a counter for q. The set of inductive counters of a predicate p is denoted by
ICA(p).

A natural number i is said to be active for a predicate symbol p if i ∈
Ac(p)∪A=(p). It is said to be inductively active if there exists a predicate symbol
q s.t. p ≥∗

A q and i is active for q. The set of inductively active arguments of
a predicate p is denoted by IAA(p). An essential property of IAA(p) is that if
i ̸∈ IAA(p) (i.e. if i is not inductively active for p) then the language pA(t) does
not depend on the i-th component of the vector t.

A Unified View of Tree Automata and Term Schematisations 497

Lemma 1. Let A be an N -automaton. Let p be a n + 1-ary predicate symbol
in SA and let (s1, . . . , sn), (s′1, . . . , s′n) be two p-vectors s.t. for all i ∈ [1..n], if
si ̸= s′i then i ̸∈ IAA(p).

We have pA(s1, . . . , sn) = pA(s′1, . . . , s′n).

A N -automaton is said to be normal iff all its rules are of the form H ⇒
p(t, f(x1, . . . , xk)) for some function symbol f (with possibly k = 0). It is easy
to see that any N -automaton can be transformed into an equivalent normal
automaton.

Lemma 2. For any N -automata A one can construct a normal A-automaton
A′ s.t. for all p ∈ SA and for all ground p-vectors t: pA(t) = pA′(t).

3.2 N+-Formulae

Sometimes N -automata alone are not expressive enough and one has to add
conditions on the parameters, in particular arithmetic conditions. Rather than
including them into the rules, it is more convenient to put them outside the
automaton, yielding the following definition:

Definition 4. The set of N+-formulae for an N -automaton A is the smallest
set of formulae satisfying the following properties:

– true, false are N+-formulae.
– Any atom p(t1, . . . , tn) in Atom(SA) is an N+-formula.
– If t, s ∈ TΣ or t, s ∈ TN then t = s is an N+-formula.
– If φ,ψ are N+-formulae, then φ ∨ ψ and φ ∧ ψ are N+-formulae.
– If φ is an N+-formula and x is a variable (occurring either in X or in XN)

then (∃x)φ is an N+-formula.

Definition 5. A ground substitution σ is said to be a solution of an N+-formula
φ w.r.t. an N -automaton A iff one of the following condition holds:

– φ is t = s, t, s ∈ TΣ and tσ = sσ.
– φ is t = s, t, s ∈ TN and tσ and sσ can be reduced to the same natural number

by the usual rules of Presburger arithmetic: 0 + x → x and succ(x) + y →
succ(x + y).

– φ is p(t1, . . . , tn, s) and sσ ∈ pA(t1σ, . . . , tnσ).
– φ is φ1 ∨ φ2 (resp. φ1 ∧ φ2) and σ is a solution of φ1 or φ2 (resp. φ1 and φ2).
– φ is (∃x)φ and there exists a term t s.t. σ is a solution of φ{x→ t}.

We denote by solA(φ) the set of solutions of φ w.r.t. A and we write φ ≡A ψ
iff solA(φ) = solA(ψ).

498 N. Peltier

3.3 Examples and Comparisons

Example 2. Let Σ = {a, f, g}. Let A be the N -automaton defined as follows:
SA

def= {p, q, r, s}, Aint(u) = {1}, for all u ∈ SA.

ρA
def=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

q(0, x, y) ∧ p(n, x, l) ⇒ p(succ(n), x, cons(y, l))
⇒ p(0, x,nil)

r(0, x, y1) ∧ s(0, x, y2)⇒ q(0, x, f(y1, y2))
⇒ r(0, x, x)
⇒ s(0, x, y)

We have Ac(p) = {1}, Ac(q) = Ac(r) = Ac(s) = ∅, A=(p) =
A=(q) = A=(s) = ∅, A=(r) = 2. pA(n, x) denotes the set of terms
of the form {cons(f(x, y1), cons(f(x, y2), . . . , cons(f(x, yn),nil) . . .))} where
x, y1, . . . , yn are arbitrary terms, i.e. the lists of the form [f(x, y1), . . . , f(x, yn)].
Notice that this set of terms cannot be denoted by a standard tree automaton
(due to the several occurrences of x), nor by any known term schematisation
for which unification is decidable (due to the indexed variables y1, . . . , yn).

The N+-formula (∃m, x)[n = m+m∧r(0, x, a)∧p(n, x, y)] has the following
set of solutions: {x→ a, n→ 2m, y → [f(a, y1), . . . , f(a, y2m)]}, where m ∈ N.

As already seen, N -automata are strict extensions of usual TA. Some of
the existing extensions of TA could be included into N -automata, for instance
we could add equality or disequality tests between brothers (i.e. between the
variables x1, . . . , xk in Definition 1). We did not consider these additional pos-
sibilities in the present paper for the sake of simplicity and conciseness. We now
compare N -automata and I-terms.

N-automata and I-Terms The terms with integer exponents (or I-terms
[3]) are a particular class of term schematisations. Formally speaking, the set
of I-terms TI and the set of contexts (terms with one hole) T⋄ are the least sets
that satisfies the following conditions:

– X ⊆ TI and ⋄ ∈ T⋄.
– If t1, . . . , tn ∈ T n

I , and f is a function of arity n in Σ, then f(t1, . . . , tn) ∈ TI .
– If t1, . . . , ti−1, ti+1, . . . , tn ∈ T n−1

I , f is a function of arity n in Σ and ti ∈ T⋄,
then f(t1, . . . , tn) ∈ T⋄.

– If t ∈ T⋄, t ̸= ⋄, n ∈ TN and s ∈ TI , then tn.s ∈ TI .

If t is a term in T⋄ and s ∈ TI then t[s] denotes the term of TI obtained
by replacing ⋄ with s, formally defined as follows: ⋄[s] def= s, f(t1, . . . , tn)[s] def=
f(t1[s], . . . , tn[s]) and (tn.u)[s] def= tn.u. Then the semantics of (ground) I-terms
is given by the following rewriting rules: t0.s → s and tn+1.s → t[tn.s]. Using
these two rules (and the usual arithmetic rules), any ground I-term t can be
transformed into a standard term t↓. For instance, the I-term f(x, ⋄)n.a denotes
the term f(x, f(x, . . . , f(x, a) . . .)). The next lemma shows that I-terms can be
denoted by N+-formulae.

A Unified View of Tree Automata and Term Schematisations 499

Lemma 3. Let t be an I-term of free variables x1, . . . , xn. There exist an N -
automaton At and an N+-formula φt(y) of free variables x1, . . . , xn, y (where
y does not occur in x1, . . . , xn) s.t. for every ground substitution σ, we have:
σ ∈ solAt(φt(y)) iff yσ = tσ↓. Moreover, φt(y) contains no equation between
non-arithmetic terms.

Remark 1. Consequently, any unification problem t = s between I-terms can
be associated to an N+-formula ψ = (∃x)[φt(x) ∧ φs(x)] s.t. (tσ)↓= (sσ)↓ iff σ
is a solution of ψ w.r.t. the union of the automata At and As.

Example 3. The equation y = f(g(⋄), x)n.a is equivalent to the N+-formula:
p(x, n, y) where p is defined by the rules:

q(x, n, y1) ∧ r(x, 0, y2)⇒ p(x, succ(n), f(y1, y2)) p(x, 0, a)
p(x, n, y) ⇒ q(x, n, g(y)) r(x, 0, x)

We have Aint(u) = {2} and At(u) = {1}, for every u ∈ {p, q, r}, Ac(p) =
Ac(q) = {2}, Ac(r) = A=(p) = A=(q) = ∅ and A=(r) = {1}.

Unfortunately, the previous result does not extend to other more expressive
term schematisation languages such as primal grammars. This is mainly due
to the possibility of “diagonalisation” i.e. inductive contexts depending on the
rank of the iteration, as in the term f(gn(x), f(gn−1(. . . , f(g(x), x)))). Such a
term can be expressed easily by a primal grammar, but it cannot be denoted
by an N -automaton. Thus N -automata do not subsume primal grammars and
the two formalisms are not comparable.

4 Intersection

In this section, we show how to compute the intersection of two languages
denoted by N -automata, which is the first step toward solving N+-formulae.
The obtained language can itself be denoted by an N -automaton. This is more
complicated than in the case of standard tree automata, because one has to
handle the additional parameters, but the procedure is similar.

Two predicate symbols p, q are said to be disjoint in an N -automaton A
if pr(p) = pr(q) and ICA(p) ∩ ICA(q) = ∅. We first show how to handle this
particular case.

Let A be an N -automaton. We denote by S⋆A the set of predicates [p, q]I
where p, q are disjoint symbols of arity n + 1 in SA and I ⊆ [1..n]. Intuitively,
we will have [p, q]IA(t) = pA(t) ∩ pA(t), if the I-components of t are 0 (I is
useful mainly to ensure that the level decreases). We construct an automaton
Â defined on the set of predicate symbols SA ∪ S⋆A as follows.

We first define: level([p, q]I) def= level(p)+ level(q)+arity(p)− |I|, pr([p, q]I) def=
pr(p) = pr(q), Ac([p, q]I) def= Ac(p) ∪ Ac(q) and A=([p, q]I) def= A=(p) ∪ A=(q).

500 N. Peltier

A substitution θ is said to be a I-unifier of two vectors (t1, . . . , tn) and
(s1, . . . , sn) iff for every i ∈ [1..n] we have tiθ = siθ and if i ∈ I then tiθ =
siθ = 0.

We denote by RA the set of rules of the form Hθ ∧ H ′θ → [p, q]I(tθ) s.t.
p, q are two n + 1-ary predicate symbols in SA, I is a subset of [1..n], H ⇒
p(t), H ′ → q(s) are two rules in ρA and θ is the most general I-unifier of t and
s.

Lemma 4. Let A be an N -automaton. Let I = Mod(ρA) and J = Mod(RA ∪
ρA). For any pair of disjoint predicate symbols (p, q) of arity n, for every I ⊆
[1..n] for every term s and for every ground p-vector (t1, . . . , tn) we have J |=
[p, q]I(t1, . . . , tn, s) iff ∀i ∈ I, ti = 0 and I |= p(t1, . . . , tn, s) ∧ q(t1, . . . , tn, s).

In particular, Lemma 4 shows that the language denoted by the predicate
[p, q]∅ is the intersection of the languages denoted by p and q, which is the desired
result, but of course the rules in RA are not N -rules. In order to transform them
into N -rules with the same minimal model, we introduce the following rewrite
rules (operating on rules):

Merging: [p(t1, . . . , tn, x) ∧ q(t1, . . . , tn, x) ∧H ⇒ C] −→
[p, q]I(t1, . . . , tn, x) ∧H ⇒ C

if p, q are disjoint and I is the set of indices i ∈ [1..n] s.t. ti = 0.
Agreement: [p(t1, . . . , tn, x) ∧ q(s1, . . . , sn, x) ∧H ⇒ C] −→

[p(t1, . . . , ti−1, si, ti+1, . . . , tn, x) ∧ q(s1, . . . , sn, x) ∧H ⇒ C]
if p ∈ SA and i ̸∈ IAA(p).

It is clear that these rules terminate on any set of rules. We denote by RA↓
an arbitrarily chosen normal form of RA w.r.t. the two rules above. The two
following lemmata show in some sense the soundness and completeness of the
above rules.

Lemma 5. Let A be an N -automaton. Mod(RA ∪ ρA) = Mod(RA↓ ∪ρA).

Lemma 6. Let A be an N -automaton. (S⋆A∪SA, RA↓ ∪ρA) is an N -automaton.

We take Â def= (S⋆A ∪ SA, RA↓ ∪ρA). By the above lemmata, for every pair of
disjoint predicates p, q and for every ground p-vector s, we have t ∈ [p, q]∅Â(s)
iff t ∈ pA(s) ∩ qA(s).

We need the following:

Lemma 7. Let A be an automaton. Let p ∈ SA and let l ∈ At(p). For
all ground terms t1, . . . , tn, t, Mod(ρA) |= p(t1, . . . , tl−1,⊥, tl+1, . . . , tn, t) iff
Mod(ρA) |= p(t1, . . . , tn, t) and tl does not occur in t.

The next lemma handles the more general case of non-disjoint intersection.

Lemma 8. Let A be an N -automaton. For any N+-formula φ = p(t, x) ∧
q(t′, x), one can compute an extension A′ of A and an N+-formula Λ(φ) of
the form r(s, x) s.t. all the components of s are components of t or t′ and
solA(φ) = solA′(Λ(φ)).

A Unified View of Tree Automata and Term Schematisations 501

5 Solving N+-Formulae

In this section, we show (constructively) that there exists an algorithm checking
whether a given (closed) N+-formula has solutions or not. This entails in par-
ticular that emptiness problems or unification problems are decidable since they
can be easily encoded into N+-formulae. According to Lemma 3, any equation
t = s between terms in TI (hence also between terms in TΣ) can be eliminated
and replaced by an equivalent N+-formula φ not containing any such equa-
tions (see Remark 1). Moreover, we assume, w.l.o.g., that for all non-arithmetic
atoms p(t1, . . . , tn) occurring in the formula, t1, . . . , tn are either variables, or
0 or ⊥, where ⊥ is a special constant symbol not occurring in the considered
automaton.

5.1 Emptiness Problems

We first consider a particular case. An N+-formula φ of the form
(∃x)p(t1, . . . , tn, x) where x does not occur in t1, . . . , tn is called an emptiness
problem. φ is said to be simple if A=(p) = ∅, and for all i ∈ Ac(p), ti = 0.

If S is a set of rules, and p(t) an atom (where t denotes a vector of terms),
we denote by S[p(t)] the set of rules (H ⇒ p(s))θ s.t. H ⇒ p(s) ∈ S and θ is a
most general unifier of t and s. Note that the heads of the rules in S[p(t)] are
instances of p(t).

Let φ = (∃x)p(t, x) be an emptiness problem (e.p. for short) and let A
be an N -automaton. We denote by DA(φ) the set of formulae of the form
(∃z)[t = s ∧

∧k
i=1(∃xi)qi(vi, xi)], where

∧k
i=1 qi(ui, xi) ⇒ p(s, f(x1, . . . , xk)) is

a rule occurring in ρA[p(t,x)], z denotes the variables in s and vi is obtained from
ui by replacing any occurrence of f(x1, . . . , xk) by ⊥. We denote by UA(φ) the
disjunction of all the formulae occurring in DA(φ).

Proposition 1. For any e.p. φ and for every N -automaton A, φ ≡A UA(φ).

For any e.p. φ, we shall define an equivalent N+-formula ΓA(φ) containing no
existential non-arithmetic variable. To this purpose, we need to introduce some
additional definitions. If p is a predicate symbol, then we denote by n(p) the
(necessarily unique) predicate q s.t. the principal atom of the inductive p-rule is
of the form q(. . .) (if there is no inductive p-rule then n(p) is defined arbitrarily),
and by m(p) the smallest integer k s.t. there exists l s.t. nl(nk(p)) = nk(p) (k, l
exist since the number of predicate symbols is finite).

Let A be an N -automaton and let φ = (∃x)p(t, x) and ψ = (∃y)q(s, y) be
two e.p.’s. We write φ > ψ iff:

– Either level(p) > level(q), or level(p) = level(q) and |var(s)| < |var(t)|.
– Or level(p) = level(q), |var(s)| = |var(t)|, φ is simple and ψ is not.

502 N. Peltier

– Or level(p) = level(q), |var(s)| = |var(t)|, neither φ nor ψ is simple and
m(p) > m(q).

ΓA(φ) is constructed by induction on the ordering >. If ξ is a complex
formula then we shall denote by ΓA(ξ) the formula obtained by replacing each
e.p. ψ occurring in ξ by ΓA(ψ). Of course this definition makes sense only if
ΓA(ψ) has been defined, i.e. if φ > ψ for every e.p. ψ occurring in ξ.

Let φ = (∃x)p(t, x) where t = (t1, . . . , tn). ΓA(φ) is defined as follows:

1. If A=(p) is non empty, then ΓA(φ) def= p(t1, . . . , tn, ti) where i is an arbi-
trarily chosen index in A=(p).

2. If there exists j ∈ Ac(p) s.t. tj ̸= 0 and if either ρA contains no
inductive p-rule or m(p) > 0, then ΓA(φ) def= ΓA(UA(φ)).

3. If for all j ∈ Ac(p), tj = 0:
We denote by E the smallest set of conjunctions of e.p. s.t. φ ∈ E and if
φ ∧ ψ ∈ E, φ is simple, and (∃u)[t = s ∧ γ] is in DA(φ) then γ ∧ ψ ∈ E.
E must be finite. Indeed, since the head of the rules contains all the variables,
all the variables in E must occur in φ, hence the number of possible e.p. is
finite (up to equivalence). Thus the number of distinct disjunctions is finite.
Let ξ be the disjunction of conjunctions ψ ∈ E that contain no simple e.p.
We define ΓA(φ) def= ΓA(ξ).

4. If ρA contains an inductive p-rule and m(p) = 0:
Let {i1, . . . , im} be the elements in Ac(p) s.t. tij is a variable. Starting from
the formula φ we repeatedly replace any e.p. of the form (∃x)ni(p)(vi, x)
(initially we have i = 0) by UA((∃x)ni(p)(vi, xi)), until we obtain another
e.p. of head p (which is possible since m(p) = 0). The obtained formula
can be reduced (by miniscoping and distributivity) to a formula of the form
ψ ∨ [(∃z)

∧m
j=1 tij = succkj (zj) ∧ γ ∧ (∃x)p(vk, x)], where k1, . . . , km ∈ N,

z1, . . . , zm are either 0 or variables not occurring in γ, z denotes the vector of
variables in z1, . . . , zm and vk is obtained from t by replacing each component
tij by zj.
We define: ΓA(φ) def= (∃l, z)[

∧m
j=1(tij = l×ki +zj)∧ΓA(γ)∧ΓA(ψ′)], where ψ′

is obtained from ψ by replacing tij by zj (l×ki denotes the term l+ l+ . . .+ l
(ki times)).

Lemma 9. ΓA(φ) is well defined, for every emptiness problem φ and for every
automaton A. Moreover, φ ≡A ΓA(φ) and the quantified variables in ΓA(φ) are
arithmetic.

5.2 Reduction to Presburger Arithmetic

By distributivity and miniscoping, any N+-formula φ can be reduced into a
formula of the form

∨n
i=1(∃xi)ψi where ψi =

∧ki

j=1 γij and where the γij ’s are
atoms. The algorithm is defined by the following rules, applied in the specified

A Unified View of Tree Automata and Term Schematisations 503

order, on the disjuncts ψi (and not on the formulae occurring in them). The
formulae are normalized after each rule application.

(r0) (∃x) [ψ ∧ p(t,⊥)] → false
(r1) (∃x) [ψ ∧ p(t, x) ∧ q(t′, x)] → (∃x)[ψ ∧ Λ(p(t, x) ∧ q(t′, x))]

(r2) (∃x1, . . . , xk) (∃n) φ →
∨k

i=1(∃x1, . . . , xk) ∃n rmxi (φ)
If for all i ∈ [1..k] there exists an atom p(t, xj) in φ s.t. j ̸= i
and xi occurs in t, x1, . . . , xk ∈ X and n is a vector of variables in XN .
rmx(φ) is defined below.

(r3) (∃x1, . . . , xk) (ψ ∧ p(t, xk)) → (∃x1, . . . , xk−1) [ψ ∧ p(t, xk){xk → ti}]
If xk does not occur in ψ and i is an index in A=(p) s.t. ti ̸= xk.

(r4) (∃x1, . . . , xk) [ψ ∧ p(t, xk)] → (∃x1, . . . , xk−1) [ψ ∧ UA((∃xk) p(t, xk))]
If xk occurs in t but not in ψ.

(r5) (∃x1, . . . , xk) [ψ ∧ p(t, xk)] → (∃x1, . . . , xk−1) [ψ ∧ ΓA((∃xk)p(t, xk))]
If A=(p) = ∅, xk does not occur in t nor in ψ.

rmx(φ) is defined by the following (auxiliary) rule:
(rmx) (∃x1, . . . , xn, y) (p(t, y) ∧ ψ) → (∃x1, . . . , xn) (p(t, y) ∧ ψ){y → x}

∨(∃x1, . . . , xn, y) (p(t{x→ ⊥}, y) ∧ ψ)
If x occurs in t and y ̸= x.

Lemma 10. Let φ be a N+-formula. The rules r0, . . . , r5 (with the above strat-
egy) terminate on φ and preserve equivalence. Moreover, any irreducible formula
is purely arithmetic.

Since Presburger arithmetic is known to be decidable, Lemma 10 provides
an algorithm for checking whether a given closed N+-formula is satisfiable or
not.

6 A Simple Application

We show a simple example of application in the context of Logic Programming.
If the satisfiability problem is decidable for N+-formulae (as shown by Lemma
10), then N -automata can be integrated in Logic Programs. The corresponding
unification problems can be solved by our constraint solving algorithm.

Assume that one wants to define a predicate last(l, x) which is true iff x is
the last element of the list l. Using standard Horn clauses, last(l, x) is defined
as follows: {last(cons(x ,nil), x), last(cons(y, l), x)⇐ last(l , x)}.

Using N -automata we obtain: last(l, x) ⇐ p(x, l), where p is defined by the
following N -rules:

{q(x, y)⇒ p(x, cons(y,nil)), p(x , l)⇒ p(x , cons(y, l)), q(x , x)}.

504 N. Peltier

Both techniques yield exactly the same result (from a semantic point of
view). But the use of N -automata allows one to compute the solution of a
request last(l, x) in a symbolic way, rather than enumerating all possible lists.

Thus a request of the form last(l, 1)∧last(l, 2) diverges with the first approach
and simply terminates and fails using our technique. Of course, the program-
mer does not need to write the N -automaton explicitly: it could be compiled
automatically from the set of Horn clauses (in case they are of the required
form).

7 Conclusion

We have presented a framework unifying tree automata [4] with some term
schematisation languages [3]. By combining the features of both approaches,
we obtained a formalism which is strictly more expressive than the original
ones. We provided an algorithm to check the satisfiability of positive, purely
existential membership formulae, which allows one to include N -automaton
into most existing symbolic computation procedures (such as SLD-resolution in
Logic Programming). Our work extends the power of tree automata by showing
how to include integer counters and parameters. It also strictly enhances the
expressive power of term schematisations by using more general contexts.

Future works include the extension of the presented approach in order to
capture more expressive term schematisation languages such as R-terms or pri-
mal grammars, and the extension of the class of considered formulae in order to
handle formulae with negations and universal quantifiers. In the context of tree
automata this corresponds to the complement problem (i.e. compute the com-
plement of the set of terms recognized by a tree automaton) and in the context
of term schematisations, this corresponds to disunification problems [6].

References

1. J. Chabin, J. Chen, and P. Réty. Synchronized-context free tree-tuple languages. Techni-
cal Report RR-2006-13, LIFO, 4 rue Léonard de Vinci, BP 6759, F-45067 Orléans Cedex
2 FRANCE, 2006.

2. H. Chen and J. Hsiang. Logic programming with recurrence domains. In Automata,
Languages and Programming (ICALP’91), pages 20–34. Springer, LNCS 510, 1991.

3. H. Comon. On unification of terms with integer exponents. Mathematical System Theory,
28:67–88, 1995.

4. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison,
and M. Tommasi. Tree automata techniques and applications. Available on:
http://www.grappa.univ-lille3.fr/tata, 1997.

5. H. Comon and C. Delor. Equational formulae with membership constraints. Information
and Computation, 112(2):167–216, August 1994.

6. H. Comon and P. Lescanne. Equational problems and disunification. Journal of Symbolic
Computation, 7:371–475, 1989.

A Unified View of Tree Automata and Term Schematisations 505

7. G. Feuillade, T. Genet, and V. Viet Triem Tong. Reachability Analysis over Term Rewrit-
ing Systems. J. Automated Reasoning, 33 (3-4):341–383, 2004.

8. M. Hermann and R. Galbavý. Unification of Infinite Sets of Terms schematized by Primal
Grammars. Theoretical Computer Science, 176(1–2):111–158, 1997.

9. S. Limet and G. Salzer. Manipulating tree tuple languages by transforming logic pro-
grams. Electr. Notes Theor. Comput. Sci., 86(1), 2003.

10. S. Limet and G. Salzer. Proving properties of term rewrite systems via logic programs.
In RTA, volume 3091 of Lecture Notes in Computer Science, pages 170–184. Springer,
2004.

11. C. Löding. Model-checking infinite systems generated by ground tree rewriting. In
M. Nielsen and U. Engberg, editors, Foundations of Software Science and Computa-
tion Structures, 5th International Conference, FOSSACS 2002., volume 2303 of Lecture
Notes in Computer Science, pages 280–294. Springer, 2002.

12. D. Lugiez and J. L. Moysset. Tree automata help one to solve equational formulae in
AC-theories. Journal of Symbolic Computation, 18(4):297–318, 1994.

13. P. Réty and J. Vuotto. Tree automata for rewrite strategies. J. Symb. Comput., 40(1):749–
794, 2005.

14. G. Salzer. The unification of infinite sets of terms and its applications. In Logic Pro-
gramming and Automated Reasoning (LPAR’92), pages 409–429. Springer, LNAI 624,
July 1992.

15. K. N. Venkataraman. Decidability of the purely existential fragment of the theory of
term algebras. J. ACM, 34(2):492–510, 1987.

