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Abstract We improve the performance of main-memory binary search trees
(including AVL and red-black trees) by applying cache-sensitive and cache-
oblivious memory layouts. We relocate tree nodes in memory according to
a multi-level cache hierarchy, also considering the conflict misses produced
by set-associative caches. Moreover, we present a method to improve one-
level cache-sensitivity without increasing the time complexity of rebalancing.
The empirical performance of our cache-sensitive binary trees is comparable
to cache-sensitive B-trees. We also use the multi-level layout to improve the
performance of cache-sensitive B-trees.

1 Introduction

Most of today’s processor architectures use a hierarchical memory system: a
number of caches are placed between the processor and the main memory.
Caching has become an increasingly important factor in the practical perfor-
mance of main-memory data structures. The relative importance of caching
will likely increase in the future [1, 2]: processor speeds have increased faster
than memory speeds, and many applications that previously needed to read
data from disk can now fit all of the necessary data in main memory. In data-
intensive main memory applications, reading from main memory is often a bot-
tleneck similar to disk I/O for external-memory algorithms.

There are two types of cache-conscious algorithms. We will focus on the
cache-sensitive (or cache-aware) model, where the parameters of the caches
are assumed to be known to the implementation. In contrast, cache-oblivious
algorithms attempt to optimize themselves to an unknown memory hierarchy.

The simplest cache-sensitive variant of the B-tree is an ordinary B+-tree
where the node size is chosen to match the size of a cache block (e.g., 64 or
128 bytes) [3]. A more advanced version called the Cache-Sensitive B+-tree or
CSB+-tree [1] additionally removes pointers from internal nodes by storing the
children of a node consecutively in memory. The CSB+-tree has been further
optimized using a variety of techniques, such as prefetching [4], storing only
partial keys in nodes [5], and choosing the node size more carefully [2]. The
above structures used a one-level cache model; B-trees in two-level cache models
(one level of cache plus the TLB) are examined in [6, 7].
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A weight-balanced B-tree based on the cache-oblivious model has been pro-
posed in [8]. Its simpler variants [9, 10] use an implicit binary tree (a complete
binary tree stored in a large array without explicit pointers) whose structure
and rebalancing operations are dictated by the cache-oblivious memory layout.
In all three, update operations may rebuild parts of the tree, so most of the
complexity bounds are amortized.

When using binary search trees, the node size cannot be chosen as freely as
in B-trees. Instead, we will place the nodes in memory so that each cache block
contains nodes that are close to each other in the tree. Binary search tree nodes
are relatively small; for example, AVL and red-black tree nodes can fit in about
16 or 20 bytes using 4-byte keys and 4-byte pointers, so 3–8 nodes fit in one
64-byte or 128-byte cache block. (We assume that the nodes contain only small
keys. Larger keys could be stored externally with the node storing a pointer to
the key.)

Caching and explicit-pointer binary search trees have been previously con-
sidered in [11], which presents a cache-oblivious splay tree based on periodically
rearranging all nodes in memory. In addition, [12] presents a one-level cache-
sensitive periodic rearrangement algorithm for explicit-pointer binary trees. A
similar one-level layout (extended to unbalanced trees) is analyzed in [13], which
also discusses the multi-level cache-oblivious layout known as the van Emde
Boas layout. The latter is analyzed in detail in [14].

We give an algorithm that preserves cache-sensitivity in binary trees in the
dynamic case, i.e., during insertions and deletions. Our algorithm retains single-
level cache-sensitivity using small worst-case constant-time operations executed
when the tree changes. In addition, we give an explicit algorithm for multi-
level cache-sensitive global rearrangement, including a variation that obtains
a cache-oblivious layout. We also investigate a form of conflict miss caused by
cache-sensitive memory layouts that interact poorly with set-associative caches.

Our approach does not change the internal structure of the nodes nor the
rebalancing strategy of the binary search tree. The approach is easy to imple-
ment on top of an existing implementation of any tree that uses rotations for
balancing, e.g., red-black trees and AVL trees. Our global rearrangement algo-
rithm can also be applied to cache-sensitive B-trees, and our empirical results
indicate that the multi-level memory layout improves the performance of both
B+-trees with cache-block-sized nodes and CSB+-trees.

2 Cache model

We define a multi-level cache model as follows. We have a k-level cache hierarchy
with block sizes B1, . . . , Bk at each level. We also define B0 = node size in bytes,
Bk+1 = ∞. We assume that our algorithms know these cache parameters. (In
practice, they can be easily inferred from the CPU model or from metadata
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stored in the CPU.) To keep the model simple, we do not model any other
features of the cache, such as the capacity.

Our algorithms shorten the Bi-block search path length, denoted Pi and de-
fined as the length of a root-to-leaf path measured in the number of separate
cache blocks of size Bi encountered on the path. Using this terminology, P0 is
the traditional search path length in nodes (assuming that the search does not
end before the leaf level), P1 is the length counted in separate B1-sized cache
blocks encountered on the path, and so on.

We assume that for i > 1, each block size Bi is an integer multiple of Bi−1.
Additionally, if B1 is not an integer multiple of the node size B0, a node should
not cross a B1-block boundary (so that it is never necessary to fetch two cache
blocks from memory in order to access a single node). In practice, this is achieved
by not using the last B1 mod B0 bytes of each B1-block. (In practice, Bi, i > 0,
is almost always a power of 2.)

A typical modern computer employs two levels of caches: a relatively small
and fast level 1 (“L1”) cache, and a larger and slower level 2 (“L2”) cache.
In addition, the mapping of virtual addresses to physical addresses used by
multitasking operating systems employs a third hardware cache: the Translation
Lookaside Buffer or TLB cache.

Currently the cache block size is often the same in the L1 and L2 caches.
They then use only one level of our hierarchy. For example, the cache model used
in the experiments in Section 5 is k = 2, B0 = 16 (16-byte nodes), B1 = 64
(the block size of the L1 and L2 caches in an AMD Athlon XP processor),
B2 = 4096 (the page size of the TLB cache), B3 =∞. However, our algorithms
can be applied to an arbitrary hierarchy of cache block sizes.

3 Global relocation

Figure 1 gives an algorithm that rearranges the nodes of a tree in memory into
a multi-level cache-sensitive memory layout. The algorithm can be used for any
kind of balanced tree with fixed-size nodes.

The produced layout can be considered to be a generalization of the one-
level cache-sensitive layouts of [12, 13] and the two-level layouts of [6, 7] to
an arbitrary hierarchy of block sizes. It is different from the multi-level “van
Emde Boas” layout (see [13]) in that the recursive placement of smaller blocks
in larger ones is more complex, because, in the cache-sensitive model, we cannot
choose the block sizes according to the structure of the tree, as is done in the
cache-oblivious van Emde Boas layout.

In the produced layout, the first lowest-level (l = 1) block is filled by a
breadth-first traversal of the tree starting from the root r. When this “root
block” is full, each of its children (i.e., the “grey” or border nodes in the breadth-
first search) will become the root node of its own level 1 block, and so on. On
levels l > 1, level l−1 blocks are allocated to level l blocks in the same manner.
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reloc-block(l, r):
1: if l = 0 then
2: Copy node r to address A, and update the link in its parent.
3: A ← A + B0

4: return children of r
5: else
6: S ← A
7: E ← A + F (A, l)−Bl−1

8: Q ← empty queue
9: put(Q, r)

10: while Q is not empty and A ≤ E do
11: n ← get(Q)
12: c ← reloc-block(l− 1, n)
13: put(Q, all nodes in c)
14: end while
15: if Q is not empty then
16: A ← start of next level l block (= E + Bl−1)
17: if F (S, l) < Bl/2 then {less than half of the block was free}
18: Free the copies made above, i.e., all nodes at addresses S to A− 1.
19: return r {our caller will try to relocate r again later}
20: end if
21: end if
22: return remaining nodes in Q
23: end if
relocate(r):
1: A ← beginning of a new memory area, aligned at a level k block boundary
2: reloc-block(k + 1, r) {Bk+1 =∞, so this relocates everything}

Fig. 1 The global relocation algorithm. The address A of the next available position for a
node is a global variable. F (A, l) = Bl−A mod Bl is the number of bytes between A and the
end of the level l block containing A. (To be able to update the link in a parent when a node
is copied, the algorithm actually needs to store (node, parent) pairs in the queue Q, unless
the tree structure contains parent links. This was left out of the pseudocode for clarity.)

The algorithm of Figure 1 produces this layout using a single traversal of
the tree using auxiliary queues that store border nodes for each level of the
breadth-first search. Lines 17–20 are an optional space optimization: at the leaf
level, there may not be enough nodes to fill a block. Lines 17–20 ensure that
each level l block will be at least half full by trying to allocate the next available
subtree in the remaining space in a non-full block.

Theorem 1. Assume that the global relocation algorithm of Figure 1 is executed
on a complete binary tree of height h. Then the worst-case Bi-block path length
will be Pi = ⌈h/hi⌉, where hi = hi−1 · ⌊logdi−1

(Bi/Bi−1 + 1)⌋, h0 = 1. If
B1 is an integer multiple of B0, then di = Bi/B0 + 1; otherwise, d0 = 2 and
di = (di−1 − 1) · ⌊Bi/Bi−1⌋+ 1.

Proof. Consider a cache block level i ∈ {1, . . . , k}. Each level i − 1 block pro-
duced by the layout (except possibly for blocks that contain leaves of the tree)
contains a connected part of the tree with di−1 − 1 binary tree nodes. These
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blocks can be thought of as “super-nodes” with fanout di−1. The algorithm of
Figure 1 produces a level i block by allocating Bi/Bi−1 of these super-nodes in
breadth-first order (i.e., highest level i−1 block first). The shortest root-to-leaf
path of the produced level i block has hi binary tree nodes. ⊓#

The produced layout is optimal on the level of B1-blocks: it is not possible
to produce a larger h1. It is not possible to be optimal on all levels [14], and we
resolved this tradeoff by preferring the lowest level. Knowledge of the relative
costs of cache misses at each level could in theory be used to produce a more
optimal layout, but we did not want our cache-sensitive algorithms to depend
on these kinds of additional parameters.

Theorem 2. The algorithm of Figure 1 rearranges the nodes of a tree into a
multi-level cache-sensitive memory layout in time O(nk), where n is the number
of nodes in the tree and k is the number of memory-block levels.

Proof. Each node in the tree is normally copied to a new location only once.
However, the memory-usage optimization in line 18 may “undo” (free) some of
these copies. The undo only happens when filling a level l cache block that was
more than half full, and the layout is then restarted from an empty level l cache
block. Thus, an undo concerning the same nodes cannot happen again on the
same level l. However, these nodes may already have taken part in an undo on
a smaller level l′ < l. In the worst case, a node may have taken part in an undo
on all k memory-block levels. Each of the n nodes can then be copied at most
k times.

Consider then the queues Q at various levels of recursion. Each node enters
a queue at level l = 1 (line 13, using c from line 4), and travels up to a level
l′ ≤ k + 1, where it becomes the root of a level l′ − 1 subtree and descends to
level 0 in the recursion. Thus, each node is stored in O(k) queues. ⊓#

Cache-oblivious layout. Though cache-sensitive, the produced layout is
similar to the “van Emde Boas” layout used as the basis of many cache-oblivious
algorithms. In fact, our algorithm can produce the van Emde Boas layout:
simply use the block sizes Bi = (22i − 1) · B0 (i = 1, . . . , k where k = 4 or
k = 5 is enough for trees that fit in main memory). The only difference between
the layout thus produced and the van Emde Boas layout (as described in, e.g.,
[13]) is that the recursive subdivision is done top-down instead of bottom-up,
and some leaf-level blocks may not be full. (These differences are unavoidable
because the van Emde Boas layout is defined only for complete trees.)

Aliasing correction. While experimenting with the global relocation al-
gorithm, we found that multi-level cache-sensitive layouts can suffer from a
problem called aliasing, a kind of repeated conflict miss. Many hardware caches
are d-way set associative (d ∈ {2, 4, 8} are common), i.e., there are only d pos-
sible places in the cache for a block with a given address A. The problem is
that, for instance, the ith cache block in each TLB page is often mapped to the
same set of d places. Therefore, if the ith cache blocks of several TLB pages are
accessed, the cache can only hold d of these blocks.
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A straightforward multi-level cache-sensitive layout (including the one pro-
duced by the above algorithm) fills a TLB page (of size Bl for some l) with a
subtree so that the root of the subtree is placed at the beginning of the TLB
page (i.e., in the first Bl−1-sized cache block). Then, for example, when a par-
ticular root-to-leaf path is traversed in a search, only d root nodes of these
TLB-sized subtrees can be kept in the (set associative) Bl−1-block cache. (The
root of the TLB-sized subtree is not of course the only problematic node, but
the problem is most pronounced at the root.)

The problem can be fixed by noting that we can freely reorder the cache
blocks inside a TLB page. The Bl-sized TLB page consists of Bl/Bl−1 cache
blocks, and the subtree located in the TLB page can use these cache blocks in
any order. We simply use a different ordering for separate TLB pages, so the
root node of the subtree will not always be located in the first cache block.

We implement the reordering by a simple cache-sensitive translation of the
addresses of each node allocated by the global relocation algorithm, as fol-
lows.2 Every address A can be partitioned into components according to the
cache block hierarchy: A = Ak . . . A2A1A0, where each Ai, i ∈ {1, . . . , k − 1},
has log2 Bi/Bi−1 bits of A, and A0 and Ak have the rest. For each level
i = {1, . . . , k}, we simply add the upper portion Ak . . . Ai+1 to Ai, modulo
Bi/Bi−1 (so that only the Ai part is changed).

For example, if Bl is the size of the TLB page, the root of the first allocated
TLB page (Ak . . . Al+1 = 0) will be on the first cache block (the translated
portion A′

l = 0), but the root of the second TLB page (which is a child of the
first page) will be on the second cache block (Ak . . . Al+1 = 1, so A′

l = 1) of its
page.

It would be enough to apply this correction to those memory-block levels
with set associative caches on the previous level (i.e., only level l in the above
example, since level l − 1 has the set associative cache). However, we do it on
all levels, because then our cache-sensitive algorithms only need knowledge of
the block sizes and not any other parameters of the cache hierarchy. Applying
the translation on every level increases the time complexity of the relocation
algorithm to O(nk2), but this is not a problem in practice, since k is very small
(e.g., k = 2 was discussed above).

4 Local relocation

When updates (insertions and deletions) are performed on a tree which has been
relocated using the global algorithm of the previous section, each update may
disrupt the cache-sensitive memory layout at the nodes that are modified in the
update. In this section, we present modifications to the insert and delete algo-

2 The translation is applied to every address used in lines 2 and 18 of the algorithm of Figure 1.
The other addresses S, A and E in the algorithm do not need to be translated, because they
are only used to detect block boundaries.
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rithms that try to preserve a good memory layout without increasing the time
complexity of insertion and deletion in a binary search tree that uses rotations
for balancing. These algorithms can be used either together with the global
relocation algorithm of the previous section (which could be run periodically)
or completely independently.

Our approach preserves the following memory-layout property:

Invariant 1 For all non-leaf nodes x, either the parent or one of the children
of x is located on the same B1-sized cache block as x.

This property reduces the average B1-block path length even in a worst-case
memory layout. For simplicity, the proof only considers a complete binary tree
of height h. (To see that Invariant 1 improves the memory layout of, e.g., a red-
black tree, note that the top part of a red-black tree of height h is a complete
tree of height at least h/2.)

Theorem 3. Assume that Invariant 1 holds in a complete binary tree of
height h. Then the average B1-block path length P1 ≤ 2h/3 + 1/3.

Proof. In the worst-case memory layout, each B1-sized cache block contains
only nodes prescribed by Invariant 1, i.e., a single leaf or a parent and child.

By Invariant 1, the root r of the tree (with height h) is on the same
cache block as one of its children. Considering all possible paths down from r
leads to the following recurrence for the expected value of the B1-block path
length: P (h) = 1/2 · (1 + P (h − 2)) + 1/2 · (1 + P (h − 1)) (with P (1) = 1
and P (0) = 0). Solving gives E[P1|worst-case memory layout] = P (h) =
2h/3 + 2/9 − 2(−1)h/(9 · 2h) ≤ 2h/3 + 1/3. In any memory layout, the av-
erage P1 ≤ E[Pi|worst-case memory layout]. ⊓$

We say that a node x is broken if Invariant 1 does not hold for x. To analyze
how this can happen, denote N(x) = the set of “neighbors” of node x, i.e., the
parent of x and both of its children (if they exist). Furthermore, say that x
depends on y if y is the only neighbor of x that keeps x non-broken (i.e., the
only neighbor on the same cache block).

Our local relocation approach works as follows. We do the standard binary
search tree structure modification operations (insertion, deletion, rotations) as
usual, but after each such operation, we collect a list of nodes that can poten-
tially be broken (Figure 2), and use the algorithm given below to re-establish
Invariant 1 before executing the next operation.

The nodes that can break are exactly those whose parent or either child
changes in the structure modification, since a node will break if it depended on
a node that was moved away or deleted. As seen from Figure 2, 1 to 6 nodes
can be broken by one structure modification. We explain the various cases in
Figure 2 below.

In internal trees, actual insertion is performed by adding a new leaf node to
an empty location in the tree. If the parent of the new node was previously a
leaf, it may now be broken; thus, the parent is marked as potentially broken in
Figure 2(c).
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⇒

(a) External tree insertion

⇒

(b) External tree deletion

(c) Internal tree
insertion

⇒ ⇒

(d) Internal tree deletion (non-leaf)

⇒

(e) Internal tree
deletion (leaf)

⇒

(f) Single rotation

⇒

(g) Double rotation

Fig. 2 Broken nodes in actual insertion, actual deletion and rotations. Potentially broken
nodes are filled black; the dotted lines indicate the nodes that the operation works on.

In external (leaf-oriented) trees, actual insertion replaces a leaf node by a new
internal node with two children: the old leaf and a new one (see Figure 2(a)).
The new internal node is potentially broken (if it was not allocated on the same
cache block as one of the other nodes), and its parent may become broken, if
the parent depended on the old leaf node.

Actual deletion in external trees deletes a leaf and its parent and replaces
the parent with its other child (Figure 2(b)). The parent of the deleted internal
node and the other child can become broken, since they could have depended
on the deleted internal node.

Actual deletion in internal trees is slightly more complicated, with two cases.
In the simple case (Figure 2(e)), a leaf is deleted, and its parent becomes broken,
if it depended on the deleted leaf. The more complicated case arises when a non-
leaf node x needs to be deleted (Figure 2(d)). The standard way of doing the
deletion is to locate the node y with the next-larger key from the right child
of x, copy the key and possible associated data fields to x, and then delete y
by replacing it with its right child (if any). In this process, the parent of y
and the right child can become broken (if they depended on y). The node x
cannot become broken, since it or its neighbors were not moved in memory.
(The equivalent implementation that looks for the next-smaller key of x in its
left child is completely symmetric with regard to broken nodes.)

When a single or double rotation is performed, the nodes that can break are
those whose parent or either child changes in the rotation, since a node will
break if it depended on a node that was moved away by the rotation.
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fix-broken(B):
1: while B ̸= ∅ do
2: Remove any non-broken nodes from B (and exit if B is emptied).
3: if a node in N(B) has free space in its cache block then
4: Select such a node x and a broken neighbor b ∈ B. (Prefer the x with the

most free space and a b with no broken neighbors.)
5: Move b to the cache block containing x.
6: else if a node b ∈ B has enough free space in its cache block then
7: Select the neighbor x ∈ N(b) with the smallest |D(x)|.
8: Move x and all nodes in D(x) to the cache block containing b.
9: else

10: Select a node x ∈ N(B) and its broken neighbor b ∈ B. (Prefer a broken x,
and after that an x with small |D(x)|. If there are multiple choices for b,
prefer a b with N(b) \ x non-broken.)

11: Move b, x and all nodes in D(x) to a newly-allocated cache block.
12: end if
13: end while

Fig. 3 The local relocation algorithm. B is a set of potentially broken nodes which the
algorithm will make non-broken; N(B) =

⋃
b∈B

N(b). An implementation detail is that the
algorithm needs access to the parent, grandparent and great grandparent of each node in B,
since the grandparent may have to be moved in lines 8 and 11.

We can optimize the memory layout somewhat further with a simple heuristic
(not required for Invariant 1): In insertion, a new node should be allocated in
the cache block of its parent, if it happens to have enough free space.

We need an additional definition for the algorithm of Figure 3: D(x) is the set
of neighbors of node x that depend on node x (i.e., will be broken if x is moved
to another cache block). Thus, D(x) ⊂ N(x) and 0 ≤ |D(x)| ≤ |N(x)| ≤ 3. A
crucial property is that nothing depends on a broken node (because no neighbor
is on the same cache block), and thus broken nodes can be moved freely.

The algorithm of Figure 3 repeats three steps until the set of broken nodes B
is empty. First, all neighbors of the broken nodes are examined to find a neigh-
bor x with free space in its cache block. If such a neighbor is found, a broken
node b ∈ N(x) is fixed by moving it to this cache block. If no such neighbor was
found, then the cache blocks of the nodes in B are examined; if one of them
has enough space for a neighbor x and its dependants D(x), they are moved to
this cache block. Otherwise, if nothing was moved in the previous steps, then
a broken node b is forcibly fixed by moving it and some neighboring nodes to
a newly allocated cache block. At least one neighbor x of b needs to be moved
along with b to make b non-broken; but if x was not broken, some of its other
neighbors may depend on x staying where it is – these are exactly the nodes in
D(x), and we move all of them to the new cache block. (It is safe to move the
nodes in D(x) together with x, because their other neighbors are not on the
same cache block.)
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Theorem 4. Assume that Invariant 1 holds in all nodes in a tree, except for a
set B of broken nodes. Then giving B to the algorithm of Figure 3 will establish
Invariant 1 everywhere.

Theorem 5. The algorithm of Figure 3 moves at most 4|B| = O(|B|) nodes in
memory. The total time complexity of the algorithm is O(|B|2).

Proof. Each iteration of the loop in the algorithm of Figure 3 fixes at least
one broken node. Line 5 does this by moving one node; line 11 moves at most
4 nodes (b, x, and the two other neighbors of x), and line 8 moves at most
3 nodes (x and two neighbors). Thus, at most 4|B| nodes are moved in the at
most |B| iterations that the algorithm executes.

Each iteration looks at O(|B|) nodes; thus, the total time complexity is
O(|B|2). Additionally, looking for free nodes in a B1 cache block can require
more time. A naïve implementation looks at every node in the B1-block to
locate the free nodes, thus increasing the time complexity to O(|B|2 · B1/B0).
This may actually be preferable with the small B1 of current processors. (The
implementation we describe in Section 5 did this, with B1/B0 = 4.)

With larger B1/B0, the bound of the theorem is reached simply by keeping
track of the number of free nodes in an integer stored somewhere in the B1-sized
block. To find a free node in constant time, a doubly-linked list of free nodes
can be stored in the (otherwise unused) free nodes themselves, and a pointer to
the head of this list is stored in a fixed location of the B1-block. ⊓"

Remember that |B| ≤ 6 always when we execute the algorithm.
A space-time tradeoff is involved in the algorithm of Figure 3: we sometimes

allocate a new cache block to get two nodes on the same cache block (thus
improving cache locality), even though two existing cache blocks have space for
the nodes. Since our relocation algorithm always prefers an unused location in
a previously allocated cache block, it is to be hoped that the cache blocks do
not become very empty on average. (Moving unrelated nodes on the existing
cache blocks “out of the way” is not practical: to move a node x in memory, we
need access to the parent of x to update the link that points to the node, and
our small-node trees do not store parent links.)

We get a lower limit for the cache block fill ratio from the property that
our algorithm preserves: each non-leaf node has at least the parent or one child
accompanying it on the same cache block. (Empty cache blocks should of course
be reused by new allocations.)

5 Experiments

We implemented the algorithms of Sections 3 and 4 on internal AVL and red-
black trees, and compared them to the cache-sensitive B+-tree (the “full CSB+-
tree” of [1]) and to a standard B+-tree with cache block-sized nodes (called a
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(a) Binary trees
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(b) B-tree variants

Fig. 4 Effect of global and local relocation and aliasing correction (=“ac”). The figures give
the search time relative to (a) the traditional red-black tree, (b) the cB+-tree. The trees
marked “global” have been relocated using the global algorithm. “Red-black local” uses local
relocation; the others use neither global nor local relocation. AVL trees (not shown) performed
almost identically to red-black trees.

“cB+-tree” below for brevity).3 As noted in Section 2, we used the following
cache parameters: k = 2, B0 = 16, B1 = 64, B2 = 4096, B3 = ∞. The
tree implementations did not have parent links: rebalancing was done using an
auxiliary stack.4

Figure 4 examines the time taken to search for 105 uniformly distributed
random keys in a tree initialized by n insertions of random keys. (Before the
105 searches whose time was measured, the cache was “warmed up” with 104

random searches.) The search performance of red-black and AVL trees relocated
using the global algorithm was close to the cB+-tree. The local algorithm was
not quite as good, but still a large (about 30%) improvement over a traditional
non-cache-optimized binary tree. The cache-oblivious layout produced by the

3 We executed our experiments on an AMD Athlon XP processor running at 2167 MHz,
with 64 Kb L1 data cache (2-way associative) and 512 Kb L2 cache (8-way associative). Our
implementation was written in C, compiled using the GNU C compiler version 4.1.1, and ran
under the Linux kernel version 2.6.18. Each experiment was repeated 15 times; we report
averages.
4 The binary tree node size B0 = 16 bytes was reached by using 4-byte integer keys, 4-byte
data fields and 4-byte left and right children. The balance and color information for the AVL
and red-black tree was encoded in the otherwise unused low-order bits of the child pointers.
The nodes of the B-trees were structured as simple sorted arrays of keys and pointers. The
branching factor of a non-leaf node was 7 in the cB+-tree and 14 in the CSB+-tree.
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Fig. 5 Effect of the local relocation algorithm on the time taken by (a) insertions and (b) dele-
tions.

global algorithm was somewhat worse than a cache-sensitive layout, but about
40–45% better than a non-cache-optimized tree. Aliasing correction had about
10–15% impact on binary trees and cB+-trees, and about 5% on CSB+-trees
(which don’t always access the first B1-sized node of a TLB page). Especially in
the B-trees, global relocation was not very useful without aliasing correction. In
summary, the multi-level cache-sensitive layout improved binary search trees by
50–55%, cB+-trees by 10–20% and CSB+-trees by 3–5% in these experiments.

Figure 5 examines the running time of updates when using the local algo-
rithm. Here the tree was initialized with n random insertions, and then 104+105

uniformly distributed random insertions or deletions were performed. The times
given are averaged from the 105 updates (the 104 were used to “warm up” the
cache). The local algorithm increased the insertion time by about 20–70% (more
with smaller n). The deletion time was affected less: random deletions in bi-
nary search trees produce less rotations than random insertions, and the better
memory layout produced by the local algorithm decreases the time needed to
search for the key to be inserted or deleted.

In addition, we combined the global and local algorithms and investigated
how quickly updates degrade the cache-sensitive memory layout created by the
global algorithm. In Figure 6, we initialized the tree using n = 106 random
insertions, executed the global algorithm once, and performed a number of
random updates (half insertions and half deletions). Finally, we measured the
average search time from 105 random searches (after a warmup period of 104

random searches), and the average B1-block path length. The results indicate
that the cache-sensitivity of the tree decreases significantly only after about
n updates have been performed. The local algorithm keeps a clearly better
memory layout, though it does not quite match the efficiency of the global
algorithm.

Our experiments, as well as those in [6, 9], support the intuition that multi-
level cache-sensitive structures are more efficient than cache-oblivious ones. It
has been shown in [14] that a cache-oblivious layout is never more than 44%
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Fig. 6 Degradation of locality when random insertions and deletions are performed after
global relocation of a tree with n = 106 initial keys: (a) average search time from 105 searches,
(b) B1-block path length. For 0 to 104 updates after relocation, there was practically no change
in the values; here, the x axis begins from 103 for clarity.

worse in the number of block transfers than an optimal cache-sensitive layout,
and that the two converge when the number of levels of caches increases. How-
ever, the cache-sensitive model is still important, because the number of levels
of caches with different block sizes is relatively small in current computers (e.g.,
only two in the one we used for our experiments).

6 Conclusions

We have examined binary search trees in a k-level cache memory hierarchy with
block sizes B1, . . . , Bk. We presented an algorithm that relocates tree nodes
into a multi-level cache-sensitive memory layout in time O(nk), where n is the
number of nodes in the tree. Moreover, our one-level local algorithm preserves
an improved memory layout for binary search trees by executing a constant-
time operation after each structure modification (i.e., actual insertion, actual
deletion or individual rotation).

Although cache-sensitive binary trees did not quite match the speed of the
B+-tree variants in our experiments, in practice there may be other reasons than
average-case efficiency to use binary search trees. For instance, the worst-case
(as opposed to amortized or average) time complexity of updates in red-black
trees is smaller than in B-trees: O(log2 n) vs. O(d logd n) time for a full sequence
of page splits or merges in a d-way B-tree, d ≥ 5. Red-black tree rotations are
constant-time operations, unlike B-tree node splits or merges (which take O(B1)
time in B-trees with B1-sized nodes, or O(B2

1) in the full CSB+-tree). This may
improve concurrency: nodes are locked for a shorter duration. In addition, it has
been argued in [15] that, in main-memory databases, binary trees are optimal
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for a form of shadow paging that allows efficient crash recovery and transaction
rollback, as well as the group commit operation [16].

The simple invariant of our local algorithm could be extended, for instance, to
handle multi-level caches in some way. However, we wanted to keep the property
that individual structure modifications use only O(1) time (as opposed to O(B1)
or O(B2

1) for the cache-sensitive B-trees). Then we cannot, e.g., move a cache-
block-sized area of nodes to establish the invariant after a change in the tree
structure. A multi-level approach does not seem feasible in such a model.

Other multi-level cache-sensitive search tree algorithms are presumably also
affected by the aliasing phenomenon, and it would be interesting to see the effect
of a similar aliasing correction on, for example, the two-level cache-sensitive B-
trees of [7].
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