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Abstract. The synchronizing word of a deterministic automaton is a word
in the alphabet of colors (considered as letters) of its edges that maps the
automaton to a single state. A coloring of edges of a directed graph is syn-
chronizing if the coloring turns the graph into a deterministic finite automaton
possessing a synchronizing word.
The road coloring problem is the problem of synchronizing coloring of a di-
rected finite strongly connected graph with constant outdegree of all its ver-
tices if the greatest common divisor of lengths of all its cycles is one. The
problem was posed by Adler, Goodwyn and Weiss over 30 years ago and
evoked noticeable interest among the specialists in the theory of graphs, finite
automata, coding and symbolic dynamics. Many partial solutions of the prob-
lem have been found and different generalizations were considered.
The positive solution of the road coloring problem is presented below. We re-
produce from the literature also the statements used in our proof. The neces-
sary and sufficient conditions of synchronizing road coloring of directed graph
with constant outdegree of a vertex are presented.

Key words: road coloring problem, graph, deterministic finite automaton,
synchronization.

Introduction

The road coloring problem originates in [2] and was stated explicitly in [1] for
a strongly connected directed finite graph with constant outdegree of all its
vertices where the greatest common divisor (gcd) of lengths of all its cycles is
one. The edges of the graph are unlabelled. The task is to find a labelling of the
edges that turns the graph into a deterministic finite automaton possessing a
synchronizing word. So the road coloring problem is connected with the problem
of existence of synchronizing word for deterministic complete finite automaton.
The condition on gcd is necessary [1], [5]. It can be replaced by the equivalent
property that there does not exist a partition of the set of vertices on subsets
V1, V2, ..., Vk = V1 (k > 1) such that every edge which begins in Vi has its end
in Vi+1 [5], [14]. The outdegree of the vertex can be considered also as the size
of an alphabet where the letters denote colors.
The road coloring problem is important in automata theory: a synchronizing

∗ Email: trakht@macs.biu.ac.il

† http://www.cs.biu.ac.il/∼trakht/syn.html

43



44 A.N. Trahtman

coloring makes the behavior of an automaton resistant against input errors
since, after detection of an error, a synchronizing word can reset the automaton
back to its original state, as if no error had occurred. The problem appeared
first in the context of symbolic dynamics and is important also in this area.
Together with the Černy conjecture, the road coloring problem belongs to the
most fascinating problems in the theory of finite automata [13], [16], [17]. The
problem is discussed even in ”Wikipedia” - the popular Internet Encyclopedia.
However, at the same time it proved to be hard and was considered as a ”no-
torious open problem” [12], [5] and ”unfeasible” [8].
Several partial solutions in this area have been found within last thirty years.
In [14] it is shown that a graph with no multiple edges (i.e. no distinct edges in
G have the same source and the same target) and with a simple cycle of prime
length has a synchronizing coloring. In [6] it is shown that a graph of outdegree
two with a simple cycle of length relatively prime to the weight of the graph
(i.e. the sum of the components of an integer Perron left eigenvector chosen
with relatively prime components) has a synchronizing coloring. The conjec-
ture is true for Eulerian digraphs [10] (i.e. the indegree of any vertex is equal
to the outdegree). In [5] the problem is solved for the class of automata having
always stable synchronizing pair of states. The class is closed under some kind
of homomorphism. The conjecture has positive solution also if the outdegree
of vertices is relatively great [7]. Another special case, proven in [15], is that a
graph with all vertices of indegree 1 except one (these graphs are trees where all
leaves merge with the root), has a synchronizing coloring. In [9] it is shown that
a graph of outdegree k which is decomposable in k disjoint monochromatic sub-
graphs containing exactly one cycle, has a synchronizing coloring if the greater
common divisor of the lengths of the monochromatic cycles equals 1. The last
result was strengthened in [4] for strongly disjoint set of cycles. The structure
theory of the minimal ideal of a finite semigroup plays an essential role in [3].
The concept from [6] of the weight of a vertex supposed by Friedman and the
concept of a stable pair of states of Culik, Karhumaki and Kari [5], [10] with
corresponding results and consequences are essentially used in our proof. We
also reproduce from the literature the proofs of some related statements for to
complete the picture.
The road coloring conjecture is settled in the affirmative: a finite directed
strongly connected graph with constant outdegree of all vertices has a syn-
chronizing coloring iff the great common divisor of the lengths of all its cycles
is equal to one.
The necessary and sufficient conditions of synchronizing road coloring of di-
rected graph with constant outdegree of a vertex are presented.
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Preliminaries

A finite directed strongly connected graph with constant outdegree of all its
vertices where the gcd of lengths of all its cycles is one will be called AGW
graph as aroused by Adler, Goodwyn and Weiss.
If there exists a path in an automaton from the state p to the state q and the
edges of the path are consecutively labeled by σ1, ...,σk, then for s = σ1...σk ∈
Σ+ let us write q = ps.
Let Ps be the map of the subset P of states of an automaton by help of s ∈ Σ+

and let Ps−1 be the maximal set of states Q such that Qs ⊆ P . For the
transition graph Γ of an automaton let Γ s denote the map of the set of states
of the automaton.
|P | - the size of the subset P of states from an automaton (of vertices from a
graph).
A word s ∈ Σ+ is called a synchronizing word of the automaton with transition
graph Γ if |Γ s| = 1.
A coloring of a directed finite graph is synchronizing if the coloring turns the
graph into a deterministic finite automaton possessing a synchronizing word.
A pair of distinct states p,q of an automaton (of vertices of the transition
graph) will be called synchronizing if ps = qs for some s ∈ Σ+. In the opposite
case, if for any s ps ̸= qs, we call the pair deadlock.
A synchronizing pair of states p, q of an automaton is called stable if for any
word u the pair pu,qu is also synchronizing [5], [10].
We call the set of all outgoing edges of a vertex a bunch if all these edges are
incoming edges of only one vertex.
Let u be a left eigenvector with positive components having no common divisor
of adjacency matrix of a graph with vertices p1, ..., pn. The i-th component
ui of the vector u is called the weight of the vertex pi and denoted by w(pi).
The sum of the weights of the vertices from a set D is denoted by w(D) and is
called the weight of D [6].
The subset D of states of an automaton (of vertices of the transition graph Γ of
the automaton) such that w(D) is maximal and |Ds| = 1 for some word s ∈ Σ+

let us call F -maximal as introduced by Friedman [6].
The subset Γ s of states (of vertices of the transition graph Γ ) for some word s
such that every pair of states from the set is deadlock will be called an F -clique.

1 Some properties of F -clique and of coloring free of
stable pairs

The road coloring problem was formulated for AGW graphs [1], [2] and only
such graphs are considered below. The primitive cases of graphs with loops and
of only one color can be also omitted [1], [14]. Let us formulate some important
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results from [6], [5] and [10] together with some useful statements [1], [14] in
the following form:

Theorem 1 [6] There exists a partition of Γ on F -maximal sets (of the same
weight).

Proof. Let Γ have outdegree d everywhere. The vector e = (1, ..., 1) is a right
eigenvector with eigenvalue d of the adjacency matrix [11] A of Γ . Since Γ
is strongly connected, by Perron-Frobenius Theorem [11] the matrix A with
non-negative elements has a positive left eigenvector w = (w1, ..., wn) of integer
components with the same eigenvalue d, i.e. wA = dw. The component wi of
the vector w is defined as the weight w(pi) > 0 of the state pi.
Let q be arbitrary state and Q be the set of states qσ−1 for all σ ∈ Σ. Then∑

r∈Q w(r) = dw(q) because wA = dw. Consequently for any set R of states
dw(R) =

∑
σ∈Σ Rσ−1. It implies, in particular, that from w(R) > w(Rσ−1) for

some σ ∈ Σ follows w(R) < w(Rα−1) for some another α ∈ Σ. Therefore for
F -maximal set R holds w(R) = w(Rσ−1) for any σ and w(R) = w(Rs−1) for
any s ∈ Σ+.
For F -maximal set R and some word s |Rs| = 1. Since Γ is strongly connected,
for any state p there exists a word t = t1s such that Rt = p. So for any state
p and some word t the set of states pt−1 is F -maximal. For any state r ̸∈ pt−1

and some word u is also F -maximal. The set pt−1u−1 is F -maximal, too. Both
obtained F -maximal sets pt−1u−1 and ru−1 are disjoint. The continuation of
this process for states outside obtained F -maximal sets gives us a partition of
Γ on F -maximal sets.

Lemma 1 [1], [5], [14]. Let Γ be directed graph. Then the greatest common
divisor of lengths of all its cycles is k if and only if there exists a partition of
the set of vertices on subsets V1, V2, ..., Vk+1 = V1 such that every edge which
begins in Vi has its end in Vi+1.

Proof. Indeed, in the case of such partition of size k > 1 the length of any cycle
of the graph is divided by k.
In the case k is a common divisor of length of all cycles of the graph let us
enumerate the vertices of the graph. We begin from an arbitrary vertex and
suppose n(q) = n(p) + 1 (modulo k) if there exist an edge p→ q. The contra-
diction in the enumeration is impossible because the difference between length
of cycles is divided by k. Then suppose q ∈ Vm if n(q) = m (modulo k). There-
fore every edge which begins in Vi ends in Vi+1. So the desired partition exists.

Let us recall that a binary relation ρ on the set of the states of an automa-
ton is called congruence if ρ is equivalence and for any word u from p ρ q
follows pu ρ qu.

Theorem 2 [5], [10] Let us consider a coloring of AGW graph Γ . Stability of
states is a binary relation on the set of states of the obtained automaton; denote
this relation by ρ. Then ρ is a congruence relation, Γ/ρ presents an AGW graph
and synchronizing coloring of Γ/ρ implies synchronizing recoloring of Γ .
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Proof. Suppose p ρ q and q ρ r. Then for any word u there exists a word s such
that pus = qus. The couple of states q, r is stable, whence there exists a word
t such that for arbitrary u qust = rust. So for any u there exists a word st
such that pust = rust. Hence p ρ r and the relation ρ is transitive and stable.
It implies the equivalence of ρ. From p ρ q follows ps ρ qs for any s (because
the pair ps, qs is also stable) and therefore the relation ρ is a congruence.
The outdegree of a state in the quotient automaton Γ/ρ is equal to the same
number of colors as in Γ , Γ/ρ is strongly connected just as Γ .
The condition on gcd can be replaced by the equivalent property that there
does not exist a partition of the set of vertices on subsets V1, V2, ..., Vk = V1

such that every edge which begins in Vi has its end in Vi+1 (Lemma 1).
The non-trivial such partition of Γ/ρ exists only if Γ has also such partition.
Every edge with beginning in image of Vi has its end in image of Vi+1. Therefore
the condition on gcd is stable, whence Γ/ρ is AGW graph.
Suppose now that Γ/ρ has a synchronizing coloring. The synchronizing coloring
of Γ/ρ induces a synchronizing coloring of the original automaton as follows:
we color all the preimages of an edge of Γ/ρ by the same color. For any pair of
states from Γ the synchronizing word of the images of the states in Γ/ρ takes
both states into one equivalence class of the relation ρ on Γ . Any couple of
states from this class is stable and therefore synchronizing. So via such coloring
any pair of states from Γ is synchronizing.

The last theorem shows that if every AGW graph has a coloring with a stable
pair, then every AGW graph has a synchronizing coloring. So the problem is
reduced to the search of a coloring with stable pair.

Lemma 2 Let w be the weight of F -maximal set of the AGW graph Γ via
some coloring. Then the size of every F -clique of the coloring is the same and
equal to w(Γ )/w (the size of partition of Γ on F -maximal sets).

Proof. Two states from an F -clique could not belong to one F -maximal set
because this pair is not synchronizing. By Theorem 1 there exists a partition
of Γ on F -maximal sets of weight w. So the partition consists from w(Γ )/w
F -maximal sets and to every F -maximal set belongs at most one state from
F -clique. Consequently, the size of any F -clique is not greater than w(Γ )/w.
Let Γ s be an F -clique. The sum of the weights qs−1 for all q ∈ Γ s is the weight
of Γ . So

w(Γ ) =
∑

q∈Γs

w(qs−1)

The number of addends (the size of the F -clique) is not greater than w(Γ )/w.
The weight of the set qs−1 for every q ∈ Γ s is not greater than w. Therefore
qs−1 is an F -maximal set of weight w for every q ∈ Γ s and the size of any F -
clique is w(Γ )/w, the number of F -maximal sets in the corresponding partition
of Γ .
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Lemma 3 Let F be F -clique via some coloring of AGW graph Γ . For any
word s the set Fs is also an F -clique and any state [vertex] p belongs to some
F -clique.

Proof. Any pair p, q from an F -clique F is a deadlock. To be deadlock is a
stable binary relation, therefore for any word s the pair ps, qs from Fs also is
a deadlock. So all pairs from Fs are deadlocks.
For the F -clique F there exists a word t such that Γ t = F . Thus Γ ts = Fs,
whence Fs is an F -clique.
For any r from a strongly connected graph Γ , there exists a word u such that
r = pu for p from the F -clique F , whence r belongs to the F -clique Fu.

Lemma 4 Let A and B (|A| > 1) be distinct F -cliques via some coloring
without stable pairs of the AGW graph Γ . Then |A|−|A∩B| = |B|−|A∩B| > 1.

Proof. Let us assume the contrary: |A|− |A∩B| = 1. By Lemma 2, |A| = |B|. So
|B|− |A∩B| = 1, too. The pair of states p ∈ A\B and q ∈ B \A is not stable.
Therefore for some word s the pair (ps,qs) is a deadlock. Any pair of states
from the F -clique A and from the F -clique B as well as from F -cliques As and
Bs is a deadlock. So any pair of states from the set (A∪B)s is a deadlock. One
has |(A ∪B)s| = |A| + 1 > |A|.
In view of Theorem 1, there exists a partition of size |A| (Lemma 2) of Γ on F -
maximal sets. To every F -maximal set belongs at most one state from (A∪B)s
because every pair of states from this set is a deadlock and no deadlock could
belong to an F -maximal set. This contradicts the fact that the size of (A∪B)s
is greater than |A|.

Lemma 5 Let some vertex of AGW graph Γ have two incoming bunches.
Then any coloring of Γ has a stable couple.

Proof. If a vertex p has two incoming bunches from vertices q and r, then the
couple q, r is stable for any coloring because qα = rα = p for any letter (color)
α ∈ Σ.

2 The spanning subgraph of cycles and trees with
maximal number of edges in the cycles

Définition 1 Let us call a subgraph S of the AGW graph Γ a spanning sub-
graph of Γ if to S belong all vertices of Γ and exactly one outgoing edge of every
vertex.
A maximal subtree of the spanning subgraph S with root on a cycle from S and
having no common edges with cycles from S is called a tree of S.
The length of path from a vertex p through the edges of the tree of the spanning
set S to the root of the tree is called the level of p in S.
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Remark 1 Any spanning subgraph S consists of disjoint cycles and trees with
roots on cycles; any tree and cycle of S is defined identically, the level of the
vertex from cycle is zero, the vertices of trees except root have positive level,
the vertex of maximal positive level has no incoming edge from S. The edges
of every given color by any coloring form a spanning subgraph and for any
spanning subgraph there exists a corresponding coloring.

Lemma 6 Let N be a set of vertices of level n from some tree of the spanning
subgraph S of AGW graph Γ . Then in a coloring of Γ where all edges of S have
the same color α, any F -clique F satisfies |F ∩N | ≤ 1.

Proof. Some power of α synchronizes all states of given level of the tree and
maps them into the root. Any couple of states from an F -clique could not be
synchronized and therefore could not belong to N .

Lemma 7 Let AGW graph Γ have a spanning subgraph R of only disjoint
cycles (without trees). Then Γ also has another spanning subgraph with exactly
one vertex of maximal positive level.

Proof. The spanning subgraph R has only cycles and therefore the levels of all
vertices are equal to zero. In view of gcd = 1 in the strongly connected graph Γ ,
not all edges belong to a bunch. Therefore there exist two edges u = p→ q ̸∈ R
and v = p → s ∈ R with common first vertex p but such that q ̸= s. Let us
replace the edge v = p → s from R by u. Then only the vertex s has maximal
level L > 0 in the new spanning subgraph.

Lemma 8 Let any vertex of an AGW graph Γ have no two incoming bunches.
Then Γ has a spanning subgraph such that all its vertices of maximal positive
level belong to one non-trivial tree.

Let us consider a spanning subgraph R with a maximal number of vertices
[edges] in its cycles. In view of Lemma 7, suppose that R has non-trivial trees
and let L > 0 be the maximal value of the level of a vertex.
Further consideration is necessary only if at least two vertices of level L belong
to distinct trees of R with distinct roots.
Let us consider a tree T from R with vertex p of maximal level L and edge
b̄ from vertex b to the tree root r ∈ T on the path of length L from p. Let
the root r belong to the cycle H of R with the edge c̄ = c → r ∈ H . There
exists also an edge ā = a→ p that does not belong to R because Γ is strongly
connected and p has no incoming edge from R.

❝ ❝ ❝❄

❝❝

❝
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We consider the path in T from p to r of maximal length L. Our aim is to
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extend the maximal level of the vertex on the extension of the tree T much
more than the maximal level of vertex of other trees from R. We plan to use
the following three changes:
1) replace the edge w̄ from R with first vertex a by the edge ā = a→ p,
2) replace the edge b̄ from R by some other outgoing edge of the vertex b,
3) replace the edge c̄ from R by some other outgoing edge of the vertex c.
If one of the ways does not succeed let us go to the next assuming the situation
in which the previous way fails and excluding the successfully studied cases.
So we diminish the considered domain. We can use sometimes two changes
together. Let us begin with
1) Suppose first a ̸∈ H . If a belongs to a path in T from p to r then a new cycle
with part of the path and edge a → p is added to R extending the number of
vertices in its cycles in spite of the choice of R. In opposite case the level of a
in the new spanning subgraph is L + 1 and the vertex r is a root of the new
tree containing all vertices of maximal level (in particular, the vertex a or its
ancestors in R).
So let us assume a ∈ H and suppose w̄ = a→ d ∈ H . In this case the vertices
p, r and a belong to a cycle H1 with new edge ā of a new spanning subgraph
R1. So we have the cycle H1 ∈ R1 instead of H ∈ R. If the length of path from
r to a in H is r1 then H1 has length L+r1 +1. A path to r from the vertex d of
the cycle H remains in R1. Suppose its length is r2. So the length of the cycle
H is r1 + r2 + 1. The length of the cycle H1 is not greater than the length of H
because the spanning subgraph R has maximal number of edges in its cycles.
So r1 + r2 + 1 ≥ L + r1 + 1, whence r2 ≥ L. If r2 > L, then the length r2 of
the path from d to r in a tree of R1 (and the level of d) is greater than L and
the level of d (or of some other ancestor of r in a tree from R) is the desired
unique maximal level.
So assume for further consideration L = r2 and a ∈ H . Analogously, for any
vertex of maximal level L with root in the cycle H and incoming edge from
a vertex a1 the proof can be reduced to the case a1 ∈ H and L = r2 for the
corresponding new value of r2.
2) Suppose the set of outgoing edges of the vertex b is not a bunch. So one
can replace in R the edge b̄ from the vertex b by an edge v̄ from b to a vertex
v ̸= r.
The vertex v could not belong to T because in this case a new cycle is added
to R and therefore a new spanning subgraph has a number of vertices in the
cycles greater than in R.
If the vertex v belongs to another tree of R but not to cycle, then T is a part of
a new tree T1 with a new root of a new spanning subgraph R1 and the path from
p to the new root is extended. So only the tree T1 has states of new maximal
level.
If v belongs to some cycle H2 ̸= H from R, then together with replacing b̄ by
v̄, we replace also the edge w̄ by ā. So we extend the path from p to the new
root v at least by the edge ā = a→ p and by almost all edges of H . Therefore
the new maximal level L1 > L has either the vertex d or its ancestors from the
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old spanning subgraph R.
Now there remains only the case when v belongs to the cycle H . The vertex p
also has level L in new tree T1 with root v. The only difference between T and
T1 (just as between R and R1) is the root and the incoming edge of the root.
The new spanning subgraph R1 has also a maximal number of vertices in cycles
just as R. Let r3 be the length of the path from d to the new root v ∈ H .
For the spanning subgraph R1, one can obtain L = r3 just as it was done on
the step 1) for R. From v ̸= r follows r3 ̸= r2, though L = r3 and L = r2.
So for further consideration suppose that the set of outgoing edges of the vertex
b is a bunch to r.
3) The set of outgoing edges of the vertex c is not a bunch to r because r has
another bunch from b.
Let us replace in R the edge c̄ by an edge ū = c → u such that u ̸= r. The
vertex u could not belong to the tree T because in this case the cycle H is
replaced by a cycle with all vertices from H and some vertices of T whence its
length is greater than |H |. Therefore the new spanning subgraph has a number
of vertices in its cycles greater than in spanning subgraph R in spite of the
choice of R.

So remains the case u ̸∈ T . Then the tree T is a part of a new tree with a
new root and the path from p to the new root is extended at least by a part of
H from the former root r. The new level of p therefore is maximal and greater
than the level of any vertex in some another tree.
Thus anyway there exists a spanning subgraph with vertices of maximal level
in one non-trivial tree.

Theorem 3 Any AGW graph Γ has coloring with stable couples.

Proof. By Lemma 5, in the case of vertex with two incoming bunches Γ has a
coloring with stable couples. In opposite case, by Lemma 8, Γ has a spanning
subgraph R such that the vertices of maximal positive level L belong to one
tree of R.
Let us give to the edges of R the color α and denote by C the set of all vertices
from the cycles of R. Then let us color the remaining edges of Γ by other colors
arbitrarily.
By Lemma 3, in a strongly connected graph Γ for every word s and F -clique
F of size |F | > 1, the set Fs also is an F -clique (of the same size by Lemma 2)
and for any state p there exists an F -clique F such that p ∈ F .
In particular, some F has non-empty intersection with the set N of vertices
of maximal level L. The set N belongs to one tree, whence by Lemma 6 this
intersection has only one vertex. The word αL−1 maps F on an F -clique F1 of
size |F |. One has |F1 \C| = 1 because the sequence of edges of color α from any
tree of R leads to the root of the tree, the root belongs to a cycle colored by α
from C and only for the set N with vertices of maximal level holds NαL−1 ̸⊆ C.
So |NαL−1 ∩ F1| = |F1 \ C| = 1 and |C ∩ F1| = |F1|− 1.
Let the integer m be a common multiple of the lengths of all considered cycles
from C colored by α. So for any p from C as well as from F1∩C holds pαm = p.
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Therefore for an F -clique F2 = F1αm holds F2 ⊆ C and C ∩ F1 = F1 ∩ F2.
Thus two F -cliques F1 and F2 of size |F1| > 1 have |F1| − 1 common vertices.
So |F1 \ (F1 ∩F2)| = 1. Consequently, in view of Lemma 4, there exists a stable
couple in the considered coloring.

Theorem 4 Every AGW graph Γ has synchronizing coloring.

The proof follows from Theorems 3 and 2.

3 The necessary and sufficient conditions of synchronizing
coloring of an arbitrary graph

Theorem 5 Let every vertex of strongly connected directed finite graph Γ have
the same number of outgoing edges. Then Γ has synchronizing coloring if and
only if the greatest common divisor of lengths of all its cycles is one.

In view of Theorem 4, we must prove only the necessity of the condition on gcd.
Proof [1], [5].
Suppose d > 1 is the greatest common divisor of lengths of all cycles of Γ . Let
us consider a tree T with root p and with all vertices of the graph. Suppose
t(p) = 0 and for every edge r→ q of the tree suppose t(r) = t(q) + 1 (modulo
d). So t(q) < d for every vertex q.
Let the edge u → v be outside of T . If t(u) ̸= t(v) + 1 (modulo d) then two
paths from p to v through the edge u → v and the edges of T and through
only the edges of T have not equal (modulo d) lengths. Therefore in strongly
connected graph Γ there are two cycles having not equal lengths (modulo d).
It contradicts to the choice of d as gcd of lengths of all cycles.
So for any edge u → v one has t(u) = t(v) + 1 (modulo d). Consequently
by whatever coloring for any word s of the colors one has t(us) = t(vs) + 1.
So any word s could not unite v and u, whence Γ has no synchronizing coloring.

Let us recall that the vertex q of the graph Γ is called a s ink if there exists a
way on Γ from any vertex to q.

Theorem 6 A finite directed graph Γ with constant outdegree of all its ver-
tices has synchronizing coloring if and only if Γ has a sink and in the strongly
connected component H of the sink the greatest common divisor of lengths of
all cycles is one.

Proof. The necessity of a sink is obvious, the necessity of conditions on H follows
from Theorem 5 because any subgraph of Γ has synchronizing coloring.
Let us go to the sufficiency. There exists in Γ a tree T with root in sink. Let
us give all edges from T \ H common color α. Therefore the word αi for some
i maps Γ on H . So the proof is reduced to the conditions of Theorem 5.
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