
Traceable sets

Rupert Hölzl and Wolfgang Merkle∗

Institut für Informatik,
Ruprecht-Karls-Universität,

Heidelberg, Germany,
{hoelzl|merkle}@math.uni-heidelberg.de

Abstract. We investigate systematically into the various possible no-
tions of traceable sets and the relations they bear to each other and to
other notions such as diagonally noncomputable sets or complex and
autocomplex sets. We review known notions and results that appear in
the literature in different contexts, put them into perspective and provide
simplified or at least more direct proofs. In addition, we introduce notions
of traceability and complexity such as infinitely often versions of jump
traceability and of complexity, and derive results about these notions
that partially can be viewed as a natural completion of the previously
known results. Finally, we give a result about polynomial-time bounded
notions of traceability and complexity that shows that in principle the
equivalences derived so far can be transferred to the time-bounded setting.

1 Introduction and overview

The various notions of a traceable set have received quite a lot of attention in
the area of algorithmic randomness. On the one hand, traceability naturally
comes up in connection with lowness notions, as it is exemplified in the work
of Terwijn and Zambella [12] on Schnorr randomness and, more recently, the
attempts to characterize lowness for Martin-Löf randomness and the equivalent
notion of K-triviality by an appropriate version of jump traceability [1, 3]. On
the other hand, traceability has been shown [9] to interact informatively with
classical notions from computability theory such as diagonally noncomputable sets
and with notions such as autocomplex that are defined in terms of Kolmogorov
complexity of initial segments of sets.

In this article, we investigate into notions of traceability from a systematic
point of view. We review standard notions of traceability and some basic results
known on them, giving simplified or at least more direct proofs than in the
current literature, which in particular are meant to provide an intuitive picture
of why the stated relations hold. One of our aims is to give a unified view of
notions and results that appear in the literature, and for example we argue that
a recent results on anticomplex sets by Franklin et al. [5] can be seen as a variant
of results on the relations between notions of complexity and i.o. traceability [9].

∗ The first and the second author are supported and partially supported, respectively,
by DFG grant ME 1806/3-1.



We also introduce new notions of traceability such as infinitely often versions
of jump traceability and derive an interesting collapse result. Finally, we give
a result about polynomial-time bounded notions of traceability and complexity
that shows that in principle the equivalences derived so far can be transferred to
the time-bounded setting.

Notation In the sequel, set refers to a subset of the natural numbers N and
functions and partial functions map natural numbers to natural numbers, unless
explicitly specified differently. We let W0,W1, . . . be the standard acceptable
numbering of all computably enumerable (c.e.) sets, i.e., We is the domain of the
e-th partial computable function ϕe. Let C and K denote the plain and prefix-free
versions of Kolmogorov complexity [4, 10]. Let ≤+ denote the relation less than
or equal to up to an additive constant, and ≥+ is defined likewise.

2 Traceability

The various traceability notions considered in the sequel are either well-known or
have at least been considered implicitly in the literature, except for, to the best
of our knowledge, the infinitely often versions of jump traceable and strongly
jump traceable introduced in Definition 9 below.

Definition 1. A trace is a sequence (Tn)n of sets. A trace (Tn)n is a trace for
a partial function f if f(n) ∈ Tn holds for all n such that f(n) is defined. A
trace (Tn)n is an i.o. trace for a partial function f if there are infinitely many n
such that f(n) ∈ Tn.

We will also say, for short, that a trace traces or i.o. traces a partial function f , in
case the trace is a trace or an i.o. trace, respectively, for f . For the traces (Tn)n
considered in the sequel, the sets Tn will always be finite.

Definition 2. For a function h, a trace (Tn)n is h-bounded, if |Tn| ≤ h(n) holds
for all n.

A trace (Tn)n is computably enumerable (c.e.) if there is a computable
function g such that Tn is equal to Wg(n) for all n. A trace (Tn)n is computable
if there is a computable function g such that Tn is equal to Dg(n) for all n,
where De is the finite set with canonical index e.

Definition 3. An order is a nondecreasing and unbounded function. A set A is
c.e. traceable iff there is a computable order h such that all functions f ≤T A
are traced by an h-bounded c.e. trace (Tn)n. A set A is c.e. i.o. traceable iff there
is a computable order h such that all functions f ≤T A are i.o. traced by an
h-bounded c.e. trace (Tn)n.

The concepts of computably traceable and of computably i.o. traceable are
defined similarly where in addition the traces are required to be computable instead
of being merely c.e.

For all the concepts introduced above, there are variants where Turing re-
ducibility is replaced by weak truth-table or truth-table reducibility, e.g., we say a
set A is i.o. wtt-traceable iff there is a computable order h such that all functions
f ≤wtt A are i.o. traced by an h-bounded c.e. trace (Tn)n.



Remark 4. Stephan [11] made the interesting observation that a set is c.e. trace-
able if and only if there is a computable function h such that every f ≤T A
satisfies C(f(n)) < h(n) for almost all n. This characterization has the advantage
that it works without defining traces and just uses classical concepts. The disad-
vantage of this style of characterization is that for other traceability concepts
it yields more complicated equivalences; for example the case of computable
traceability would require the use of Kolmogorov complexity defined over total
machines.

Terwijn and Zambella [12] observed that the notions of computable and c.e.
traceability remain the same if one requires in their respective definitions the
existence of h-bounded traces not just for a single but for all computable orders h.
The corresponding argument extends directly to the notions c.e. and computably
wtt-traceable, as well as c.e. and computably tt-traceable, but also to the infinitely
often versions of these notions, as is shown in the following remark. For the notion
of i.o. c.e. traceable this also follows by Theorem 10 below, and, what is more, by
Corollaries 21 and 23 for some notions even the existence of 1-bounded traces of
the considered type is equivalent.

Remark 5. A set A is c.e. i.o. traceable if and only if for all computable orders h
all functions f ≤T A are i.o. traced by an h-bounded c.e. trace (Tn)n, and a
similar statement holds for the notion computably i.o. traceable, as well as for
variants of these notions defined in terms of weak truth-table or truth-table
reducibility in place of Turing reducibility.

The proof uses the same technique as the proof [12] for the analogous every-
where version of the statement. Let us assume we have i.o. traces bounded by
a computable order g and let us construct a i.o. trace (Sn)n for some function
f ≤T A bounded by some given computable order h.

Let ĝ(n) be the least number k such that h(k) ≥ g(n). This is computable

and well-defined. Therefore the mapping f̂ defined by i 7→ (f(0), . . . , f(ĝ(i+ 1)))
is Turing-reducible to A and therefore has a trace (Ti)i with bound g.

Let ĝ−1 be the discrete inverse of ĝ, that is, for a given k, ĝ−1(k) is the largest
number n such that g(n) ≤ h(k). Then define (Sn)n by

Sn := {πn(x) : x ∈ Tĝ−1(n)}

where πn is the projection to the n-th coordinate.
Then Sn has at most g(ĝ−1(n)) ≤ h(n) entries. For infinitely many i, Ti is

right; that is, it contains some correct ĝ(i+ 1)-tuple (f(0), . . . , f(ĝ(i+ 1))). This
tuple then contains (among other) the correct information about the values of all
f(n) with n such that ĝ−1(n) = i. So Sn will be a correct trace for f(n) for all
such n. ut

The following theorem is attributed to Kjos-Hanssen et al. [9] by Downey and
Hirschfeldt [4], however, the assertion of the theorem does not even implicitly
appear in the published versions of the corresponding article [9], nor does its
proof. Since the proof presented by Downey and Hirschfeldt is via a chain of



equivalent statements, we consider it useful and instructive to give a direct
argument here. Among the various equivalent definitions for the notion high,
we will work with the one according to which a set A is high iff A computes a
function that dominates every computable function.

Theorem 6. The following statements are equivalent.

(i) The set A is computably i.o. traceable.
(ii) The set A is c.e. i.o. traceable and nonhigh.

Proof. (i) implies (ii): Any computably i.o. traceable set A is a fortiori c.e. i.o.
traceable, and is also nonhigh because given an A-computable function g we
obtain a computable function f such that g(n) ≤ f(n) for infinitely many n by
letting f(n) = 1 + maxTn where (Tn)n is a computable trace for g.

(ii) implies (i): Let us assume we have a i.o. trace (Tn)n of a function ` ≤T A.
Define the function g such that on argument n one starts to enumerate in parallel
the traces Tm for all m ≥ n and A-computably recognizes when for the first time
for some mn the correct value `(mn) is enumerated into Tmn

, then letting g(n) be
the number of computational steps of the enumeration of Tmn

that are required
to enumerate `(mn). In this situation, let us say that n has found mn. Since g
is computable in A and A is nonhigh, there is a computable function f that at
infinitely many places is larger than g, where in addition we can assume that f
is nondecreasing.

We can now get a computable trace (T̃n)n for ` that is correct at infinitely

many places as follows: simply let T̃n contain all elements that are enumerated
into Tn in at most f(n) steps.

This trace is correct infinitely often. Indeed, any n finds some mn, and among
the corresponding pairs (n,mn) there are infinitely many where we have

g(n) ≤ f(n) ≤ f(mn),

i.e., for these pairs f(mn) exceeds the number of steps needed to enumerate `(mn)

into Tmn
, so for these pairs the the correct value `(mn) will be a member of T̃mn

.

Finally observe that in the construction the set T̃n is always contained in Tn,
hence any uniform bound h for the c.e. traces of the functions computable in A
will also be a uniform bound for the corresponding computable traces. ut

We review the concepts of jump traceable and strongly jump traceable, which
can be seen as stricter versions of the notion of c.e. traceable where not only the
total but also all partial functions computable in a given set must be traced.

Definition 7. A set A set is jump traceable iff there is a computable order h
such that for all functions partially computable in A there is an h-bounded c.e.
trace. A set A is strongly jump-traceable iff for all computable orders h it holds
that for all functions partially computable in A there is an h-bounded c.e. trace.

Remark 8. It is easier for our purposes to work with the given definition. Alter-
natively, jump traceability can be defined by requiring that the diagonal jump
function is traceable. For more details, see Downey and Hirschfeldt [4].



It is well-known that the class of strongly jump-traceable sets is a proper subclass
of the jump-traceable sets, in fact, the two classes are proper sub- and superclasses,
respectively, of the class of K-trivial sets [1, 3]. However, for the infinitely often
versions of these two notions we get an interesting collapse of traceability notions.

Definition 9. A set A is i.o. jump-traceable iff there is a computable order h
such that for all functions partially computable in A that have an infinite domain
there is an h-bounded c.e. i.o. trace.

A set A is strongly i.o. jump-traceable iff for all computable orders h it holds
that for all all functions f partially computable in A that have an infinite domain
there is an h-bounded c.e. i.o. trace.

Theorem 10. The following statements are equivalent.

(i) The set A is strongly i.o. jump-traceable.
(ii) The set A is i.o. jump-traceable.

(iii) The set A is c.e. i.o. traceable.

Proof. By definition, (i) implies (ii) and (ii) implies (iii), so it suffices to show that
not strongly i.o. jump traceable implies not c.e. i.o. traceable. So let A be a set
that computes a partial function f that for some computable order h0 cannot be
i.o. traced by any h0-bounded c.e. trace. We show that for any given computable
order h there is an A-computable function that cannot be i.o. traced by any
h-bounded c.e. trace. Fix an appropriate effective enumeration (T 0

n)n, (T
1
n)n, . . .

of all h-bounded c.e. traces, e.g., let T e
n be the subset of the n-th row of We that

contains the first h(n) elements that are enumerated into this row. Furthermore,
let Sn be the union of all T e

i where i < n and e < n and observe that this way
the cardinality of Sn is at most c(n) = n2h(n). For all n, let Tn be equal to Sm

wherem is maximum such that c(m) ≤ h0(n) and call the trace (Tn)n the universal
h0-bounded trace, which by construction is indeed h0-bounded, hence does not
i.o. trace f . Hence for almost all m such that f(m) is defined, we have f(m) /∈ Tm.
So we obtain an A-computable function as required by mapping n to a value of
the form f(m) such that this value is defined and c(n) ≤ h0(m). ut

In order to render the statement of results in Section 5 and 6 more intuitive,
we introduce the following alternate notation for notions of not being traceable.

Definition 11. A set avoids c.e. traces if the set is not c.e. i.o. traceable and
the set i.o. avoids c.e. traces if it is not c.e. traceable. Similarly, a set tt-avoids
c.e. traces if the set is not c.e. i.o. tt-traceable, and further notions such as c.e.
wtt-avoiding computable traces are defined in the same manner.

3 Autocomplex and complex sets

The notions of complexity and autocomplexity were first defined in an article by
Kanovich [8], where he showed that autocomplex sets are Turing complete and
complex sets are wtt-complete for the class of c.e. sets.



Definition 12. A set A is complex if there is a computable order h such that
for all n, it holds that C(A � n) ≥ h(n).

A set A is called autocomplex if there is an A-computable order h such that
for all n, it holds that C(A � n) ≥ h(n).

We omit the straightforward proof of the following known fact [4, 9]. Note that
by the standard proof of Proposition 13 it is immediate that all the functions g
that occur in the proposition can be assumed to be order functions.

Proposition 13. A set A is complex if and only if there is a computable func-
tion g such that for all n, we have C(A � g(n)) ≥ n if and only if there is a
function g ≤tt A such that for all n, we have C(g(n)) ≥ n if and only if there is
a function g ≤wtt A such that for all n, we have C(g(n)) ≥ n.

A set A is autocomplex if and only if there is an A-computable function g such
that for all n, we have C(A � g(n)) ≥ n if and only if there is an A-computable
function g such that for all n, we have C(g(n)) ≥ n.

In Section 6, we will see that it is interesting to consider variants of the notions
autocomplex and complex where the condition C(A � g(n)) ≥ n is not required
for all but just for infinitely many n. In connection with the following definition,
note that the notion of not being i.o. complex has been introduced by Franklin
et al. [5] under the name of anticomplex.

Definition 14. A set A is i.o. complex iff there is a computable order g such
that for infinitely many n, we have C(A � g(n)) ≥ n.

A set A is i.o. autocomplex iff there is an A-computable order g such that
for infinitely many n, we have C(A � g(n)) ≥ n.

The equivalent characterizations of complex suggest different ways to define i.o.
complex (and similar remarks can be made for the notion i.o. autocomplex).
However, it would neither be equivalent nor even make sense to define i.o.
complexity by requiring that there is some computable order h such that for
infinitely many n it holds that C(A � n) ≥ h(n), because for small h such as the
map n 7→ log log n this inequality is satisfied for infinitely many initial segments
of any set A, simply because a code for A � n is always also a code for n. In
Section 8, we will see that equivalent definitions in this style are still possible
by considering specific variants of Kolmogorov complexity. Furthermore, the two
following propositions show that in the defining condition C(A � g(n)) ≥ n of
i.o. autocomplexity and i.o. complexity the lower bound n can equivalently be
replaced by a wide range of lower bounds in case g may depend on this bound.

Proposition 15. The following assertions are equivalent.

(i) The set A is i.o. autocomplex.
(ii) There is a computable order h and an A-computable function g such that

there are infinitely many n where C(A � g(n)) ≥ C(n) + h(n).
(iii) For every A-computable order h there is an A-computable function g such

that there are infinitely many n where C(A � g(n)) ≥ h(n).



Proof. It is immediate that (i) implies (ii) and that (iii) implies (i). For a proof
of the remaining implication from (ii) to (iii), fix h and g that satisfy (ii), and
let hA be any A-computable order. Let m0 = 0 and for all n > 0 let

mn = min{m : mn−1 < m and 3hA(n) ≤ h(m)} and In = [mn,mn+1) .

For all n, let g̃(n) an appropriate representation of the pair of the restriction of g
to In and the initial segment of A of length maxj∈In g(j), and observe that the
function g̃ is A-computable. By assumption on g and by construction, there are
infinitely many j such that for the index n where j ∈ In, we have

C(A � g(j)) ≥ C(j) + h(j) ≥ C(j) + h(mn) ≥ C(j) + 3hA(n) .

For each such j and n, it holds that C(g̃(n)) ≥ hA(n), because otherwise A � g(j)
could be described by a word of length C(j) + 2hA(n) + O(1). ut

The following variant of Proposition 15 can be shown by an almost literally
identical proof, which we omit.

Proposition 16. The following assertions are equivalent.

(i) The set A is i.o. complex.
(ii) There is a computable order h and a computable function g such that there

are infinitely many n where C(A � g(n)) ≥ C(n) + h(n).
(iii) For every computable order h there is a computable function g such that there

are infinitely many n where C(A � g(n)) ≥ h(n).

4 Diagonally noncomputable sets

Definition 17. A set A is diagonally noncomputable (DNC) if there is a func-
tion f ≤T A such that f(n) differs from ϕn(n) whenever the latter value is
defined. With an appropriate coding scheme for finite sequences of natural num-
bers understood, a set A is strongly diagonally noncomputable (SDNC) if there is
a function f ≤T A such that when z is a code for the sequence e1, x1, . . . , em, xm,
then f(z) differs for i = 1, . . . ,m from ϕei(xi) whenever this value is defined.

The notions of wtt-DNC, wtt-SDNC, tt-DNC, and tt-SDNC are defined like-
wise, where in the above definitions f ≤T A is replaced by f ≤wtt A and f ≤tt A,
respectively.

Note that if we can compute a function f such that for given n the value f(n)
differs from ϕn(n), we can also compute a function g such that for given e, x the
value g(e, x) differs from ϕe(x), because by the s-m-n theorem one can effectively
find an index i such that ϕe(x) and ϕi(i) are either both undefined or both
defined and have the same value. By a result of Jokusch [7], indeed even the
notions of DNC and SDNC coincide.

Theorem 18. A set A is DNC if and only if A is SDNC.



Proof. By definition, it suffices to show that DNC implies SDNC. If A is DNC, one
obtains an A-computable function f as required as follows. By fixing uniformly
effective and uniformly effectively invertible bijections between N and Nm, for
any m, natural numbers can be uniquely identified with m-tuples of natural
numbers. Then given a sequence e1, x1, . . . , em, xm with code z, let f(z) be equal
to the m-tuple (y1, . . . , ym), where yi differs from the i-th component of ϕei(xi),
whenever this value is defined. ut

The following infinitely often versions of the notion DNC is due to Kjos Hanssen
et al. [9]. Note that there are computable functions g such that g(e) differs
from ϕe(e) for infinitely many e, hence in order to get interesting infinitely often
versions of the various variants of the concept of DNC, one has to require more
than just to be able to compute a function that differs from the partial diagonal
function at infinitely many places.

Definition 19. For a function g, let Eg = {e : g(e) = ϕe(e)} be the (diagonal)
equality set of g. A set A is i.o. DNC if for all computable functions z there is a
function g ≤T A such that there are infinitely many n where

|Eg ∩ {0, . . . , z(n)− 1}| ≤ n .

The concepts of i.o. tt-DNC and i.o. wtt-DNC are defined likewise, where in the
definition g ≤T A is replaced by g ≤tt A and g ≤wtt A, respectively.

By definition, a set A is DNC if and only if there is an A-computable function
such that Eg is empty, and consequently any set that is DNC is also i.o. DNC.
More precisely, if a set A is DNC, then it satisfies the definition of i.o. DNC by a
function g ≤T A that does not depend on z. It can be shown that the latter also
holds true for a set that is i.o. DNC and high, and that a DNC set A is high if
and only if there is a single function g ≤T A that works for all z such that in
addition Eg is infinite.

5 Equivalences of the almost everwhere notions

The following theorem is due to Kjos-Hanssen, Merkle and Stephan [9, Theo-
rems 2.3 and 2.7]. The proof of their result given here is somewhat more direct,
furthermore, their short but slightly technical proof of the implication from DNC
to autocomplex is replaced by a simplified argument due to Khodyrev and Shen,
who rediscovered the known equivalence of DNC and SDNC and observed that
SDNC easily implies autocomplex. The equivalence results of this and the follow-
ing sections are formulated in terms of avoidance as introduced in Definition 11
in order to render these results more intuitive.

Theorem 20. The following assertions are equivalent.

(i) The set A is autocomplex.
(ii) The set A is DNC.

(iii) The set A avoids c.e. traces.



Proof. First, assume that A is autocomplex. Then there is an A-computable
function g such that for all n, we have C(g(n)) ≥ n. So g(n) differs from ϕn(n)
for almost all n, because the latter value, if defined, has plain complexity of log n
up to an additive constant, and consequently, A is DNC. Similarly, the set A is
not c.e. i.o. traceable, i.e., avoids c.e. traces, because otherwise the function g
had an n-bounded c.e. trace by Remark 5, which implied C(g(n)) ≤+ 2 log n.

Next assume that A is DNC and hence SDNC. Then A is autocomplex because
in order to obtain for given n a value g(n) where C(g(n)) ≥ n, it suffices to obtain
a value that differs from all the values ϕe(p) where the latter value is defined, p
has length at most n, and e is an index for the universal machine used in the
definition of the plain complexity C.

Finally, assume that the set A avoids c.e. traces, i.e., is not c.e. i.o. traceable.
In order to see that A is DNC, let the diagonal trace (Tn)n be defined by T (n) =
{ϕe(e)}. By assumption, there is an A-computable function g that is not i.o.
traced by the diagonal trace, hence g(e) differs from ϕe(e), whenever the latter
value is defined. ut

Corollary 21. A set A is c.e. i.o. traceable if and only if every A-computable
function has a 1-bounded c.e. i.o. trace.

Proof. It suffices to show the implication from left to right. By the proof of the
implication from (iii) to (ii) in Theorem 20, if there is an A-computable function
that has no 1-bounded c.e. i.o. trace, then this function witnesses that A is DNC,
hence, by the same theorem, A is not i.o. c.e. traceable. ut

The following variant of Theorem 20 is again due to Kjos-Hanssen et al. [9]. The
proofs of Theorem 22 and its corollary are omitted because they are almost literally
the same as for Theorem 22 and Corollary 21 when using the characterizations of
the notion complex from Proposition 13 and showing separately the equivalences
for truth-table and weak truth-table reducibility.

Theorem 22. The following assertions are equivalent.

(i) The set A is complex.

(ii) The set A is tt-DNC.

(iii) The set A tt-avoids c.e. traces.

The three assertions remain equivalent if one replaces in the two last assertions
truth-table reducibility by weak truth-table reducibility.

Corollary 23. The following assertions are all equivalent to A not being complex.

(i) The set A is c.e. i.o. tt-traceable.

(ii) Every function f ≤tt A has a 1-bounded c.e. i.o. trace.

(iii) The set A is c.e. i.o. wtt-traceable.

(iv) Every function f ≤wtt A has a 1-bounded c.e. i.o. trace.



6 Equivalence of the infinitely often notions

In Section 5 we have seen equivalences between first, notions of complexity
and autocomplexity, second, computing diagonally noncomputable functions,
and third, notions of avoiding c.e. traces. The corresponding proofs were rather
direct and functions g as required in the definitions of these three notions where
obtained place by place in the sense that, for example, a function value g(n)
that has a certain complexity is obtained by considering a value g(n) that is not
contained in a component Tn of an appropriate trace and vice versa. Accordingly,
by identical or similar arguments, we obtain infinitely often versions of these
equivalence results where now, for example, for all n such that the value g(n)
has high complexity the value g(n) avoids a corresponding set Tn and vice versa.

The two following theorems are infinitely often versions of Theorems 20 and 22.
The equivalence of assertions (i) and (iii) in Theorem 25 for the case of weak
truth-table reducibility is due to Franklin et al. [5].

Theorem 24. The following assertions are equivalent.

(i) The set A is i.o autocomplex.
(ii) The set A is i.o. DNC.

(iii) The set A i.o. avoids c.e. traces.

Proof. We first show that (i) and (iii) are equivalent, which follows by essentially
the same arguments as the equivalence of being autocomplex and being DNC
stated in Theorem 20. If A is i.o. autocomplex, then there is an A-computable
function g such that for infinitely many n it holds that C(g(n)) ≥ n, and such a
function g cannot have a c.e. trace that, e.g., is n-bounded, hence A is not c.e.
traceable, i.e., A i.o. avoids c.e. traces. Conversely, if A i.o. avoids c.e. traces,
there is an A-computable function g that has no 2n-bounded c.e. trace, hence
in particular, there are infinitely many n such that there is no word w of length
strictly less than n such that g(n) = U(w), where U is the universal machine
used in the definition of C, and consequently A is i.o. autocomplex.

In order to show that (i) implies (ii), assume that A is i.o. autocomplex. Fix
any computable function z and let m0,m1, . . . be a strictly increasing computable
sequence of natural numbers such that for all i, we have z(mi) < mi+1. This way
the natural numbers are partitioned into consecutive intervals Ii = [mi,mi+1).
By Proposition 15, choose some A-computable function g0 such that there
are infinitely many n such that C(g0(n)) ≥ max In. For all n and all j in In,
let g(j) = g0(n). Then g is A-computable and there are infinitely many n where
for all j in In we have

C(ϕj(j)) ≤+ log j < j ≤ max In ≤ C(g0(n)) = C(g(j)) ,

i.e., the set Eg has an empty intersection with In and thus contains at most mn =
min In numbers that are less than or equal to z(mn) ≤ max In.

In order to demonstrate that (ii) implies (iii), we show the contrapositive, so
assume that A does not i.o. avoid c.e. traces, i.e., that A is c.e. traceable. Fix



some appropriate effective way of coding finite sequences of natural numbers
of arbitrary length by single natural numbers. Let (T 0

` )`∈N, (T
1
` )`∈N, . . . be an

appropriate effective enumeration of all c.e. traces. Let s be a computable function
such that for all i and j the partial computable function ϕs(i,j) on input y is
computed by enumerating the numbers c0, c1, . . . in T i

y until cj is reached, where cj
is then considered as a code for a finite sequence of the form g(0), g(1), . . . , g(`)
and in case y ≤ ` the output is g(y).

Next define a computable function z where for all n the value z(n) is chosen
so large that for all i < n and j < n there are at least n+ 1 mutually distinct
indices e ≤ z(n) such that the partial function ϕe is the same as ϕs(i,j). Then given
any function g ≤T A, let g̃(n) be a code for the finite sequence g(0), . . . g(z(n)). By
assumption on A, for h : n 7→ n there is an index i such that the c.e. trace (T i

` )`∈N
is h-bounded and traces the function g̃. For given n, let j be minimum such
that g̃(n) = cj , where c0, c1, . . . are the numbers that are enumerated into T i

n.
Then for all sufficiently large n, there are at least n+ 1 places e ≤ z(n) such that

ϕe(e) = ϕs(i,j)(e) = g(e) ,

and since g was an arbitrary A-computable function and z does not depend on g,
the set A is not i.o. DNC. ut

Theorem 25. The following assertions are equivalent.

(i) The set A is i.o. complex.

(ii) The set A is i.o. tt-DNC.

(iii) The set A i.o. tt-avoids c.e. traces.

The three assertions remain equivalent if one replaces in the two last assertions
truth-table reducibility by weak truth-table reducibility.

7 Computable traces and total machines

We have seen above that traceability notions defined in terms of c.e. traces can
be characterized by concepts such as autocomplexity that relate to the plain
Kolmogorov complexity of the initial segments of a set. We will see now that
these characterizations can be extended to traceability notions defined in terms
of computable traces if one considers the complexity of initial segments with
respect to total machines.

Remark 26. Bienvenu and Merkle [2] have defined the notion of decidable ma-
chines, that is, machines whose domain is decidable. Obviously, every total
machine is decidable, and every decidable machine can be easily converted into
a total machine by first deciding whether a string is in the domain and then
executing the machine as normal if that is the case, and outputting a constant
otherwise.



Definition 27. A set A is totally complex iff there is a computable function g
such that for all total machines M and almost all n, we have CM (A � g(n)) ≥ n.
A set A is totally i.o. complex iff there is a computable function g such that for
all total machines M there are infinitely many n where CM (A � g(n)) ≥ n.

Theorem 28 can be obtained from a result of Kjos-Hanssen et al. [9, Theorem 5.1]
and Theorem 6. We omit the proof of Theorem 28 and give instead the very similar
proof of its infinitely often version Theorem 29. In connection with the latter
theorem, note that Franklin and Stephan [6] considered computably tt-traceable
sets, that is, sets that do not i.o. tt-avoid computable traces, and showed that
these sets are exactly the Schnorr-trivial sets.

Theorem 28. A set A is totally complex if and only if A tt-avoids computable
traces.

Theorem 29. A set A is totally i.o. complex if and only if A i.o. tt-avoids
computable traces.

Proof. First assume that A is not totally i.o. complex, i.e., for any computable
function g there is a total machine M such that for almost all n, we have
CM (A � g(n)) ≤ n. Fix any function f ≤tt A and some tt-reduction witnessing
this fact, which has use bound u(n). By assumption on A, there is a total machine
M such that for almost all n, we have CM (A � u(n)) ≤ n. In order to obtain a
computable trace (Tn)n for f that is bounded by the function n 7→ 2n+1, execute
all codes of length up to n on M , view the outputs as initial segments of oracles,
and let Tn contain all values that one obtains by simulating the fixed tt-reduction
for computing f at place n with any of these oracles. Then f(n) is contained
in Tn for almost all n. Since the bound 2n+1 on the size of the sets Tn does not
depend on f , the set A is computably tt-traceable.

Next assume that A does not i.o. tt-avoid computable traces, i.e., that A is is
computably tt-traceable, and recall that by the discussion preceding Remark 5
we can assume that any function wtt-reducible to A has a computable trace that
is n-bounded. Given a computable function g, we need to show that there is a
total machine M such that for almost all n, we have CM (A � g(n)) ≤ n. We can
assume that the function n 7→ A � g(n) has a computable trace (Tn)n where Tn
has size at most n. Let M be the machine, which on input (n, i) outputs the i-th
element of Tn, if this element exists, and outputs some constant otherwise. Since
the set Tn has size at most n and its canonical index can be computed from n,
M is total and satisfies CM (A � g(n)) ≤ 2 log n ≤ n for almost all n. ut

8 Characterizing i.o. complex and i.o. autocomplex via
lower bounds on the complexity of initial segments

When introducing the notions of i.o. complex and i.o. autocomplex, we have
argued that it does not make sense to define these notions by requiring for
the set A under consideration that for a computable or A-computable order,



respectively, infinitely often the order provides a lower bound for the plain
Kolmogorov complexity of an initial segment of A, and the reason for this was
simply that by choosing a small enough order this condition would be trivially
satisfied by all sets. We will argue in this section, however, that equivalent
definitions in terms of lower bounds for the complexity of initial segments can be
given if plain Kolmogorov complexity C is replaced by appropriate variants, e.g.,
by uniform or monotonic complexity (see Li and Vitányi [10] for a more detailed
account of these notions). Due to space considerations, we will restrict attention
to the concept of i.o. autocomplex.

Definition 30. Let U be the universal Turing machine used to define plain
Kolmogorov complexity C.

The length-conditioned complexity C (w |n) of w is the length of the shortest
program p such that U on input (p, |w|) will output w.

The uniform complexity C(w;n) of w is the length of the shortest program p
such that for all i ≤ |w|, U on input (p, i) will output the first i bits of w, while U
may do anything on inputs (p, i) with |w| < i.

The monotonic complexity Cmon(w) is the length of the shortest program p
such that U on input p will output some extension of w.

From these definitions, the following chain of inequalities is immediate,

C (w |n) ≤+ C(w;n) ≤+ Cmon(w) ≤+ C(w) . (1)

Definition 31. A set A is length-conditionedly i.o. autocomplex iff there is an A-
computable order h such that for infinitely many n, we have h(n) ≤ C (A � n |n).

A set A is uniformly i.o. autocomplex iff there is an A-computable order h
such that for infinitely many n, we have h(n) ≤ C(A � n;n).

A set A is monotonically i.o. autocomplex iff there is an A-computable order
h such that for infinitely many n, we have h(n) ≤ Cmon(A � n).

In connection with the following theorem, recall that the first, and hence also
the second and third assertion are equivalent to A not being c.e. traceable. We
omit the proof of the following theorem due to space considerations.

Theorem 32. The following assertions are equivalent.

(i) The set A is i.o. autocomplex.
(ii) The set A is monotonically i.o. autocomplex.

(iii) The set A is uniformly i.o. autocomplex.

These three equivalent assertions are all implied by

(iv) The set A is length-conditionedly i.o. autocomplex.

9 Time bounded traceability and complexity

In this last section, we will show that for appropriately chosen notions of complex-
ity and traceability, the relations between these two notions can be transferred to
the time-bounded setting, more precisely, to a setting of polynomial time bounds.



Definition 33. For t ∈ N, let Ct(x) := min{|σ| : U(σ) = x in at most t steps}.

Consider a coding of finite sets of natural numbers where the code of a set D
consists of the concatenation of the binary expansion of elements of D in the
natural order, where all the bits in the binary expansions are doubled and the
binary expansions are separated from each other by the word 01. In the sequel,
we will identify a finite set D with its code. Instead of looking at the Kolmogorov
complexity of initial segments we will examine the Kolmogorov complexity of
strings A � D where D is a finite subset of N. This will be defined in the
straightforward way.

Definition 34. A set A is i.o. poly-complex iff there is a computable order h
such that for all polynomials p there are infinitely many sets D where we have
for t = p(|D|+ |maxD|) that Ct(A � D | D) ≥ h(maxD).

Definition 35. A set A is polynomial-time tt-traceable iff for all computable
orders h, we have that for every function f ≤P

tt A there is an h-bounded trace
(Tn)n such that for given n, the list of elements of Tn can be computed (or, say,
printed) in time polynomial in the length of n.

Theorem 36. The following statements are equivalent.

(i) A is not i.o. poly-complex.
(ii) A is polynomial-time tt-traceable.

Proof. (i) implies (ii): Let h be the desired trace bound, where we can as-
sume h(n) ≤ n by switching to a delayed version of h, and let f ≤P

tt A be
the function to be traced. Let q be the polynomial time bound of some fixed
tt-reduction from f to A, and let D(n) be the query set of this reduction at
place n, where we can assume that D(n) always contains n.

Now the mapping g : n 7→ blog h(n)c is surely a computable order, so we
know by assumption that for some p and almost all n we have for t = p(|D(n)|+
|maxD(n)|) that Ct(A � D(n) | D(n)) < g(n). Since t and g(n) are both
polynomial in the length of n, polynomial time in the length of n suffices to run
the universal machine on all programs p of length strictly less than g(n) with
conditioning D(n) for at most t steps each, interpreting the outputs obtained
this way as oracles and to simulate the given reduction at place n with all of
these oracles in order to obtain at most h(n) ≤ 2g(n) − 1 values that are put into
the set Tn.

(ii) implies (i): We have to show for a given computable order h that there is a
polynomial p such that for almost all finite sets D it holds for t = p(|D|+|maxD|)
that Ct(A � D | D) < h(maxD). Let f be the function which maps n to A � D,
for all n that are a code for some finite set D, and let f(n) = 0 in case n is not
such a code. By definition of the coding, computing f(n) from A requires at
most log n queries to A of length at most log n. So f ≤P

tt A, say with polynomial
time bound q.

Since the length of the code for a finite set D is effectively bounded in maxD,
we can fix a computable order h′ such that for any finite set D, we have h′(|D|) ≤



h(maxD). By assumption on A, let (Tn)n be an h′-bounded trace for f with
polynomial time bound, i.e., for any finite set D with code n the value f(n) =
A � D occurs among the at most h′(n) ≤ h(maxD) elements of Tn and Ct(A �
D | D) ≤ h(maxD) with t polynomial in |D|+ |maxD|, as desired. ut

References

1. George Barmpalias, Rod Downey, and Noam Greenberg. K-trivial degrees and the
jump-traceability hierarchy. Proc. Amer. Math. Soc., 137(6):2099–2109, 2009.

2. Laurent Bienvenu and Wolfgang Merkle. Reconciling data compression and Kol-
mogorov complexity. In Proceedings of the International Conference on Automata,
Languages and Programming (ICALP), volume 4596 of Lecture Notes in Comput.
Sci., pages 643–654, Springer, Berlin, 2007.

3. Peter Cholak, Rod Downey, and Noam Greenberg. Strong jump-traceability I: The
computably enumerable case. Advances in Mathematics, 217(5):2045 – 2074, 2008.

4. Rod Downey and Denis Hirschfeldt. Algorithmic Randomness. Springer. To appear.
5. Johanna Franklin, Noam Greenberg, Frank Stephan, and Guohua Wu. Anti-

complexity, lowness and highness notions, and reducibilities with tiny use.
Manuscript, 2009.

6. Johanna Franklin and Frank Stephan. Schnorr trivial sets and truth-table reducibil-
ity. Journal of Symbolic Logic, 75:501–521, 2010.

7. Carl G. Jockusch, Jr. Degrees of functions with no fixed points. In Proceedings
of the Eighth International Congress of Logic, Methodology and Philosophy of
Science (Moscow, 1987), volume 126 of Stud. Logic Found. Math., pages 191–201.
North-Holland, Amsterdam, 1989.

8. Max I. Kanovich. On the complexity of enumeration and decision of predicates.
Soviet Math. Dokl., 11:17–20, 1970.

9. Bjørn Kjos-Hanssen, Wolfgang Merkle, and Frank Stephan. Kolmogorov complexity
and the recursion theorem. Trans. Amer. Math. Soc. In print.

10. Ming Li and Paul Vitányi. An Introduction to Kolmogorov Complexity and Its
Applications. Springer, 2008.

11. Frank Stephan. Private communication. April 2010.
12. Sebastiaan A. Terwijn and Domenico Zambella. Computational randomness and

lowness. The Journal of Symbolic Logic, 66(3):1199–1205, 2001.


