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Abstract The space of one-sided infinite words plays a crucial rôle in
several parts of Theoretical Computer Science. Usually, it is convenient to
regard this space as a metric space, the Cantor-space. It turned out that
for several purposes topologies other than the one of the Cantor-space
are useful, e.g. for studying fragments of first-order logic over infinite
words or for a topological characterisation of random infinite words.
It is shown that both of these topologies refine the topology of the
Cantor-space. Moreover, from common features of these topologies we
extract properties which characterise a large class of topologies. It turns
out that, for this general class of topologies, the corresponding closure
and interior operators respect the shift operations and also, to some re-
spect, the definability of sets of infinite words by finite automata.

The space of one-sided infinite words plays a crucial rôle in several parts of The-
oretical Computer Science (see [7,20] and the surveys [6,13,17,18]). Usually, it is
convenient to regard this space as a topological space provided with the Can-
tor topology. This topology can be also considered as the natural continuation
of the left topology of the prefix relation on the space of finite words; for a survey
see [2].

It turned out that for several purposes other topologies on the space of infinite
words are also useful [9,12], e.g. for investigations in first-order logic [3], to
characterise the set of random infinite words [1] or the set of disjunctive infinite
words [15] and to describe the converging behaviour of not necessarily hyperbolic
iterative function systems [5,14].

Most of these papers use topologies on the space of infinite words which
are certain refinements of the Cantor topology showing a certain kind of shift
invariance. The aim of this paper is to give a unified treatment of those topologies
and to investigate their relations to Cantor topology.

Special attention is paid to subsets of the space of infinite words definable
by finite automata. It turns out that several of the refinements of the Can-
tor topology under consideration behave well with respect to finite automata,
that is, the corresponding closure and interior operators preserve at least one of
the classes of finite-state or regular ω-languages.



1 Notation and Preliminaries

We introduce the notation used throughout the paper. By IN = {0, 1, 2, . . .} we
denote the set of natural numbers. Let X be a finite alphabet of cardinality
|X| = r ≥ 2. By X∗ we denote the set (monoid) of words on X, including the
empty word e, and Xω is the set of infinite sequences (ω-words) over X. For
w ∈ X∗ and η ∈ X∗ ∪Xω let w · η be their concatenation. This concatenation
product extends in an obvious way to subsets W ⊆ X∗ and P ⊆ X∗∪Xω. For a
language W let W ∗ :=

⋃
i∈INW

i be the submonoid of X∗ generated by W , and
by Wω := {w1 · · ·wi · · · : wi ∈ W r {e}} we denote the set of infinite strings
formed by concatenating words in W . Furthermore |w| is the length of the word
w ∈ X∗ and pref(P ) is the set of all finite prefixes of strings in P ⊆ X∗ ∪Xω.
We shall abbreviate w ∈ pref(η) (η ∈ X∗ ∪Xω) by w v η. A language V ⊆ X∗
is called a prefix-free provided for arbitrary w, v ∈ V the relation w v v implies
w = v.

Further we denote by P/w := {η : w · η ∈ P} the left derivative or state
of the set P ⊆ X∗ ∪ Xω generated by the word w. We refer to P as finite-
state provided the set of states {P/w : w ∈ X∗} is finite. It is well-known that a
languageW ⊆ X∗ is finite state if and only if it is accepted by a finite automaton,
that is, it is a regular language.1

In the case of ω-languages regular ω-languages, that is, ω-languages accepted
by finite automata, are the finite unions of sets of the formW ·V ω, whereW and
V are regular languages (cf. e.g. [13]). In particular, every regular ω-language is
finite-state, but, as it was observed in [19], not every finite-state ω-language is
regular (cf. also [11]).

It is well-known that the families of regular or finite-state ω-languages are
closed under Boolean operations [7,20,6,13,17,18] or [11].

1.1 Topological Spaces in General

A topological space is a pair
(
X ,O

)
where X is a non-empty set and O ⊆ 2X is

a family of subsets of X which is closed under arbitrary union and under finite
intersection. The family O is usually called the family of open subsets of the
space X . Their complements are referred to as closed sets of the space X .

As usually, a set B ⊆ O is a base for a topology
(
X ,O

)
on X provided every

set M ∈ O is the (possibly empty) union of sets from B. Thus it does no harm if
one considers bases containing ∅. It is well-known that a family of subsets B of a
set T which is closed under finite intersection generates in this way a topology
on T .

Kuratowski observed that topological spaces can be likewise defined using
closure or interior operators. A topological interior operator J is a mapping
J : 2X → 2X satisfying the following relations. It assigns to a subset M ⊆ X

1 Observe that the relation ∼P defined by w ∼P v iff P/w = P/v is the Nerode right
congruence of P .
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the largest open set contained in M .

JX = X
JJM = JM ⊆M , and

J (M1 ∩M2) = JM1 ∩ JM2

(1)

The interior operator J mapping each subset M ⊆ X to the largest open set
contained in M can be described as follows.

J (M) :=
⋃
{B : B ⊆M ∧B ∈ B} (2)

Using the complementary (duality) relation between open and closed sets one
defines the closure (smallest closed set containing) of M as follows.

CM := X r J (X rM) (3)

Then the following holds.

C ∅ = ∅
CCM = CM ⊇M

C(M1 ∪M2) = CM1 ∪ CM2

(4)

As usual, in a topological space, we denote the classes of countable unions of
closed sets as Fσ and of countable intersections of open sets as Gδ.

1.2 The Cantor-space: basic properties

In this section we list some properties of the Cantor-space (see [7,13,17,20]).
We consider the space of infinite words (ω-words) Xω as a metric space with

metric ρ defined as follows

ρ(ξ, η) :=
{

0, if ξ = η , and
sup{|X|−|w| : w ∈ pref(ξ) ∩ pref(η)} if ξ 6= η .

(5)

This space (Xω, ρ) can be also considered as a topological space with base
BC := {w ·Xω : w ∈ X∗} ∪ {∅}.2

Then the following is well-known.

Property 1. 1. Open sets in Cantor-space (Xω, ρ) are of the form W · Xω

where W ⊆ X∗.
2. A subset E ⊆ Xω is open and closed (clopen) if and only if E = W · Xω

where W ⊆ X∗ is finite.
3. A subset F ⊆ Xω is closed if and only if F = {ξ : pref(ξ) ⊆ pref(F )}.
4. C(F ) := {ξ : ξ ∈ Xω ∧pref(ξ) ⊆ pref(F )} =

⋂
n∈IN

(pref(F )∩Xn) ·Xω is
the closure of F .

2 It is sometimes convenient to include the empty set into a base. Here BC becomes a
Boolean algebra.
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5. If F is a finite-state ω-language then C(F ) and J (F ) are regular ω-languages.

Moreover, the Cantor-space (Xω, ρ) is a compact space, that is, for every family
of open sets (Ei)i∈I such that

⋃
i∈I Ei = Xω there is a finite sub-family (Ei)i∈I′

satisfying
⋃
i∈I′ Ei = Xω. This property is in some sense characteristic for the

Cantor topology on Xω. In particular, no topology refining Cantor topology
and having at least one isolated point3 is compact.

Lemma 1. Let (Xω,O) be a topology such that {W ·Xω : W ⊆ X∗} ⊆ O and
there is a ξ ∈ Xω satisfying {ξ} ∈ O. Then the space (Xω,O) is not compact.

Proof. It suffices to give an infinite family (Ei)i∈IN of pairwise disjoint open sets
with

⋃
i∈INEi = Xω.

Let U := (pref(ξ) ·X) r pref(ξ). Then the sets w ·Xω, w ∈ U, are pairwise
disjoint and satisfy ξ /∈ w·Xω. It is now easy to see thatXω = {ξ}∪

⋃
w∈U w·Xω.

1.3 Regular ω-languages

As a last part of this section we mention some facts on regular ω-languages
known from the literature, e.g. [7,13,17,20].

The first one shows the importance of ultimately periodic ω-words. Denote
by Ult := {w · vω : w, v ∈ X∗ r {e}} the set of ultimately periodic ω-words.

Lemma 2 (Büchi). The class of regular ω-languages is a Boolean algebra.
Every non-empty regular ω-language contains an ultimately periodic ω-word,

and regular ω-languages E,F ⊆ Xω coincide if only E ∩ Ult = F ∩ Ult.

The next one gives a connection between accepting devices and topology.

Theorem 1 (Landweber). An ω-language F is accepted by a deterministic
Büchi automaton if and only if F is regular and a Gδ-set.

And, finally, we obtain a topological sufficient condition when finite-state ω-
languages are regular.

Theorem 2 ([11]). Every finite-state ω-language in the class Fσ∩Gδ is already
regular.

2 Topologies Refining the Cantor Topology

In this section we consider some general principles pursued in this paper of the
refinement of the Cantor topology. Most of the following topologies are defined
by introducing a suitable base for the topology. In the sequel, we will often require
that our bases B ⊆ 2X

ω

in the space Xω satisfy the following condition.

Definition 1. We will refer to a base B for a topology T on Xω as shift-
invariant provided

∀F∀w∀v(F ∈ B ∧ w ∈ X∗ ∧ v ∈ pref(F )→ w · F, F/v ∈ B) . (6)
3 A point ξ ∈ Xω is called isolated if {ξ} is an open set.
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The property in Definition 1 is, in particular, satisfied for the base BC . It is now
easy to see that for shift-invariant bases the following holds true.

Topologies on the space of finite words satisfying the same condition as in
Eq. (6) were investigated in [8].

Property 2. 1. If B is a shift invariant base for a topology on Xω then ∀w(w ∈
X∗ → ∀E(E ∈ B↔ w · E ∈ B)).

2. If B is a base for a topology on Xω satisfying Xω ∈ B and ∀w(w ∈ X∗ →
∀E(E ∈ B↔ w · E ∈ B)) then B is shift-invariant.

3. A topology T on Xω has a shift-invariant base if and only if ∀w
(
w ∈ X∗ →

∀E(E is open in T ↔ w · E is open in T )
)
.

The proof of Property 2.3 uses the obvious fact that the set of all open sets is
itself a base for the topology.

Moreover, Property 2.3 shows that all topologies on Xω having a shift-
invariant base refine the Cantor topology. The converse is not true as we shall
see in Section 4.3.

Next we are going to describe the interior operator in topologies on Xω

having a shift-invariant base. To this end we call a subset MB ⊆ B of a base
a shift generator of B provided B r {∅} ⊆ {w · E : w ∈ X∗ ∧ E ∈ MB}. In
particular, if B is shift invariant, B itself and B r {∅} are shift generators of
B. For the Cantor topology, for instance, MBC

= {Xω} is a minimal shift
generator of BC .

Now, the interior operator can be described using a suitably chosen shift
generator MB and the following construction. Let E,F ⊆ Xω. We set

L(F ;E) := {w : w ∈ X∗ ∧ F/w ⊇ E} . (7)

Lemma 3. Let B be a shift-invariant base, and let MB ⊆ B be a shift generator
of B. If J is the corresponding interior operator then

J (F ) =
⋃

E∈MB
L(F ;E) · E

for every F ⊆ Xω.

Proof. Since J (F ) is open, it is a union of base sets. In view of the special
property of our base there are a family of sets Ej ∈ Mj and a family of words
wj ∈ X∗ such that J (F ) =

⋃
j∈J wj · Ej . Thus F/wj ⊇ Ej for j ∈ J , that is,

wj ∈ L(F ;Ej). Now, the assertion follows with
⋃
j∈J wj ·Ej =

⋃
j∈J L(F ;Ej)·Ej .

It should be mentioned that the languages L(F ;E) have a simple structure, if
only F has a simple structure.

Lemma 4. If F ⊆ Xω is finite-state then L(F ;E) is a regular language.

Proof. It suffices to prove the identity

L(F/v;E) = L(F ;E)/v . (8)

Indeed, we have w ∈ L(F/v;E) if and only if F/(v · w) ⊇ E which, in turn, is
equivalent to v · w ∈ L(F ;E), that is, w ∈ L(F ;E)/v.
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The subsequent lemma shows that for shift-invariant topologies on Xω the clo-
sure and the interior operator are stable with respect to the derivative.

Lemma 5. If B is a shift-invariant base then JB(F )/v = JB(F/v) and CB(F )/v =
CB(F/v) for all F ⊆ Xω and v ∈ X∗.

Proof. Let MB be a shift generator for B. Then, in view of Eq. (8),
JB(F )/v =

(⋃
E∈MB

L(F ;E) · E
)
/v

=
⋃
E∈MB

(
L(F ;E)/v

)
· E ∪

⋃
E∈MB

⋃
v′·v′′=v

v′∈L(F ;E)
E/v′′ .

Thus it remains to show that E′/v′′ ⊆
⋃
E∈MB

(
L(F ;E)/v

)
· E whenever

E′ ∈MB and v = v′ · v′′ with v′ ∈ L(F ;E). In the case the latter conditions are
satisfied we have F/v′ ⊇ E′ which implies F/v ⊇ E′/v′′.

In view of Eq. (6) E′/v′′ ∈ B for E′ ∈ B. Consequently, there are u ∈ X∗
and an E′′ ∈MB such that E′/v′′ = u ·E′′. From F/v ⊇ E′/v′′ = u ·E′′ follows
(F/v)/u ⊇ E′′, that is, u ∈ L(F/v;E′′) = L(F ;E′′)/v. The proof is concluded
by the now obvious observation E′/v′′ = u · E′′ ⊆

(
L(F ;E′′)/v

)
· E′′.

The proof for CB follows from the identity Xω r E/w = (Xω r E)/w and
Eq. (3).

As a consequence of Lemma 5 we obtain

Corollary 1. If B is a shift-invariant base for a topology on Xω then JB(v·F ) =
v · JB(F ) and CB(v · F ) = v · CB(F ) for all F ⊆ Xω and v ∈ X∗.

Proof. First observe that in view of Property 2.3 the topology TB generated by
the shift-invariant base B refines the Cantor topology on Xω, hence every set
v ·Xω is also open and closed in TB. Consequently, JB(v ·F ) ⊆ CB(v ·F ) ⊆ v ·Xω.

Now according to Lemma 5 the identities JB(F ) = JB((v·F )/v) = JB(v·F )/v
hold. This yields v · JB(F ) = JB(v · F ) ∩ v ·Xω and the assertion follows with
JB(v · F ) ⊆ v ·Xω. The proof for CB is the same.

The following is a consequence of the Lemmata 3, 4 and 5.

Corollary 2. Let a base B for a topology on Xω be shift-invariant and let F ⊆
Xω be a finite-state ω-language.

1. Then JB(F ) and CB(F ) are finite-state ω-languages.
2. If moreover, there is a finite shift generator MB of B consisting solely of

regular ω-languages then JB(F ) and CB(F ) are even regular ω-languages.

Proof. The classes of finite-state and regular ω-languages are both closed under
Boolean operations. Thus the first assertion follows from Lemma 5.

For proving the assertion on the regularity of the ω-languages JB(F ) and
CB(F ) we observe that the strong assumption on MB and Lemmata 3 and 4
yield JB(F ) =

⋃
E∈MB

L(F ;E) · E where the union is finite and L(F ;E) ⊆ X∗

and E ⊆ Xω are regular. Thus JB(F ) is also regular. The assertion for CB(F )
now follows from Eq. (3).
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3 Topologies Related to Finite Automata

In this section we consider four shift-invariant topologies refining Cantor topol-
ogy. These topologies are closely related to finite automata. The first topology
is the smallest topology having all regular ω-languages which are also closed in
Cantor topology as open sets. This topology is remarkable because here all
ω-languages accepted by deterministic Büchi-automata are closed.

The subsequent two topologies are derived from Diekert’s and Kufleitner’s
[3] alphabetic topology which is useful for investigations in restricted first-order
theories for infinite words.

Finally, for the sake of completeness we add the topology having all regular
ω-languages as open (and closed) sets.

Every of the four considered topologies has an infinite set of isolated points.
Thus in view of Lemma 1 none of them is a compact topology on Xω.

3.1 The automatic topology

Definition 2. The automatic topology TA on Xω is defined by the base

BA := {F : F ⊆ Xω ∧ F is a regular ω-language closed in Cantor-space} .

It should be remarked that the sets (open balls) w ·Xω are regular and closed in
Cantor-space. Moreover, the properties of regular ω-languages show that BA
is shift-invariant. Thus the base BA contains BC , and the automatic topology
refines the Cantor topology.
TA has the following properties:

Property 3. 1. If F ⊆ Xω is open (closed) in Cantor topology TC then F is
open (closed) in TA.

2. Every non-empty set open in TA contains an ultimately periodic ω-word.
3. The set Ult of ultimately periodic ω-words is the set IA of all isolated points

in TA.

Proof. 1. and 2. are obvious.
3. Every ω-language {w · vω} = w · {v}ω is regular and closed in Cantor-

space, and if {ξ} is regular then ξ is an ultimately periodic ω-word.

The following theorem characterises the closure and the interior operators for
the automatic topology. Here the second identity resembles the identity in Prop-
erty 1.4.

Theorem 3.

JA(F ) =
⋃

E∈BAr{∅}
L(F ;E) · E (9)

CA(F ) =
⋂
{W ·Xω : F ⊆W ·Xω ∧W is regular} (10)
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Proof. The assertion of Eq.(9) is Lemma 3.
To prove Eq.(10) observe that, for regular W ⊆ X∗, the set W ·Xω is closed

in TA. Thus the inclusion “⊆” is obvious.
Let, conversely, ξ /∈ CA(F ). Then there is a set F ′ ∈ BA such that ξ ∈ F ′ and

F ∩ F ′ = ∅. F ′ is a regular ω-language closed in TC . Thus Xω r F ′ = W ′ ·Xω

for some regular language W ′ ⊆ X∗. Consequently, ξ /∈ W ′ ·X∗ ⊇
⋂
{W ·Xω :

F ⊆W ·Xω ∧W is regular}.

The next lemma describes sets open in TA. As usual, a set is called nowhere
dense if its closure does not contain a non-empty open subset.

Lemma 6. A set F ⊆ Xω is open in TA if and only if

F = W ·Xω ∪
⋃

i∈N
Fi

where the sets Fi are regular, closed and nowhere dense in Cantor-space.

Proof. If, in Cantor-space, F ⊆ Xω is closed then F = VF · Xω ∪ F ′ where
VF = {v : v · Xω ⊆ F} and F ′ is nowhere dense and closed. If, moreover, F
is a regular ω-language then VF ⊆ X∗ is a regular language and, consequently,
F ′ = F r VF ·Xω is a regular ω-language.

If E is open in TA then E, as a union of base sets, has the form E = W ′ ·
Xω ∪

⋃
i∈N Fi where the Fi are regular ω-languages closed in Cantor-space.

Now, from the preceding consideration we obtain the required form E =(
W ′ ∪

⋃
i∈N VFi

)
·Xω ∪

⋃
i∈N F

′
i .

As an immediate consequence we obtain the following.

Corollary 3. Every set open in TA is an Fσ-set in Cantor-space, and every
set closed in TA is a Gδ-set in Cantor-space.

The converse of Corollary 3 is not true in general.

Example 1. Let η /∈ Ult and consider the countable ω-language F := {0n · 1 · η :
n ∈ IN}.

Then, in Cantor-space, F = ({0}ω ∪ F ) ∩ 0∗ · 1 · {0, 1}ω is the intersection
of a closed set with an open set, hence, simultaneously an Fσ-set and a Gδ-set.
As F does not contain any ultimately periodic ω-word, it cannot be open in TA.
Thus Xω r F is not closed in TA.

Consequently, 0 · F ∪ 1 · (Xω r F ) is a set being neither open nor closed in
TA but being simultaneously an Fσ-set and a Gδ-set in Cantor-space. ut

For regular ω-languages, however, we have the following. Here the second item
shows a difference to the Cantor topology.

Proposition 1. 1. Let F ⊆ Xω be a regular ω-language. Then F is an Fσ-
set in Cantor-space if and only if F is open in TA, and F is a Gδ-set in
Cantor-space if and only if F is closed in TA.

2. There are clopen sets in TA which are not regular.
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Proof. 1. In Cantor-space, every regular ω-language F being an Fσ-set is a
countable union of closed regular ω-languages (see [16]).

2. The ω-language F� :=
⋃
n∈IN 0n

2 · 1 ·Xω and its complement Xω r F� =
{0ω} ∪

⋃
n is not a square 0n · 1 ·Xω partition the whole space Xω = {0, 1}ω into

two non-regular ω-languages open in TA.

3.2 Finite-state and regular ω-languages

In this section we investigate whether finite-state and regular ω-languages are
preserved by JA and CA.

The first simple result is a consequence of Corollary 2.

Proposition 2. If F ⊆ Xω is finite-state the also JA(F ) and CA(F ) are finite-
state ω-languages.

It is, however, not true that the interior or the closure of finite-state ω-languages
are regular. To this end we consider the set Ult of all ultimately periodic ω-words.

Example 2. The set Ult ⊆ Xω is the set of all isolated points of the topology TA
hence open. Thus JA(Ult) = Ult.

Moreover Ult/w = Ult for all w ∈ X∗, that is, Ult is a one-state ω-language,
but Ult is not regular. If we consider, for a, b ∈ X, a 6= b, the ω-language
F = a · Ult ∪ b · (Xω r Ult) then F is finite-state and we obtain JA(F ) = a · Ult
and CA(F ) = a ·Xω ∪ b · (Xω r Ult). So neither, JA(F ) nor CA(F ) are regular
ω-languages. ut

A still more striking difference to Cantor topology (see Property 1.5) is the
fact that the closure (and also the interior) of a regular ω-language need not be
regular again.

Example 3. We use the fact (Lemma 2) that two regular ω-languages E,F al-
ready coincide if only E ∩ Ult = F ∩ Ult and consider CA({0, 1}∗ · 0ω).

Utilising Eq. (10) we get CA({0, 1}∗ · 0ω) ⊆
⋂

k∈IN
{0, 1}∗ · 0k · {0, 1}ω. Con-

sequently, CA({0, 1}∗ · 0ω) ∩ Ult = {0, 1}∗ · 0ω.
If, now, CA({0, 1}∗ · 0ω) were a regular ω-language, the identity

CA({0, 1}∗ · 0ω) = {0, 1}∗ · 0ω would follow. This implies, according to Corol-
lary 3 that {0, 1}∗ · 0ω is a Gδ-set in Cantor-space which is not true. ut

3.3 The alphabetic topologies

We start with the alphabetic topology which was introduced in [3]. Then we
consider a variant of the alphabetic topology. We define both topologies by their
respective bases.

Definition 3. The alphabetic topology is defined by the base
Bα := {w ·Aω : w ∈ X∗ ∧A ⊆ X}.
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All base sets are regular and closed, so the generated topology Tα is coarser than
the automatic topology TA.

For the next definition we fix the following notation (cf. [3]). For A ⊆ X the
ω-language Aim is the set of all ω-words ξ ∈ Xω where exactly the letters in A
occur infinitely often. In particular, Aim = X∗ ·Aim.

Definition 4. The strong alphabetic topology is defined by the base
Bs := {w · (Aω ∩Aim) : w ∈ X∗ ∧A ⊆ X}.

The ω-languages in this base Bs are regular ω-languages and Gδ-sets in Cantor-
space but, for |A| ≥ 2, no Fσ-sets in Cantor-space. Thus they are closed but not
open in the automatic topology. This shows that the strong alphabetic topology
Ts does not coincide with TA.

For both alphabetic topologies suitable finite shift generatorsMα andMs for
the bases Bα and Bs, respectively, can be chosen in the following way:

Mα := {Aω : A ⊆ X} and Ms := {Aω ∩Aim : A ⊆ X}

This yields the following property of the corresponding interior operators.

Proposition 3. Jα(F ) =
⋃

A⊆X
L(F ;Aω) ·Aω

Js(F ) =
⋃

A⊆X
L(F ;Aω ∩Aim) · (Aω ∩Aim)

With Corollary 2 we obtain the following.

Corollary 4. If F ⊆ Xω is finite-state then Jα(F ), Cα(F ), Js(F ) and Cs(F )
are regular ω-languages.

Proof. Here it suffices to observe that the shift generators Mα := {Aω : ∅ 6= A ⊆
X} and Ms := {Aω ∩Aim : ∅ 6= A ⊆ X} fulfil the assumption of Corollary 2.

Corollary 4 and Example 3 show that neither of the topologies Tα and Ts coin-
cides with the automatic topology TA.

This latter fact could be also obtained by considering the set of isolated points
Iα and Is of the topologies Tα and Ts, respectively. Since for every isolated point
ξ the singleton {ξ} has to be an element of every base of the topology, we obtain
the identity

Iα = Is = {w · aω : w ∈ X∗ ∧ a ∈ X} . (11)

3.4 The Büchi topology and the hierarchy of topologies

For the sake of completeness we introduce still another topology which we call
Büchi topology because its base consists of all regular ω-languages.

Definition 5. The Büchi topology is defined by the base
BB := {F : F ⊆ Xw ∧ F is a regular ω-language}.

10



Here, trivially, closure and interior of regular ω-languages are again regular.
What concerns closure and interior of regular ω-langueges consider the set

F defined in Example 2. One easily verifies that JB(F ) = JA(F ) and CB(F ) =
CA(F ).

So F is an example of a finite-state ω-language having non-regular interior
and closure also with respect to TB . Thus, no base for the Büchi topology has
a subset fulfilling the assumption of Corollary 2.2.

Arguing in the same way as for Tα and Ts we obtain that the set of isolated
points of the Büchi topology is IB = Ult.

Next we show that the following inclusion relation holds for the topologies
considered so far. All inclusions are proper and other ones than the indicated do
not exist.

TB
↗ ↖

TA Ts
↖ ↗
Tα
↑
TC

First, the obvious inclusions BB ⊇ BA ⊇ Bα ⊇ BC and BB ⊇ Bs imply the
inclusions except for Ts ⊇ Tα. This latter follows from the fact that in virtue of
the identity

w ·Aω =
⋃
B⊆A

⋃
v∈A∗

(w · v ·Bω ∩Bim) (12)

every base set of Tα is open in Ts.
To show the properness of the inclusions, we observe that the set of isolated

points of the above topologies satisfy IC = ∅, Iα = Is = {w·aω : w ∈ X∗∧a ∈ X}
and IA = IB = Ult. Thus Tα 6= TC and TA 6⊆ Ts.

The converse relation Ts 6⊆ TA follows from the above mentioned fact that the
sets Aω ∩Aim for 2 ≤ |A| are open in Ts but, since they are regular ω-languages
not being Fσ-sets in Cantor-space, according to Proposition 1 not open in TA.

3.5 Metrisability

In this part we show that all the above topologies are metrisable. To this end
we observe that for every topology, the sets contained in the above introduced
bases are not only open but also closed. For TC this is known, for Tα and TA the
base sets are even closed in Cantor-space. For TB this follows because BB is
closed under complementation. Finally, the identity

Xω r (w ·Aω ∩Aim) =
⋃
v 6=w
|v|=|w|

v ·Xω ∪
⋃
B 6=A

Bim (13)

shows that Bs consists of sets closed in Ts.
To show the metrisability of all spaces we refer to Theorem 4.2.9 of [4] which

states the following.
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Theorem 4. Let X be a topological space with a countable base. Then X is
metrisable if and only if X is a regular topological space.

A topological space X is called regular if every finite set is closed and for every
point p ∈ X and every closed set M ⊆ X , p /∈ M, there are disjoint open sets
O1, O2 such that p ∈ O1 and M ⊆ O2. In particular, this condition is satisfied if
every finite subset of X is closed and X has a base consisting of closed sets.

Thus we obtain our result.

Theorem 5. Each of the topologies TC , Tα, TA, Ts and TB is metrisable.

4 Topologies Obtained by Adding Isolated Points

All topologies TA, TB , Ts and Tα on Xω considered so far have isolated points.
In particular, all their isolated points belong to the set of ultimately periodic
ω-words Ult. In this section we are going to investigate in more detail topologies
on Xω which are obtained from Cantor topology by adding all elements of a
certain fixed set I ⊆ Xω as isolated points to the base BC .

Definition 6. Let I ⊆ Xω. Define TI as the topology (Xω,OI) generated by the
base BI := BC ∪

{
{ξ} : ξ ∈ I

}
.

4.1 General properties

First we characterise the closure CI in the space (Xω,OI). To this end observe
that ξ /∈ CI(F ) if and only if there is a base set E ∈ BI such that ξ ∈ E and
E ∩ F = ∅. This yields the following.

Xω r CI(F ) =
⋃
{w ·Xω : w ·Xω ∩ F = ∅} ∪ (I r F ) (14)

By complementation, we obtain the following connection to the closure in Can-
tor-space, C(F ) = {ξ : pref(ξ) ⊆ pref(F )}.

CI(F ) = C(F ) ∩ ((Xω r I) ∪ F )
= F ∪ (C(F ) r I) (15)

An immediate consequence of Eq. (15) is the following.

Corollary 5. If F ⊇ Xω r I then F is closed in TI.

We call a point ξ ∈ Xω an accumulation point of a set F ⊆ Xω with respect
to a topology T = (Xω,O) provided every open set E containing ξ contains a
point of F r {ξ}. This is equivalent to the requirement that every base set (in
any base for (Xω,O)) E containing ξ contains a point of F r {ξ}.

Theorem 6. In the space (Xω,OI) the set Xω r I is the set of accumulation
points of the whole space.

12



Proof. Let M be the set of accumulation points of the whole space. Then, obvi-
ously, M ∩ I = ∅.

Conversely, if ξ /∈ I then every base set containing ξ is of the form w · Xω,
thus contains infinitely many points of Xω.

Next we turn to metrisability of the topologies. Since our spaces (Xω,OI) do
not necessarily have a countable base, we cannot conclude metrisability as in
Theorem 5.

Therefore we use the Hanai-Morita-Stone-Theorem (cf. [4, Theorem 4.47])

Theorem 7 (Hanai,Morita,Stone). Let M1 = (M1,O1),M2 = (M2,O2) be
topological spaces. If M1 is metrisable and there is a surjective mapping Ψ :
M1 → M2 such that Ψ(M) is closed whenever M ⊆ M1 is closed then the
following are equivalent.

1. M2 is metrisable, and
2. M2 has a base B such that for every m ∈ M2 the set Bm := {B : B ∈

B ∧m ∈ B} is countable.4

It is now obvious that every topological space (Xω,OI) satisfies the Condition 2
of Theorem 7. In fact, for ξ ∈ Xω it holds BI,ξ = {w · Xω : w @ ξ} ∪ {ξ} or
BI,ξ = {w ·Xω : w @ ξ} according to whether ξ ∈ I or not.

If we use as Ψ the identity mapping from Cantor-space (Xω,OC) to (Xω,OI)
then Ψ trivially satisfies the hypothesis of the Hanai-Morita-Stone-Theorem
and we obtain the following.

Theorem 8. Let I ⊆ Xω. Then the topology TI = (Xω,OI) is metrisable.

4.2 U-δ-topology

In this section we show that the topology TI admits a nice metrisation resembling
Eq. (5) provided the set I is an Fσ-set in Cantor-space.

Let U ⊆ X∗ be a fixed language and define U δ := {ξ : ξ ∈ Xω ∧ |pref(ξ) ∩
U | = ℵ0}. Then the following holds true.

Lemma 7. A subset F ⊆ Xω is a Gδ-set in Cantor-space if and only if there
is a U ⊆ X∗ such that F = U δ.

Next, following [12], using the language U we introduce a topology on Xω.

Definition 7 (U-δ-topology). The U -δ-topology of Xω is the metric topology
generated by the following metric

ρU (ξ, η) :=
{

0 , if ξ = η , and
|X|−|pref(ξ)∩pref(η)∩U | , otherwise.

This topology has the following properties (see [12,14,15]). Denote by CU the
topological closure induced by the metric ρU .
4 M2 is second countable.
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Proposition 4. 1. In the U -δ-topology of Xω every point in IU := Xω r Uδ

is an isolated point.
2. CU (F ) = C(F ) ∩ (Uδ ∪ F ) = F ∪ (C(F ) ∩ Uδ)

Now Proposition 4.2 in connection with Eq. (15) shows that, for I := Xω r Uδ

the U -δ-topology of Xω coincides with TI.
Next we consider the set of isolated point s of the topologies Tα, Ts, TA and

TB . Recall that Iα = Is =
⋃
a∈X X

∗ ·aω and IA = IB = Ult. Both sets are Fσ-sets
in Cantor space. Thus the following holds true.

Proposition 5. One can construct languages Uα and UA such that the set of
isolated points of the Uα-δ-topology of Xω is Iα =

⋃
a∈X X

∗ · aω, and the set of
isolated points of the UA-δ-topology of Xω is IA = Ult.

For the case I =
⋃
a∈X X

∗ · aω one obtains a regular language Uα.

Corollary 6. It holds Iα = Xω r
(⋃

a,b∈X,a 6=bX
∗ · ab

)δ.
4.3 Shift-invariance

Finally, we derive a necessary and sufficient condition when a topology TI has a
shift-invariant base. To this end we use the results of Section 2.

Lemma 8. A topology TI has a shift-invariant base if and only if I = I/w for
all w ∈ X∗.

Proof. For every isolated point ξ ∈ I the set {ξ} is open in TI. Thus according
to Lemma 5 and Corollary 1 also {ξ}/w and {w · ξ} are open. This shows the
required identity.

Conversely, if I = I/w for all w ∈ X∗ then, obviously, the base BC ∪ {{ξ} :
ξ ∈ I} is shift-invariant.

Having this necessary and sufficient condition one easily verifies that adding iso-
lated points may result in non-shift-invariant refinements of Cantor topology.
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