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Abstract. In this paper we present a probabilistic broadcast calculus for mobile
and wireless networks whose connections are unreliable. In our calculus, broad-
casted messages can be lost with a certain probability, and due to mobility the
connection probabilities may change. If a network broadcasts a message from a
location, it will evolve to a network distribution depending on whether nodes at
other locations receive the message or not. Mobility of nodes is not arbitrary but
guarded by a probabilistic mobility function (PMF), and we also define the no-
tion of a weak bisimulation given a PMF. It is possible to have weak bisimular
networks which have different probabilistic connectivity information. We further-
more examine the relation between our weak bisimulation and a minor variant of
PCTL∗ [1]. Finally, we apply our calculus on a small example called the Zeroconf
protocol [2].

1 Introduction

Mobile and wireless networks have gained in popularity in recent years, and the appli-
cation area is broad, spanning from ambient intelligence, wireless local area networks,
sensor networks, and cellular networks for mobile telephony. The key communication
primitive in wireless communication is message broadcast but, differently from wired
local area networks, broadcast in wireless networks is local, hence only nodes within
the communication range of the emitting node can receive the message, and due to
mobility the communication area may change over time.

Mobility and local wireless broadcast has been studied in the calculi: CBS][3], the
ω-calculus[4], CMN[5], RBPT[6], and CMAN[7, 8]. All these calculi only deal with
connectivity in two modes: either two nodes are connected or disconnected. It is often
assumed that when a node at location l is within the transmission range of another
node at location k, then the node at l can receive messages broadcasted from k with
probability 1, otherwise with probability 0. Here we refine this assumption and equip a
connection with a probability, since in an unreliable medium we cannot guarantee that
the broadcasted messages will always be received even within the transmission range.
For example, in Fig. 1 the dashed circle denotes the transmission range of k, every node
at a location within the circle, such as l and m, may receive the messages broadcasted
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Fig. 1. Connectivity example. Fig. 2. Equivalent connection probabilities.

from k, but the node at n outside the circle cannot. Intuitively, although both l and m are
in the transmission range of k, it is more reasonable to let nodes there receive messages
from k with different probabilities since m is further away from k than l. In our calculus,
the connectivity of this network can be denoted as {{(0.9, l), (0.5,m), (0, n)} 7−→ k} if
nodes at l,m, n can receive messages from k with probability 0.9, 0.5, and 0 respectively.

In order to model mobility we let connection probabilities between locations change,
and the changes are also probabilistic. For instance, the nodes at location m in Fig. 1
may move closer to location k with a certain probability in which case the nodes at m
will be able to receive messages from k with a higher probability.

In practice, when verifying properties of a mobile network it will be reasonable
to assume that mobility within a network is not arbitrarily but respects certain rules
or distributions. Therefore we introduce a probabilistic mobility function (PMF) which
defines the mobility rules of all the connections. A PMF returns the probability for a
connection evolving from one value into another. For example, if in a PMF the connec-
tion probability from l to k is given by Fig. 2, then we know that it can change to 0.8
with probability 0.7 or stay at 0.9 with probability 0.3, that is:

{{(0.9, l), (0.5,m), (0, n)} 7−→ k} −→


0.7 : {{(0.8, l), (0.5,m), (0, n)} 7−→ k}
0.3 : {{(0.9, l), (0.5,m), (0, n)} 7−→ k}

Hence we equip mobility with probabilities, and after each mobility action the network
will evolve into a distribution with the probabilities specified by the given PMF. We
expect that usually a PMF can be obtained based on measurement of case studies.

Our network calculus consists of concurrent processes (nodes) communicating in-
ternally over channels at (logical) locations and broadcasting messages to processes at
neighboring locations over probabilistic connections that may change probabilistically
over time as outlined above. The semantics is a combination of probability, concurrency,
and non-determinism. Formally the labeled transition system semantics gives rise to a
simple probabilistic automata as outlined in [9], which allows us to use a labeled vari-
ant of PCTL∗[1] to reason about properties of networks specified in our calculus. We
also define a (weak) bisimulation along the lines of [1] and show that it is sound and
complete for our version of PCTL∗. In our bisimulation, we abstract from mobility as
in the other calculi for mobile and wireless systems mentioned above.
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As a novelty a bisimulation is parameterized by a PMF, and since we abstract from
mobility we consider two probabilities of a connection to be equivalent if they can
evolve into each other eventually with probability 1 after a number of mobility steps.
Intuitively, it means that a connection due to mobility can take any of the equivalent
probabilities. For example, given the PMF in Fig. 2 the state 0.8 can evolve into 0.9
with probability 1 after an infinite number of steps. Furthermore, two locations l and
m are considered equivalent if any other location k is connected to them by equivalent
probabilities, because then nodes at k can with probability 1 receive messages from l
and m with the same probability.

Another important contribution is the introduction of unknown probabilities. Since
we are dealing with open systems where contexts may contain new nodes and informa-
tion about connection probabilities, we cannot in a network expect to know the proba-
bility of all possible connections. We integrate unknown probabilities in our theory to
deal with these cases. Intuitively a connection with an unknown probability means that
the probability for the connection can be any value.

The paper is organized as follows: the syntax of our calculus is presented in the next
section and in Section 3 we give the Labeled Transition System for it. In Section 4 a
weak bisimulation is defined and we also prove it to be a congruence. PCTL∗ and its
relation with weak bisimulation is given in Section 5. We illustrate the application of
our calculus with a simple protocol called Zeroconf in Section 6. Finally, we end by a
conclusion and future works.

2 The Calculus

Before introducing our calculus, we first give the following general definitions. A prob-
ability space is a triplet P = (Ω, F, η) where Ω is a set, F is a collection of subsets of Ω
closed under complement and countable union that includes Ω. η : F → [0, 1] is a prob-
ability distribution such that η(Ω) = 1, and for any collection {Ci}i of at most countably
many pairwise disjoint elements of F, η(∪iCi) =

∑
i η(Ci). A probability space (Ω, F, η)

is discrete if Ω is countable and F = 2Ω, and hence abbreviated as (Ω, η). Given prob-
ability spaces {P = (Ωi, ηi)}i∈I and weights wi > 0 for each i such that

∑
i∈I wi = 1,

the convex combination
∑

i∈I wiPi is defined as the probability space (Ω, η) such that
Ω =

⋃
i∈I Ωi and for each set Y ⊆ Ω, η(Y) =

∑
i∈I wiηi(Y ∩Ωi). We let {ρi : Ni}i∈I denote

the discrete probability space ({Ni∈I}, η) where η({Ni}) = ρi.
We presuppose a countably infinite set N of names, ranged over by x, y, z and a finite

set L of location names, ranged over by k, l,m, n. The variables k̃, l̃ . . . are used to denote
a set of locations. In addition, we also suppose a finite set of probabilities ℘ including
0 and 1 ranged over by ρ, ρ′, ρ1 . . .. We define a location connection set, ranged over by
L,K . . ., as a subset of {(ρ, l) | ρ ∈ ℘, l ∈ L}. We use l(L) = {l | (ρ, l) ∈ L} to denote all
the locations in L. The syntax of processes is defined by the following grammar:

p, q ::= 0 | Act.p | if (x = y) then p else q | νxp | p||q | !p

Act ::= 〈x〉 | ȳ〈x〉 | (x) | y(x)

Action 〈x〉 represents broadcasting a message x, while the reception of a broadcasted
message is denoted by (x); ȳ〈x〉 denotes sending a message x via the channel y and in
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Table 1. Structural congruence.

b0cl ≡ 0 b!pcl ≡ bp||!pcl νxE||E′ ≡ νx(E||E′ ), if x < fn(E
′
)

E||0 ≡ E bp||qcl ≡ bpcl||bqcl bif (x = x) then p else qcl ≡ bpcl
bνx.pcl ≡ νxbpcl (E||E′ )||E′′ ≡ E||(E′ ||E′′ ) bif (x = y) then p else qcl ≡ bqcl, x , y

νxνyE = νyνxE E||F ≡ F||E {L1 7−→ k}||{L2 7−→ k} ≡ {L1 ∪ L2 7−→ k}, l(L1) ∩ l(L2) = ∅

contrast y(x) represents receiving a message x on channel y. Process 0 is the deadlocked
process; Act.p is the process that can perform action Act and then behave as p; if (x =

y) then p else q behaves as p if names x and y match and as q otherwise; νxp means
that name x is bounded in the process p; in composition p||q, the processes p and q
can proceed in parallel and can also interact via shared names; !p means an unbounded
number of parallel compositions of process p. As usual we often leave out a trailing 0.

The set of networks N is defined by the grammar:

E, F ::= 0 | bpcl | {L 7−→ l} | νxE | E||F

Here bpcl is a process p at location l; νxE and E||F are restriction and parallel com-
position respectively which have the standard meaning; {L 7−→ l} denotes connection
information, i.e. if (ρ, k) ∈ L, the node at location k is connected to l and can receive
messages from l with probability ρ. We use E, F,G . . . to range over N .

We define a network distribution as a probability space E = {(ρi : Ei)}i∈I meaning
that a network can evolve into Ei with probability ρi. We use E,F,G . . . to range over
network distributions ND. If a network distribution consists of a single network, such as
{(1 : E)}, then we denote it as E directly. Parallel composition of network distributions
is defined by:

E||F = {(ρ × ρ′ : E||F) | (ρ : E) ∈ E, (ρ′ : F) ∈ F}
A substitution {y/x} can be applied to a node, network or network distribution. When
applied to a network distribution, it means applying this substitution to each network
within this distribution. The set of free names and bound names in E, denoted by fn(E)
and bn(E) respectively, are defined as expected. Structural congruence, ≡, is the least
equivalence relation and congruence closed by the rules in Table 1 and α-conversion. ≡
is extended to network distributions as expected.

In the following, we use ρk 7−→l as an abbreviation of the probability from which k
can receive messages from l. As mentioned, we assume that mobility is not arbitrary but
respects certain rules. These rules are given by a function pf : L× L×℘×℘→ ℘ called
a probabilistic mobility function (PMF), the probability for ρk 7−→l changing from ρ to
ρ′ is given by pf (k, l, ρ, ρ′). Let Gpf

k 7−→l be the underlying directed graph for ρk 7−→l given
pf , where vertices are possible values of ρk 7−→l and where there is an edge from state ρ
to ρ′ iff pf (k, l, ρ, ρ′) ∈ (0, 1], and we ignore nodes with 0 in-degree and 0 out-degree.
Without causing any confusion, sometimes we also use Gpf

k 7−→l to denote the set of nodes
in the graph called the support of ρk 7−→l. A PMF pf is valid if for all Gpf

k 7−→l, Gpf
k 7−→l , ∅

and for each ρ ∈ Gpf
k 7−→l,

∑
ρ′∈Gpf

k 7−→l
pf (k, l, ρ, ρ′) = 1. In the following, we only consider

valid PMFs.
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A well-formed network under a given pf is defined inductively by: 0 and bpcl are
well-formed, and νxE is well-formed if E is well-formed; {L 7−→ l} is well-formed if all
location names in L are distinct and for each (ρ, k) ∈ L, ρ ∈ Gpf

k 7−→l; E||F is well-formed
if both E, F are well-formed and for any l, k ∈ L with l , k, there does not exist E′, F′

such that E ≡ {{(ρ, k)} 7−→ l}||E′ and F ≡ {{(ρ′, k)} 7−→ l}||F′. In the sequel given a pf
we only consider the set of well-formed networks Npf . We assume that every node can
receive messages broadcasted by itself with probability 1, but for simplicity we often
denote this implicitly.

We use ρk 7−→l(E) to denote the connection probability from k to l in network E, when
the requested probability occurs in E it returns this value otherwise it returns θk 7−→l to
denote an unknown probability, i.e.

ρk 7−→l(E) =


ρ if there exists E

′
s.t. E ≡ {L 7−→ l}||E′ and (ρ, k) ∈ L

θk 7−→l otherwise

We use Dl(E) to denote the set of all connection probabilities from some locations to l
in E, that is Dl(E) is the smallest set such that (ρk 7−→l(E), k) ∈ Dl(E) if ρk 7−→l(E) ∈ ℘.

We generalize network distributions to contain unknown probabilities. Let θ̂k 7−→l

denote θk 7−→l or 1− θk 7−→l. We let ρ range over generalized probabilities, i.e. expressions
being a finite sequence θ̂k0 7−→l0 × ... × θ̂ki 7−→li × ρ. We say that a generalized probability
θ̂k0 7−→l0 × ... × θ̂ki 7−→li × ρ is 0 if ρ = 0. A generalized network distribution, GND, is
defined inductively as follows: A network distribution is a GND, if G = {(ρi : Ei)}i∈I is
a GND then (θk 7−→l ×G) + ((1− θk 7−→l)×G) = {(θk 7−→l ×ρi : Ei), (1− θk 7−→l ×ρi : Ei)}i∈I is
a GND. We may substitute unknown probabilities in a GND with known probabilities,
e.g. E ◦ Dl(E) means replacing each unknown probability θk 7−→l in E with the known
probability ρk 7−→l(E) if (ρk 7−→l(E), k) ∈ Dl(E).

3 Label Transition System

In this section we introduce the labeled transition system semantics for our calculus;
the semantics is parameterized by a given PMF which is denoted by pf and left implicit
throughout the rest of this section.

First we define a set of actionsA, ranged over by α, by:

α ::= νx̃〈x,K〉@l | (x,K) / l | νx̃ȳ〈x〉@l | y(x)@l | τ
νx̃〈x,K〉@l denotes that a node at location k receives the message x broadcasted from l
with probability ρ if (ρ, k) ∈ K; (x,K) / l means that the node at location k receives the
message x from location l with probability ρ if (ρ, k) ∈ K; νx̃ȳ〈x〉@l means sending x
on channel y at the location l (i.e.unicast), on the contrary y(x)@l means that x can be
received on the channel y at location l. x̃ is either a singleton set {x} or empty, if x̃ is
empty then x is free else it is bounded.

The labeled transition system is defined in Table 2; notice that the semantics is late,
i.e. the bound names of an input become instantiated only when inferring a communi-
cation. Rules out, in, com, par, res, open, str are either standard or trivial and need no
more comments; brd means that a process at a location can broadcast a message to the
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Table 2. Labeled transition system.

(par) E
α−→ E

E||F α−→ E||F
α < ((x) / l, νx̃〈x〉@l), bn(α) ∩ fn(F) = ∅

(out)
bȳ〈x〉.pcl

ȳ〈x〉@l−−−−→ bpcl
(open) E

α−→ E′

νxE
νxα−−→ E′

α ∈ {ȳ〈x〉@l, 〈x〉@l}, x , y

(in)
by(x).pcl

y(x)@l−−−−→ bpcl
(com) E

νz̃ȳ〈z〉@l−−−−−−→ E′ F
y(x)@l−−−−→ F′

E||F τ−→ νz̃(E′||F′{z/x})
z̃ ∩ fn(F) = ∅

(res) E
α−→ E′

νxE
α−→ νxE′

x < n(α) (pro)
{K 7−→ k} (x,K)/k−−−−−→ {K 7−→ k}

(los)
bAct.pck

(x,∅)/l−−−−→ bAct.pck
Act , (y) and x < fn(bAct.pck)

(rec1)
b(x).pck

(x,∅)/l−−−−→ {(θk 7−→l : bpck), (1 − θk 7−→l : b(x).pck)}

(brd)
b〈x〉.pcl 〈x,∅〉@l−−−−−→ bpcl

(rec2) E
(x,L)/l−−−−→ E F

(x,K)/l−−−−→ F

E||F (x,L∪K)/l−−−−−−→ (E ◦Dl(F))||(F ◦Dl(E))

(syn) E
νỹ〈y,L〉@l−−−−−−→ E F

(x,K)/l−−−−→ F

E||F νỹ〈y,L∪K〉@l−−−−−−−−−→ ((E ◦Dl(F))||(F{y/x} ◦Dl(E)))
ỹ ∩ ({x} ∪ fn(F)) = ∅

(con)
{{(ρ, l)} 7−→ k} τ−→ {pf (l, k, ρ, ρ′) : {{(ρ′, l)} 7−→ k}}

(str) E ≡ F
α−→ F ≡ E

E
α−→ E

network it belongs to; rec1 states that nodes might evolve with unknown probability
when they are ready to receive messages; rec2 allows to combine two networks which
can receive a broadcasted message in parallel, and notice that unknown probabilities
may be substituted by known ones. The union L∪K denotes that in a parallel composi-
tion the message can arrive at locations in both L and K with specific probabilities; syn
deals with synchronization and broadcast, in that a network can broadcast a message
to any neighbor network where each location may receive with a certain probability.
For the same reason as in rec2, the location connection set in the resulting action is the
union of the two location connection sets in the synchronizing actions. Notice that some
processes must discard broadcasted messages as explained by the rules los.

In the rules rec2 and syn, we have that when parallelizing two networks, they can
get connection information from each other and update the correspondent unknown
probabilities. Note here that when there is a message broadcasted from l, we only need
to update possibly unknown probabilities with probabilities from connections to l, that
is why we only needDl(E) andDl(F) to update the unknown probabilities in rec2 and
syn. The rule con changes the connection probabilities in a network depending on the
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Fig. 3. A mobility transition. Fig. 4. A bottom strongly connected component.

PMF parameterizing the semantics, and the rule pro contributes by revealing the current
probabilistic connectivity information.

Example 1. Suppose we have a network E with ρl 7−→k(E) = 0.8 and we also know from
the given PMF pf that pf (l, k, 0.8, 0.9) = 0.3, pf (l, k, 0.8, 0.7) = 0.2 and pf (l, k, 0.8, 0.8)
= 0.5, then we have the derivation in Fig. 3 with ρl 7−→k(E1) = 0.9, ρl 7−→k(E2) = 0.7.

4 Weak Bisimulation

In this section we provide a weak bisimulation for our calculus.
A broadcast action, 〈x,K〉@l, contains the name of the broadcasting location, the

broadcasted message, and a location connection set which denotes locations receiving
the message with specific probabilities. We want to allow a network to simulate such
an action by 〈x,K〉@m, if l and m are mobility equivalent. Intuitively, two locations are
mobility equivalent if any of their connection probabilities, say ρk 7−→l and ρk 7−→m, are
able to evolve into each other eventually with probability 1, in which case the node at
location k can with probability 1 receive messages from l and m with the same probabil-
ity. For example, if the mobility of ρk 7−→l = 0.8 and ρk 7−→m = 0.9 is given by Fig. 4, then
ρk 7−→l can evolve into ρk 7−→m and vice versa. Otherwise, if the mobility of ρk 7−→l = 0.6
and ρk 7−→m = 0.5 is given by Fig. 5 then ρk 7−→m may evolve into ρk 7−→l but not the other
way around.

The following definitions are used to define mobility equivalence between two lo-
cations in their respective networks.

A subgraph SG of Gpf
l 7−→k is called strongly connected if for each pair (ρ, ρ′) of states

in SG there exists a path fragment ρ0ρ1 . . . ρi such that ρ j ∈ SG and pf (l, k, ρ j, ρ j+1) > 0
for 0 ≤ j < i with ρ = ρ0 and ρ′ = ρi. A strongly connected component (SCC) denotes a
strongly connected set of states such that no proper superset of it is strongly connected.
A bottom SCC (BSCC) is an SCC from which no state outside this SCC is reachable.
If probabilities are in the same BSCC, they can for sure evolve into each other, or in
probabilistic terms they can evolve into each other eventually with probability 1. For
example, Fig. 4 is a BSCC whereas Fig. 5 and 6 are not. If two probabilities ρ and ρ′

are in the same BSCC within Gpf
l 7−→k, then we write pf (l, k, ρ, ρ′)∗ = 1.
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Fig. 5. A non-SCC. Fig. 6. A non-BSCC.

The eventual support of ρl 7−→k under a given PMF pf , denoted by ES pf (l, k), is the
set of all nodes (probabilities) which belong to a BSCC in Gpf

l 7−→k.

Definition 1. ES pf (l, k) is consistent if Gpf
l 7−→k is a BSCC.

In the following, we use [ρ]ES pf (l,k) to denote the set of nodes of the BSCC of Gpf
l 7−→k

which contains the node ρ if ρ ∈ ES pf (l, k), here [θl 7−→k]ES pf (l,k) = ES pf (l, k) if ES pf (l, k)
is consistent, otherwise [θl 7−→k]ES pf (l,k) = {θl 7−→k}.
Definition 2. Let pf be a PMF, then l in E and m in F are mobility equivalent, de-
noted by lE �pf mF , if for any k ∈ L, either i) l = m with ρk 7−→l(E) = ρk 7−→m(F),
or ii) ρk 7−→l(E) ∈ ES pf (k, l) ∪ {θk 7−→l} and ρk 7−→m(F) ∈ ES pf (k,m) ∪ {θk 7−→m} such that
[ρk 7−→l(E)]ES pf (k,l) = [ρk 7−→m(F)]ES pf (k,m).

That is, two locations l and m in E and F respectively are mobility equivalent if either
a) the locations are identical and all other locations are connected to them in E and F
with the the same (possibly unknown) connection probabilities, b) the probability for
a connection to l belongs to a BSCC and the probability for the similar connection to
m belongs to a BSCC with the same probabilities, if the probability for the connection
to m is unknown in F, the eventual support for the connection must be consistent, or
c) the probability for a connection to l is unknown in E, the eventual support ES for
the connection is consistent, and the probability for the corresponding connection to m
belongs to a BSCC with the same values as in ES . Intuitively, for the cases b) and c)
it means that even though the connection probabilities for connections to l and m are
not the same, then they eventually with probability 1 can evolve into each other by a
number of mobility steps.

Example 2. Suppose the mobility rules for ρl 7−→k and ρm7−→k are given by Fig. 6 and 4
respectively and let all other connection probabilities be permanently 1. Assume we
are given two networks E and F such that ρl 7−→k(E) = 0.9, ρm7−→k(F) = θm 7−→k. Then
lE �pf mF , but if ρl 7−→k(E) = 0.3 then lE -pf mF , since there is no way for ρm7−→k(F) to
become 0.3.

It follows immediately from the definition of �pf that it is an equivalence relation. Ob-
serve also that whenever ES pf (l, k) is consistent, then the unknown connection proba-
bility θl 7−→k can be assigned with any value in ES pf (l, k) while still preserving mobility
equivalence.
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In our weak bisimulation equivalence, we as usual abstract from internal steps
which in our case also involve the probabilistic mobility steps changing connection
probabilities. In order to capture that a connection probability for sure (with probabil-
ity 1) can evolve into another, we introduce the relation →. Let → be the least rela-
tion closed by parallel composition, restriction and structural congruence and such that
{{(ρ, l)} 7−→ k} → {{(ρ′, l)} 7−→ k} if pf (l, k, ρ, ρ′)∗ = 1.

We use E
α

=⇒ E to denote that a distribution E is reached through a finite sequence
of steps some of which are internal. Formally

α
=⇒ is the least relation such that, E

α
=⇒ E

iff (i) α = τ and E = E, (ii) α = τ and E → E, or (iii) there exists a step E
β−→ E

′
such

that E =
∑

(ρ:E′ )∈E′ ρEE′ , where E
′ τ
=⇒ EE′ if β = α, otherwise E

′ α
=⇒ EE′ and β = τ.

Since there might occur unknown probabilities during the evolution of networks,
we have to resolve this in order to define our bisimulation. For that we introduce a set
of networks denoted by Σpf and ranged over by σpf . The networks in Σpf only contain
connection information for a given pf and it is defined by:

Σpf = { ||
l∈L
{{(ρ, k) | k ∈ L} 7−→ l} | ρ ∈ Gpf

k 7−→l}

We write E • σpf to denote a network behaving like E but obtaining new connection
information from σpf , that is,

E • {∅ 7−→ l} = E

E • {{(ρ, k)} ∪ L 7−→ l} =


E • {L 7−→ l} ρk 7−→l(E) , θk 7−→l

(E||{{(ρ, k)} 7−→ l}) • {L 7−→ l} otherwise

The importance of mobility equivalence can be illustrated by the following lemma.

Lemma 1. For each σpf ∈ Σpf , if E •σpf (x,K)/l−−−−−→ E and lE �pf mE then E •σpf (x,K)/m
=⇒ E.

We lift the notion of equivalence relation to distributions in the usual way.

Definition 3. Let R be an equivalence relation over Npf . Two (non-generalized) net-
work distributions E1 = (Npf , η1) and E2 = (Npf , η2) are R-equivalent, written E1 R E2,
if η1(C) = η2(C) for each equivalence class C in Npf /R.

Below follows our definition of weak bisimulation.

Definition 4. Given a PMF pf , an equivalence relation S ⊆ Npf × Npf is a weak
bisimulation under pf if E S F implies lE �pf lF for any l ∈ L and for each σpf ∈ Σpf

whenever E • σpf α−→ E then:

1. if α = y(x)@l then there exists F • σpf α
=⇒ F s.t. for each z ∈ N, E{z/x} S F{z/x}.

2. if α = (x,L) / l then there exists F •σpf (x,L)/m
=⇒ F s.t. for each z ∈ N, E{z/x} S F{z/x}

and lE �pf mF .

3. if α = 〈x,L〉@l then there exists F • σpf 〈x,L〉@m
=⇒ F s.t. E S F and lE �pf mF .

4. otherwise there exists F • σpf α
=⇒ F and E S F.
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Fig. 7. Network derivations.

Two networks E and F are weak bisimular under a given PMF pf , written E ≈pf F, if
E S F for some weak bisimulation S under pf .

Clauses 1 and 4 in Definition 4 are standard. Clause 2 requires that if nodes at loca-
tions l(L) in network E can receive a message from location l with specific probabilities,
then nodes at locations l(L) in F must be able to receive the same message from some
location m with the same probabilities which is mobility equivalent to l. Clause 3 means
that if E can broadcast a message from l with receivers at locations l(L), then F can also
broadcast the same message from some location m to l(L) with the same probabilities.
In addition, l and m are required to be mobility equivalent. Notice that none of the re-
sulting distributions in a bisimulation contains unknown probabilities because of σpf ,
and observe that all possible σpf are taken into account and hence all possible values of
otherwise unknown connection information are considered.

Theorem 1. ≈pf is a congruence.

To illustrate our weak bisimulation we give the following example.

Example 3. Suppose two nodes A = b〈x〉cl, B = b(y).〈y〉ck and connection information:
P1 = {{0.8, k} 7−→ l}, P2 = {{0.9, k} 7−→ l}, P3 = {{1, k} 7−→ l}. Let the mobility of ρk 7−→l

be given by pf in Fig. 6. It is then not hard to see that A||B||P1 ≈pf A||B||P2 ≈pf A||B||P3.
The derivation is shown in Fig. 7 where we only show the essential transitions and omit
others. Observe that in each of the three networks B can always receive the message
from A with probability 0.8, 0.9, or 1.

5 Characterization

In this section we will examine the relation between our calculus and a variant of PCTL∗

[1] which is a standard modal logic used for expressing properties of probabilistic sys-
tems. We use E(E) to denote the probability of the equivalence class which contains E
in a distribution E and define the (weak) infinite paths of a network E under a given pf
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by: 1

ΩE = {E0α0E1 . . . | ∃σpf .E0 = E • σpf ∧ ∀i ≥ 0 ∃Ei+1. Ei
αi

=⇒ Ei+1 ∧ Ei+1(Ei+1) , 0}

For ω = E0α0E1α1... ∈ ΩE we denote by ω|i the finite path E0α0E1...αi−1Ei in which
case we let ω|i = Ei, and we define ΩE |i = {ω|i | ω ∈ ΩE}. Notice that as usual due
to non-determinism we cannot define a probability measure on ΩE . To resolve this we,
like in e.g.[9, 10], define a policy. An i-level policy for ΩE is a partial function

πi : ΩE |i ×A ↪→ ND

defined by πi(ω|i, α) = E if there exists ω|i α
=⇒ E. A policy π for ΩE is a pair consisting

of a tuple of i-level policies one for each i ≥ 0 and σpf ∈ Σpf . It defines a subset of ΩE

denoted by Ωπ
E such that

Ωπ
E = {ω ∈ ΩE•σpf | ∀i ≥ 0 ∃E, α, E. πi(ω|i, α) = E ∧ E(E) , 0 ∧ ω|i+1 = ω|iαE}

where π = ((π0, π1, . . .), σpf ). The probability of a path E0α0E1α1 . . . ∈ Ωπ
E is defined

by ρ0×ρ1× . . . where for all i, πi(E0α0E1α1 . . . Ei, αi) = E for some E and ρi = E(Ei+1).
Let BπE be the smallest algebra of subsets of Ωπ

E that contains all the basic cylinder
sets {ω ∈ Ωπ

E | ω|0 = E0 ∧ ... ∧ ω|i = Ei} for all i ≥ 0 that is closed under complement
and countable unions. 2 The measure on paths of Ωπ

E , written as µπ,E , gives a unique
measure on BπE .

Below we give the syntax and the semantics for our logic.
Syntax. There are two kinds of formulas: state formulas Stat ranged over by φ, φ

′
and

sequence formulas Seq ranged over by ψ, ψ
′
. The grammar is as follows:

φ ::= > | a | ¬φ | φ ∧ φ′ | ∃ψ | P./qψ

ψ ::= α | φ | ¬ψ | ψ ∧ ψ′ | ©ψ | ψUψ′

In the above, ./ stands for one of =,≤,≥, <, >, q is a rational in [0,1] and α ∈ A.
a ∈ AP where AP is the set of atomic propositions. Here we omit the details of AP
and only assume that weak bisimular networks satisfy the same atomic propositions.
These atomic propositions should also cover the connectivity of networks and be able
to distinguish networks with non-equivalent connectivity. For example, if we have a
network E such that ρl 7−→k(E) = 0.8 then we could say that E satisfy proposition ρl 7−→k =

0.8.
Semantics. For a formula φ ∈ Stat, we indicate by E |=pf φ its satisfaction on network
E, and for ψ ∈ Seq its satisfaction on the path ω is denoted by ω |=pf ψ under a given
PMF pf . The semantics of the logical connectives are defined in the usual way; the

1 Notice that no path from a network E needs to be finite.
2 By standard measure theory this algebra is the Borel σ-algebra and all its elements are the

measurable sets of paths.
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Fig. 8. A home network.

semantics of the remaining operators is defined below:

ω |=pf α iff ω = E0α0E1 . . . ∧ α0 =pf α

ω |=pf ©ψ iff ω = E0α0E1 . . . ∧ E1α1 . . . |=pf ψ

ω |=pf ψUψ′ iff ω = E0α0E1 . . . ∧ ∃i ≥ 0.(Eiαi . . . |=pf ψ
′ ∧ ∀0 ≤ j < i.E jα j . . . |=pf ψ)

E |=pf ∃ψ iff ∃π, ω ∈ Ωπ
E . ω |=pf ψ

E |=pf P./qψ iff ∀π. µπ,E({ω ∈ Ωπ
E | ω |=pf ψ}) ./ q

In the above 〈x,L〉@l =pf 〈x,L〉@m iff l �pf m, it is similar for receptions. Intuitively,
E |=pf P./qψ denotes the probability for the path from E satisfying ψ is ./ q. With this we
can express many kinds of properties such as greatest and lowest bounds and intervals.
For example, P≥qψ can be used to denote that the lowest bound is q while P≥q1ψ∧P<q2ψ
guarantees that the probability is in interval [q1, q2) with q1 < q2.

The following are the main results of this section which show the soundness and
completeness of weak bisimulation with respect to PCTL∗.

Theorem 2. If E ≈pf F then for all φ ∈ Stat, E |=pf φ iff F |=pf φ.

Theorem 3. If for all φ ∈ Stat, E |=pf φ iff F |=pf φ, then E ≈pf F.

6 The Zeroconf Protocol

The Zeroconf protocol is designed for self-configuring home local networks. For exam-
ple, Fig. 8 gives a typical home local network which contains four nodes: PC1, PC2,
Laptop, and PDA. The arrows indicate that PC1, PC2, and Laptop can receive messages
from PDA with probability 0.9, 1, and 0.8 respectively. Here we assume that all other
connections have probability 1.

In order to ensure mutual communication, each node must have an unique IP ad-
dress, so when a new node joins a network it must be assigned an unused IP address.
The Zeroconf protocol solves this in the following way:

1. The new node selects an IP address out of all available IP addresses randomly;
2. It broadcasts a message to other nodes to probe if the selected IP address is in use

or not;
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Table 3. The Zeroconf protocol.

oldnodeip =!((x).(if x = ip then 〈error〉 else 0))
newnodep

i = 〈p〉.waitawkp
i

newnodep
0 = 〈success〉

waitawkp
i = (x).(if x = error then newnode else waitawkp

i ) + newnodep
i−1

newnode = νy(y(p).〈p〉.waitawkp
pn||

∏
ip∈IP ȳ〈ip〉)

3. If the new node receives a message indicating the IP address is already taken, then
it returns to step 1 and restarts the process;

4. Due to unreliable connections, messages can be lost with a certain probability. To
increase the reliability of the protocol, the new node is required to send several
probes for the same IP address;

5. If no error message has been received after these probes, the selected IP address
will be used by the new node.

Note that after running the protocol it is indeed possible for a new node to use an IP
address that is already used by another node. This is called address collision and is
highly undesirable.

In the following, we model and analyse the Zeroconf protocol, the model of the
protocol is given in Table 3. 3 We use oldnodeip to denote an existing network node, i.e.
a process with IP address ip running at a location; oldnodeip repeatedly receives mes-
sages and compare these messages with its own IP address ip. If a message is identical
to ip, it will broadcast an error message, error, informing the new node that the selected
IP address is being used already; newnodep

i denotes a process which will probe i times
before assuming that the selected IP address p is not used by other nodes. It will evolve
into process waitawkp

i after broadcasting a probe. newnodep
0 is a special process which

denotes that the protocol succeeded in finding an unused IP address p (although this
might not be true with a certain probability); waitawkp

i waits for the responses from
other nodes. If it receives an error message because the selected IP address is not valid,
it will restart the whole process, otherwise it will recurse and become waitawkp

i again.
The summation here is used to denote timeout from waiting for responses and then start
a new round of probing. newnode starts the protocol by selecting an IP address from IP
randomly, here IP is the set of all available addresses and

∏
means parallel composition

of processes. In the above, we use pn to denote the maximum number of probes for the
same IP address.

The behavior of the network in Fig. 8 can be represented as follows:

E = bnewnodeck || boldnodeip1
cl || boldnodeip2

cm || boldnodeip3
cn

We assume Laptop, PC1, and PC2 are existing nodes which are located at l, m, and n
respectively, and PDA at k is a node that wants to join the network; here ip1, ip2, and ip3
are used to denote IP addresses in IP already in use. Concerning mobility we assume
a PMF pf such that the mobility rules of ρk 7−→l and ρk 7−→m are given by Fig. 4 and the

3 Summation is defined by: P + Q = νx(x̄〈y〉||x(y).P||x(y).Q).
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mobility rule of ρk 7−→n is given by Fig. 6, in addition all the other connections are always
equal to 1.

In the following, we use 〈x〉@l̃ as a shorthand of ∨l∈l̃〈x,L〉@l where L ranges over
all the location connection sets. With the PCTL∗ logic introduced in the above section,
we can denote the obvious property that ”if an unused IP address is selected by the new
node then the probability of this IP address being allocated to the new node is equal to
1”, formally we have:

φ = P=1(∨ip∈IP\{ip1,ip2,ip3}〈ip〉@k → ♦(¬〈error〉@{l,m, n} ∧ 〈success〉@k))

letting ♦ψ de f
= >Uψ. Clearly E |= φ. We may also specify the property: ”if an used IP

address is selected by the new node then the probability of address collision is less than
q”. Formally we have:

φq = P≤q(∨i∈{1,2,3}〈ipi〉@kU ∨i∈{1,2,3} 〈ipi〉@k → ♦(¬〈error〉@{l,m, n} ∧ 〈success〉@k))

Assuming the maximum number of probes pn to be 3 it turns out that E 6|= φ0.001 while
E |= φ0.008. Intuitively, if the new node selects an used IP address such as ip1, then
among all policies to consider there exists a worst case policy under which oldnodeip1

may fail to receive the probe from the new node for three times with probability (1 −
0.8)3 = 0.008.

In order to illustrate analysis through the use of weak bisimulation we may define

F ≡ bnewnodeck || boldnodeip1
cl || boldnodeip3

cm || boldnodeip2
cn

i.e. compared to E in the network F the two old nodes PC1 and PC2 have swapped their
locations m and n. Further let

E′ ≡ {{(k, 0.8)} 7−→ l}||{{(k, 1)} 7−→ m}||{{(k, 0.9)} 7−→ n}
and let

F′ ≡ {{(k, 1)} 7−→ l}||{{(k, 0.9)} 7−→ m}||{{(k, 0.8)} 7−→ n}
then because mE′ �pf nF′ we infer

E||E′ ≈pf F||F′

Intuitively, by the given pf locations m and n are mobility equivalent and furthermore
they can always receive messages from other locations with the same probability. If
the new node selecting an used IP address such as ip2 broadcasts a probe, then the
node at location m in E can receive it with probability 1 and then broadcast an error
message. The node at location n in F can simulate this by performing the same actions
in addition with some mobility transitions. In both E and F, the newnode can receive the
error message with the same probability. A similar argument holds for other transitions.

7 Conclusion and Future Works

The main contribution of this paper is the development of a probabilistic broadcast cal-
culus for mobile and wireless networks with unreliable connections in that broadcasted
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messages can be lost with a certain probability. Moreover, due to a probabilistic mobil-
ity function connections between locations may change with certain probabilities.

We have given a labeled transition system semantics for our calculus on which we
define a probabilistic weak bisimulation equivalence parameterized by a probabilistic
mobility function. Two bisimular networks need not have the same connectivity infor-
mation and also they may broadcast the same messages from different locations. To the
best of our knowledge, the integration of bisimulation, probabilistic loss of broadcasted
messages, and probabilistic mobility functions is a novel contribution. Also, we have
characterized our weak bisimulation by a variant of PCTL∗.

A number of further developments are possible. One of them is that we could en-
rich the calculus by adding probability at the process level. This would allows to model
e.g. randomized backoff protocols for wireless systems. Also the Zeroconf protocol
example could be improved by having a randomized timeout instead of just using non-
determinism. Since time is important for wireless network, another extension is to con-
sider a timed version of our calculus like in [11].
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