
Proofs as executions

Emmanuel Beffara1* and Virgile Mogbil2�

1 IML – FRE3529, CNRS – Université d’Aix-Marseille
2 LIPN – UMR7030, CNRS – Université Paris 13

Abstract. This paper proposes a new interpretation of the logical con-
tents of programs in the context of concurrent interaction, wherein proofs
correspond to valid executions of a processes. A type system based on
linear logic is used, in which a given process has many different types,
each typing corresponding to a particular way of interacting with its en-
vironment and cut elimination corresponds to executing the process in
a given interaction scenario. A completeness result is established, stat-
ing that every lock-avoiding execution of a process in some environment
corresponds to a particular typing. Besides traces, types contain precise
information about the flow of control between a process and its environ-
ment, and proofs are interpreted as composable schedulings of processes.
In this interpretation, logic appears as a way of making explicit the flow
of causality between interacting processes.

1 Introduction

The extension of the familiar Curry-Howard correspondence to interactive mod-
els of computation has been an active research topic for several decades. Several
systems were proposed based on linear logic [11], following the fundamental ob-
servation that it is a logic of interaction. Interpretations of proofs as processes,
first formalized by Abramsky [1], later refined by various people including the
first author [2], stressed that proof nets [12] and process calculi have significant
similarities in dynamics. At the same time, type systems for concurrency [24]
revealed to be equivalent to variants of linear logic [14, 6]. These approaches suc-
cessfully stress the fact that concurrent calculi are very expressive and versatile
models of interactive behaviour, however they are not satisfactory yet as a proof-
theoretical account of concurrency, because they tend to impose determinism in
execution, effectively constraining processes to functional behaviour.

Several approaches to the question of non-determinism in proof theory have
been proposed using the additives of linear logic [16, 17, 21]. In a different style,
differential logic was recently developed by Ehrhard and Regnier [10] and its un-
typed proof formalism was shown expressive enough to represent the π-calculus [9].
The present work proposes a different approach to the topic, by questioning the
“proofs-as-programs” paradigm. Proof theory wants cut elimination to be con-
fluent, because the meaning of proofs lies in their normal forms. On the other

* Supported by the French ANR project LOGOI, ANR-10-BLAN-0213
� Supported by the French ANR project COMPLICE, ANR-08-BLAN-0211-01

hand, reduction in process calculi is execution: the meaning of a term is not its
final irreducible form but what happens to get there, as interaction with other
processes. Hence we propose to match proofs with executions rather than terms.
But this raises the new question of what is the logical meaning of an execution.
Here we must remember that cut elimination is a process of explicitation and
cut-free proofs are explicit, direct reasonings justifying some fact. In our case,
the fact is the interaction, which is a scheduling of a set of events in a system.
The justification, then, is the control flow through the system, specifying when
actions happen and when execution jumps from one process to another.

Technically, we illustrate this idea in the very simple setting of finitary CCS
with no choice operator, in order to focus on the novel ideas of our approach,
but ways to extend these techniques to a larger class of processes are sketched
in the perspectives. The corresponding logic is multiplicative linear logic, with
a family of modalities à la Hennessy-Milner [13] representing actions.

In our type system, multiplicatives represent causality and independence
between parts of a run, using connectedness/acyclicity arguments to describe
avoidance of deadlocks. Modalities represent observable transitions, with explicit
scheduling constraints using the well-known stratifying effect of boxes in proof
nets. Axiom rules have an unusual interpretation: they are void of interactive
content (no forwarding or copycat behaviour), but they logically implement the
transfer of control flow between different parts of a running process.

Comparison to other work This handling of control flow using the symmetries of
linear logic is reminiscent of the work of Mazurak and Zdancewicz [18] who use
linear negation as an explicit scheduling operation. Our work differs from theirs
and other works on typing for concurrency, in that we proceed “backwards”:
while Curry-Howard systems for concurrency embed logical systems into con-
current calculi, we embed executions of processes into a logical system.

The idea of matching proofs with executions is reminiscent of the proof search
approach to computation. Indeed, the relationship between logical linearity and
interaction has been explored for instance by Miller and Tiu [19, 22] in sequent
calculus and by Bruscoli [5] in deep inference. Our approach has fundamentally
different bases: in these works, formulas are programs and proofs are reduction
sequences, while in our settings a formula is an interaction scenario and proofs
describe how a process can act according to this scenario, following its syntactic
structure. Moreover, internal dynamics in processes actually corresponds to cut-
elimination, which sets our work closer to proofs-as-programs than proof search.

Outline The paper is organized as follows: Section 2 introduces a logic of schedul-
ings based on linear logic and illustrates our interpretation. Section 3 defines a
simple fragment of CCS and a notion of determinisation, used to represent ex-
ecutions as terms. Section 4 presents the proof nets for the logic of schedulings
and its cut-elimination. Section 5 shows the typing of executions and the as-
sociated subject reduction property, and Section 6 establishes the completeness
property that all lock-avoiding executions are typable. Appendices with detailed
proofs can be found on the online version [4].

P ` Γ,A,B
P ` Γ,A`B

(`)
P ` Γ,A Q ` B,∆
P |Q ` Γ,A�B,∆

(⊗)
P ` Γ,A Q ` A⊥,∆

P |Q ` Γ,∆
(cut)

1 ` A,A⊥ (ax)
P ` Γ,A

a.P ` Γ, 〈a〉A
(act)

P ` Γ a /∈ Γ
(νa)P ` Γ

(new)

Derived rules:


P : Γ,A ` B
P : Γ ` A(B

((R)
P : Γ ` A Q : ∆,B ` C
P |Q : Γ,∆,A(B ` C

((L)

P : Γ ` A(B Q : ∆ ` A
P |Q : Γ,∆ ` B

(mp)
P : Γ,A ` B

a.P : Γ, 〈ā〉A ` B
(act)

– Rule (act) applies for names of both polarities.
– In rule (new), a 6∈ Γ means that neither 〈a〉 nor 〈a〉 occurs in Γ .

Table 1. Inference rules for MLL with action modalities (MLLa)

2 A logic of schedulings

We first present the logic we use to describe interactions and schedulings. It
corresponds to the multiplicative fragment of linear logic [11], augmented with a
family of modalities that describe actions. Note that this section introduces the
logic in sequent calculus for simplicity, but the proper formalism for establishing
our results is that of proof nets, presented in section 4; this choice of presentation
is (hopefully) more pedagogical and has no technical consequences.

Definition 1 (MLLa). The formulas of MLLa are built by the grammar

A,B ::= α | α⊥ | A�B | A`B | 〈a〉A | 〈a〉A

where the α are literals and the a are CCS names. The negation A⊥ of a non-
literal formula A is defined by de Morgan duality as (A�B)⊥ = A⊥ `B⊥ and
(〈a〉A)⊥ = 〈a〉A⊥. A type (Γ,∆ . . .) is a finite multiset of formulas. Derivations
are built from the rules of table 1, where the left side of ` is a CCS term up to
structural congruence (as of section 3).

Although it is formulated as a type system for processes, this logic should be
interpreted as a calculus for building schedulings. To explain this interpretation,
we adopt a few notations that stress the functional aspect of the system: P :
A1, . . . , An ` B represents the judgement P ` A⊥1 , . . . , A⊥n , B and the binary
connective A(B stands for A⊥`B. We easily get the derived rules of table 1:
((R) and ((L) are respectively a reformulation of (`) and (⊗), and (mp) is
modus ponens for linear implication, obtained with (ax), (⊗) and (cut). The (ax)

and (cut) rules have natural two-sided counterparts. This is an intuitionistic or
implicative formulation, but we do need the full expressiveness of the MLLa for
the developments of the following sections.

A formula specifies a way for a process to interact with its environment and a
proof provides a way to justify this interaction. A judgement P : A1, . . . , An ` B

then denotes a function that combines n interactions of types Ai for independent
processes Qi into an interaction of type B of the process Q1 | · · · |Qn | P .

– A modality 〈a〉A means doing the action a and then acting according to A.
To lighten notations, we will represent successive modalities as a single one:
〈abc〉α means 〈a〉〈b〉〈c〉α. Note that the silent action τ is not represented in
types, since it is not part of the interactive behaviour of processes.

– Implication A(B is an interaction that provides a behaviour B expecting
A from the environment, as made explicit by the rule (mp). The rule ((R)

means that some context may actually be provided by the environment.
– A variable α is a behaviour not known from the considered term. An in-

teraction of type α means jumping to a continuation of type α, necessarily
provided by the context: indeed, since a scheduling of this type may not
provide any behaviour, it effectively gives control to some other process.

As we will formalize later on, the term P on the left side of a judgement is
guaranteed to be able to provide the behaviour computed by the proof, and this
behaviour will consume all the actions of P . Reciprocally, all the behaviours that
consume all actions of P correspond to some proof.

Let us illustrate this by examining the possible ways of typing a term like
a.b.1 | c.1. This term has three possible ways of interacting: each interleaving of
the sequence (a, b) with the sequence (c) is a valid trace. A simple interleaving
is the sequential execution of one part followed by the other, as (a, b, c). E.g.

1 : C ` C (ax)

b.1 : C ` 〈b〉C (act)

a.b.1 : C ` 〈ab〉C (act)
1 : α ` α (ax)

c.1 : α ` 〈c〉α (act)

a.b.1 | c.1 : α ` 〈abc〉α (cut)

with C = 〈c〉α.

The important point is the choice of the axiom on C: it stands for the fact the
a.b.1 finally hands control to c.1 for which we have type C.

The interleaving (a, c, b) is more subtle: now c.1 will have to get control from
a.b.1 after a and give back control to it after doing c. We can write this as

1 : α ` α (ax)

b.1 : α ` 〈b〉α (act)
1 : C ` C (ax)

b.1 : α, 〈b〉α(C ` C ((L)

a.b.1 : α, 〈b〉α(C ` 〈a〉C (act)

a.b.1 : α ` (〈b〉α(C) (〈a〉C ((R)

1 : B ` B (ax)

c.1 : B ` 〈c〉B (act)

c.1 ` B (〈c〉B ((R)

a.b.1 | c.1 : α ` 〈acb〉α (mp)

with

{
B = 〈b〉α
C = 〈cb〉α

Again, the choice of the right types for the axioms is crucial because it depends
on the continuation in interaction. Indeed, we have three steps (a, c, b) and as
many types for continuations: 〈cb〉α, 〈b〉α and α.

The other crucial point is the introduction of a in front of b.1, as the succes-
sion of rules (ax), ((L), (act), ((R). The conclusion type reads as “if using 〈b〉α

the environment can do C, then, by combining with it, a.b.1 can do a then C”.
Operationally, a.b.1 starts by doing a, then jumps to C (the behaviour of the
environment), and at some point the environment will give control back from C
(that is the negative occurrence of C) and b.1 will then perform 〈b〉α. This part
is generic in C: we could use the same reasoning for any type C, including a type
variable γ. In a more concise way, (B (γ) (〈a〉γ is an interruptible version
of the modality 〈a〉B. Similarly, the typing of c.1 is generic in B. We only need
to choose B and C appropriately for the (mp) rule, so that types unify properly.

Another aspect is when parallel composition is typed by a cut which means
that a synchronisation (send/receive) happens between the composed processes:

1 : ε ` ε (ax)

e.1 : ε ` 〈e〉ε (act)

1 : α ` α (ax)

ē.1 : 〈e〉α ` α (act)

d.ē.1 : 〈e〉α ` 〈d〉α (act)
1 : δ ` δ (ax)

d̄.1 : 〈d〉δ ` δ
(act)

d.ē.1 | d̄.1 : 〈e〉α ` α
(cut)

e.1 | d.ē.1 | d̄.1 : α ` α
(cut)

with

{
δ = α

ε = α

Here the conclusion type is a simple interaction with the environment. This term
has different proofs providing the same type, e.g. using a intermediate trace for
e.1|d.ē.1 instead of d.ē.1|d̄.1 as in the proof above. Such variants are irrelevant in
scheduling and will be removed by switching to proof nets in the next sections.

3 CCS runs as pairings

We consider processes of the standard language CCS [20]. The general language
is defined by the following grammar. Note that we use 1 for the inactive pro-
cess instead of the usual 0 because it is the neutral element of | which is a
multiplicative operation. Moreover, actions a are decorated by locations `:

P,Q ::= a`.P | ā`.P | 1 | (P |Q) | P +Q | ∗P | (νa)P

where a is taken from an infinite set N of names and ` is taken from an infinite
set L of locations. Each location is used at most once in any term. The main
source of non-determinism is the fact that a given action name may occur several
times in a given term, and locations are used to name the different occurrences.

For the purpose of the present study, we actually restrict to the following
fragment. The reason for this will be explained in the following development.

Definition 2 (MCCS). Multiplicative CCS is the fragment of CCS using nei-
ther choice (+) nor replication (∗). Structural congruence is the smallest congru-
ence ≡ that makes parallel composition associative commutative and 1 neutral.

The set of locations occurring in P is written L(P). Given ` ∈ L(P), the
subject of ` is the name tagged by `, written subjP `. The polarity of ` is that of
the action tagged by its subject, written polP `, element of {±1}. Intuitively, a
negative action ā represents the sending of a signal on a channel a, and a positive
action a represents the reception of such a signal.

Definition 3 (execution). Execution is the relation over structural congruence
classes, labelled by partial involutions over L, defined by the rule

ā`.P | am.Q |R →{(`,m)}
ex P |Q |R

Let →ex∗ be the reflexive transitive closure of →ex, with the annotations defined
as P →∅ex∗ P and if P →c

ex∗ Q→d
ex∗ R then P →c∪d

ex∗ R.

The annotation c in P →c
ex Q describes which occurrences interact in the ex-

ecution step, we write P →ex Q if c is unimportant. Similarly, we keep locations
implicit when they do not matter. Remark that, for a given P and c, there is at
most one Q such that P →c

ex Q, since c describes the interaction completely.

Definition 4 (pairing). A pairing of a term P is a partial involution c over
L(P) such that for all ` ∈ dom c, subj c(`) = subj ` and pol c(`) = −pol `.

Let ∼c be the smallest equivalence that contains c. Let ≤P be the partial order
over L(P) such that ` <P m for every subterm x`.Q of P with m ∈ L(Q). c is
consistent if dom c is downward closed for ≤P and ∼c<P∼c is acyclic.

Example 1. The total pairings of P = a1.c2 | b3.ā4 | b̄5.c̄6 | a7.b̄8 | b9 | ā0 are
c1 = {(9, 5), (1, 0), (2, 6), (3, 8), (4, 7)}, c2 = {(3, 5), (1, 4), (2, 6), (7, 0), (9, 8)},
c3 = {(1, 4), (3, 8), (7, 0), (9, 5), (2, 6)}, c4 = {(1, 0), (3, 5), (7, 4), (9, 8), (2, 6)}.
Only c1 is inconsistent as there is a cycle induced by {(3, 8), (4, 7)}. The maximal
consistent pairing included in c1 is {(9, 5), (1, 0), (2, 6)}.

Observe that pairings and consistency are preserved by structural congru-
ence, as a direct consequence of the fact that subjects, polarities and prefixing
are preserved by structural congruence.

Proposition 1. A pairing c of a term P is consistent if and only if there is a
term Q such that P →c

ex∗ Q.

Proof (sketch). In an execution P0 →c1
ex P1 →c2

ex · · · →cn
ex Pn, the ci are disjoint,

so their union is a pairing, and consistency is ensured by the fact that executions
respect prefixing. Conversely, write c = c1] · · ·] cn with the ci atomic. By
definition, if c is consistent then ≤P induces a partial order over the domains of
the ci. Assume that the considered enumeration respects this order, then we can
prove by recurrence that there is an execution sequence P = P0 →c1

ex P1 · · · →cn
ex

Pn, since each ci joins two actions of Pi−1 that are minimal for ≤Pi−1 .

We easily get the following (for a proof see the appendix [4, B.1]).

Proposition 2. Let P be a term. Any two executions P →c
ex∗ Q and P →c

ex∗ R
with the same pairing are permutations of each other, and in this case Q ≡ R.

We will thus consider consistent pairings as the proper notion of execution
for CCS terms. Maximal consistent pairings represent executions of processes
until a state where no more execution is possible.

A useful tool in the study of pairings is the following notion of determinisa-
tion, by which we can turn a pairing of a term into a term that has no other
pairing. In other words, determinisation is a way to represent a run of a term in
the language of MCCS itself.

Definition 5 (deterministic term). A term P is deterministic if it has at
most one occurrence of each action.

The pairings of a deterministic term form a lattice, consistent pairings too, so
there is a unique maximal consistent pairing for any deterministic term.

The restriction operator (νa) serves two purposes: it limits the scope of a
name, and it makes it possible to have names local to each copy of a subterm
in the presence of replication; both these features are useless in the determin-
istic case, hence we leave it out on determinisation. We abide by Barendregt’s
convention that each bound channel is named distinctly from each other channel.

Definition 6 (determinisation). Assume an injective map δ : N × {±1} ×
L → N . Given a partial involution c, determinisation along c is the operator ∂c
which commutes with parallel composition such that ∂c ((νa)P) = ∂c (P) and

∂c
(
a`.P

)
= δ(a,+1, `)`.∂c (P) , ∂c

(
ā`.P

)
=

{
δ(a,+1, `)

`
.∂c (P) if ` ∈ dom c,

δ(a,−1, `)`.∂c (P) otherwise.

By construction, ∂c (P) is deterministic, the pairings of ∂c (P) are the restrictions
of c, consistency preserved, so c is the unique maximal pairing of ∂c (P).

Example 2. For the term P and the pairings of example 1, we obtain the follow-
ing determinisations (with δ(a,+1, 7) = d and δ(b,+1, 9) = e):
c3 = {(1, 4), (3, 8), (7, 0), (9, 5), (2, 6)} induces ∂c3 (P) = a.c | b.ā | ē.c̄ | d.b̄ | e | d̄,
c4 = {(1, 0), (3, 5), (7, 4), (9, 8), (2, 6)} induces ∂c4 (P) = a.c | b.d̄ | b̄.c̄ | d.ē | e | ā.

If we extended our study to the whole of CCS, determinisations would still
be in MCCS, but the theory of pairings would have to be refined: external choice
requires a notion of conflict in the space of locations (as in event structures [23]),
replications requires the introduction of indices to distinguish copies.

4 Proof nets for MLL with action modalities

Proofs in sequent calculus are well suited to inductive reasoning, however their
use in proof theory is uneasy because their rigid structure obscures many argu-
ments, like those below in particular. For this reason, we will turn to proof nets,
using the standard machinery of linear logic [12, 7]. Modality rules are repre-
sented using boxes (like promotions in standard linear logic, but with different
typing rules). The only extra information we add to standard proof structures is
the location of each box, to reflect the use of locations in CCS terms in the se-
quel. For readers not familiar with the standard definitions for proof nets, these
are put in appendix [4, A.1]. We detail here specificities of MLLa.

Definition 7 (proof structure). A proof structure consists of an ordered for-
est of nodes labelled by formulas, denoted xA, with a set Ax of axiom links (pairs
of leaves), a set Cut of cuts (pairs of roots) and a set Box of modality boxes, la-
belled by action modalities, such that each box β has a unique location `(β). The
roots that are not part of a cut are called the conclusion nodes. The conclusion
type is the multiset of the labels of the conclusion nodes.

Fig. 1. Representation of proof structures: axiom link, ` node, � node, boxes, cut.

A modality box β is a set of nodes (the ports) associated to a proof structure
S whose conclusions are in bijection with the ports. If the modality of β is 〈a〉,
then the principal port is labelled 〈a〉A and matches a conclusion of S labelled
A, while auxiliary ports have the same label as their matching conclusion in S.

The graphical notation of proof structures is presented in figure 1. By defini-
tion there are arcs only to multiplicative nodes, moreover proof structures can be
drawn considering the top-bottom orientation of arcs, so we keep arc orientation
implicit by this convention. Arcs to a ` node are joint by a circle on the side of
this node. By construction, the conclusion labels suffice to deduce all labels, so
we keep most of this information implicit.

Definition 8 (proof net). A proof net is a proof structure built following
MLLa sequent calculus rules. An immediate subnet of a proof net π is an induced
subgraph of π that is itself a proof net. A subnet of π is either an immediate
subnet of π or (inductively) a subnet of a box of π.

Well known correctness criteria [7, 12, 8] apply to characterise proof nets
among proof structures by combinatorial means like acyclicity and connected-
ness, which allows the definition of proof nets without any reference to sequent
calculus. We will not elaborate on this aspect because it is essentially indepen-
dent from the present work.

Definition 9 (cut elimination). Annotated cut elimination is the relation
→c
ce over proof structures, labelled by partial involutions c over L, that is the

reflexive transitive closure of the rules below (such that if π →c
ce π

′ →d
ce π

′′ then
π →c∪d

ce π′′). We have π →c
ce π

′ if π contains a cut κ = {x, y} either at top level
or inside a box and one of the following cases occurs:

– Multiplicative step and Axiom step: standard definition, with c = ∅.
– Modality step: If x and y are principal ports of two boxes β, β′, then c per-

mutes `(β) and `(β′) and π′ is obtained by replacing each box with its asso-
ciated proof structure.

– Commutation step: If x is the auxiliary port of a box β, then c = ∅, and the
cut and a subnet of π that contains y are moved inside β.

Our proof system enjoys a standard cut-elimination theorem using this def-
inition: if π →c

ce π
′ and π is a proof net, then π′ is a proof net with the same

conclusion (this is proved by standard arguments using correctness criteria, hence
we will not develop this point); if a proof π is irreducible by →ce, then it has
no cut link (this is an immediate case analysis). Note however that →ce is not
confluent, because of commutation steps.

Definition 10 (head reduction). Head reduction is the annotated relation
→c
h over proof structures defined as the restriction of →c

ce that only applies at
top level and does not use the commutation step of cut elimination.

This particular strategy is relevant because it does not reduce inside boxes,
that is under prefixes, it only affects cuts in active position (from the point of
view of processes). However, this strategy does not eliminate all cuts in general.

In the analysis of proofs, the following notion of path will be useful. It de-
scribes a way to traverse arcs and axioms/cuts in a proof structure while re-
specting the logical meaning of formulas.

Definition 11 (path). A path in a proof structure S is an alternating path
in the underlying graph of S, such that alternations occur only at axioms, cuts
and boxes. Each move between ports x and y of a box β must be associated with
a path between the corresponding conclusions in β. We further require a typing
constraint: a path can only move up a left (resp. right) branch if has moved down
a left (resp. right) branch before, with a natural well-bracketing condition.

For instance, a path starting from an axiom with type α may move down
the tree of nodes, reach a cut, move up the other side of the cut, always in the
branches that contain α, reach an axiom, and so on.

5 Typing executions of MCCS terms

Proofs in MLLa will serve as a type system. Although this can be formulated in
usual sequent style (as in table 1), the natural notion rather relates proof nets
and structural congruence classes of terms.

Definition 12 (term assignment). Let S be a proof structure. The MCCS
term bSc assigned to π is the parallel composition of the bβc for each box β in
S. In turn, for a box β with location ` and associated structure Sβ, the term bβc
is a`.bSβc if the principal port of β has modality 〈a〉 and ā`.bSβc if the principal
port of β has modality 〈a〉. A term P is said to have type Γ if there is a proof
net π of conclusion Γ such that bπc ≡ P . In this case we write π : P ` Γ .

A proof net is a proof structure that is built using the rules of table 1, ignoring
the terms on the left of the ` symbols. It is obvious that these terms do reflect
the definition of term assignment: A term P has type Γ if and only if there is a
type derivation with conclusion P ` Γ using the rules of table 1.

We now establish the correspondence between cut elimination in a proof and
execution steps in the assigned terms. The first result justifies head reduction:

Proposition 3. Let π be a proof structure. For every head reduction π →c
h π
′

there is an execution bπc →c
ex∗ bπ′c.

Proof (sketch). Axiom and multiplicative cut elimination steps do not affect the
assigned terms, besides their annotation is empty, so the result holds immediately
for them. When a modality step applies, it reduces a cut between boxes with
dual modalities (because of typing), hence the associated terms are ready to
interact; the reduct is easily seen to be the assigned term of the reduct proof.

Example 3. Let π be the following proof net.

d̄ d ē eb c̄caāb̄

We have bπc = a.c | b.ā | ē.c̄ | d.b̄ | e | d̄. (It is ∂c3 (P) of previous examples).
As it is a deterministic term, we abusively identify locations with names. We
consider the head reduction sequence π →z

h π
′ (where π′ is an axiom link) for

z = {(d, d̄), (b, b̄), (a, ā), (e, ē), (c, c̄)}. We have bπc →z
ex∗ bπ′c ≡ 1.

Subject reduction does not hold in general. Indeed, a given proof may hold
several occurrences of a given modality, corresponding to different occurrences
of an action in the term, and the structure of cuts may not match a given
execution step. This is not a defect, since we actually intend to type pairings
rather than processes: we do get subject reduction if we restrict to proofs that
describe deterministic terms.

Definition 13 (linear proof). A proof structure S is called linear if

– S contains at most one box for each modality,
– for each a, all occurrences of 〈a〉A in the labels in S have the same immediate

subformula A, and if 〈a〉A and 〈a〉B occur then A and B are dual,
– if S contains a box for both 〈a〉A and 〈a〉A⊥, then neither formula occurs in

the conclusion type of S.

The essence of the linearity condition is the first constraint. Intuitively, the
second and third constraints serve to guarantee that the property is preserved
by composition. Indeed, if a formula 〈a〉A occurs in the conclusion of a proof
π, then the proof may be cut against a proof that contains a modality box for
〈a〉A⊥, which breaks linearity if π already contains a box for some 〈a〉B. Note
that the fact of being a linear proof is preserved by cut elimination.

Theorem 1 (subject reduction). Let π be a linear proof of conclusion P ` Γ .
For every execution P →c

ex∗ P
′ there is a linear proof π′ : P ′ ` Γ .

Proof (sketch). An execution step bπc →(`,m)
ex P involves immediate subterms

a`.Q and ām.R for a ∈ N . Then π contains two top level boxes with respective

principal ports x〈a〉A and y〈a〉A
⊥

, for A ∈ MLLa. Since π is linear, x and y are
elimination boxes for each other, ending a path ρ (as of definition 11) whose
axioms contain modalities of x and y in their types. Let π′ be the rewriting of π
where such modalities are removed (boxes are replaced by their contents, axioms
on 〈a〉A by axioms on A). Clearly π′ is a linear proof of conclusion P ′ ` Γ .

This theorem states that types are preserved by execution in deterministic
terms. However, the proof uses a rewriting of the typing proofs that does not
correspond to cut elimination in general. Indeed, consider the following example
of typing, call π the l.h.s.:

b

a ā �→
b

Then the proof is linear, irreducible by head cut elimination, but the assigned
term bπc = ā | b̄ | a does execute into b̄. In π, this involves a cut on the axiom
inside the middle box. As done in theorem 1 the rewriting of π in a linear proof
π′ assigned to b̄ is the r.h.s..

We can get a precise correspondence between execution and head cut elimi-
nation by imposing an additional constraint on the shape of proofs. In the state-
ment below, an axiom is immediately contained in a box if it is an immediate
subnet of the structure associated with this box.

Definition 14 (regular proof). An axiom link immediately contained in a box
β is anchored if there is a path from one of its conclusions to an auxiliary port
of β and a path from its other conclusion to the principal port. A proof structure
π is regular if all its axioms are anchored and for every pair of boxes with dual
modalities, one of the boxes does not immediately contain any axiom.

Theorem 2 (strong subject reduction). Let π be a regular linear proof net.
For every execution bπc →c

ex∗ P there is a regular linear proof π′ such that
π →c

h π
′ and bπ′c = P .

Proof (sketch). Consider an execution step bπc →(`,m)
ex P . As in the proof of

theorem 1, linearity implies that there are boxes at top level and a path ρ between

their principal ports x〈a〉A and y〈a〉A
⊥

for immediate subterms a`.Q and ām.R
of bπc. Since x is cut at top level, ρ traverses no box, otherwise linearity or
regularity would be contradicted. Then ρ is a multiplicative cut path whose cut
elimination →∅h until x and y preserves bπc as well as regularity and linearity.

6 Anti-execution and completeness

In this section we establish our correspondence theorem relating typings and
executions. To achieve this goal we first provide a kind of reciprocal statement
for subject reduction: if a term T can reduce into a typed term T ′, then we can
type T with a proof that reduces to the typing of T ′. Because we want logically
correct proof structures, this operation requires some care.

Example 4. Consider the term P := a.b̄ | b.c̄ | ā.c. We cannot type each thread
with a simple type like 〈a〉α, 〈b〉α⊥ and then introduce a cut for each interaction,
since we would get a cyclic proof structure, which is incorrect.

We now describe a general method for deducing a typing by “anti-execution”
of a proof. We stay at a partly informal level for clarity, all formal statements
are detailed in the appendix [4, B.3].

Consider a generic execution step P | a.Q | ā.R →ex P | Q | R. Assume the
reduct is typed by some proof π. We want to put the parts of π that correspond
to Q and R into boxes, with a cut between them, while rewriting the proof to
avoid cycles. For this purpose, we proceed in four steps:

Selection consists in moving each box belonging to Q or R away from the main
proof, by means of an axiom/cut pair, so that Q and R are represented by
simple sets of boxes, cut with the main proof (which corresponds to P), with
no multiplicative connectives:

�→

Chaining consists in introducing an extra axiom/cut pair in the middle of each
cut between P and R, so that there are cuts only between P and Q or Q
and R, and not between P and R directly:

R�Q�P �

�→

P Q R

Simplification consists in making sure that there is actually exactly one cut
between P and Q and one between Q and R, by multiplexing multiple cuts
through multiplicatives:

�→

Correctness criteria guarantee that we can always find two cuts for which
there is one connected component on one side, two on the other.

Boxing consists in putting Q and R into boxes, cut together, so that Q has one
auxiliary port to P and R has no auxiliary port:

�→

Following this method, we prove the following statement:

Proposition 4 (anti-execution). Let T1 →c
ex T2 be an execution step and let

π2 : T2 ` Γ be a typing. There exists a typing π1 : T1 ` Γ such that π1 →c
h π2.

Example 5. Consider the term of P of example 1. We consider the execution e =
(a, ā)(b, b̄)(c, c̄)(d, d̄)(e, ē) of the determinized term ∂c4 (P) = a.c |b.d̄ | b̄.c̄ |d.ē |e | ā
for the (total and consistent) pairing c4 = {(1, 0), (3, 5), (7, 4), (9, 8), (2, 6)}. A
typing synthesized by the construction of proposition 4 is the following.

c̄

b̄

e
d

b

ēd̄ a āc

Lemma 1 (preserved regularity). In the construction of proposition 4, if π2
is regular, then so is π1. If π2 is linear and T2 is deterministic, then π1 is linear.

Proof (sketch). Let T2 = P |Q | R. If an axiom is introduced by anti-execution
rewrite steps, used in proposition 4 then: i) it is added to P by selection and
it will not be boxed, or ii) it is added to Q by chaining and becomes anchored
by simplification and boxing. No axiom is introduced on the side of R, Q only
contains chaining axioms, so regularity is satisfied for the new axioms. Besides,
regularity is not broken for axioms previously present in the proof.

Example 6. In the previous example 5, one can also start execution by (b, b̄)(a, ā)
as seen in the typing. All execution permutation of ∂c4 (P) in the pairing c4 is
allowed by the typing proof synthesized from the execution e.

We now summarize the previous results, about subject reduction and the
reverse operation, into a precise statement relating typings and execution.

Lemma 2 (initial typing). Every linear MCCS term where no name occurs
with both modalities is typable by a cut-free regular proof.

Proof. We simply build a proof of T ` AT , BT with AT non-modal by induction
on T . For T = 1, use the axiom rule to get 1 ` α⊥, α. For T = P | Q, deduce
T ` AP `AQ, BP �BQ by the tensor rule. For T = a.P , deduce T ` AP , 〈a〉BP
by the action rule, similarly for ā.P . The proof thus built is obviously regular
since every axiom is at top level or anchored, and there are no pairs of boxes
with dual modalities.

Theorem 3 (completeness). For every execution P →c
ex∗ Q there are typings

πP : P ` Γ and πQ : Q ` Γ such that πP →c
h πQ. Moreover, for every execution

sequence P →c1
ex P1 · · · →cn

ex Pn = Q with c1 ∪ · · · ∪ cn = c, there is a cut
elimination sequence πP →c1

h π1 · · · →cn
h πn = πQ, with bπic = Pi for all i.

Proof. By definition, the term ∂c (Q) is linear and has no dual actions, so
by lemma 2 we can find a cut-free regular proof π′Q : ∂c (Q) ` Γ . If we ap-
ply proposition 4 repeatedly to π′Q with the steps of the considered execution
∂c (P)→c

ex∗ ∂c (Q), we get a proof π′P : ∂c (P) ` Γ that reduces to π′Q by a head
reduction sequence labelled c. Let πP and πQ be the relabellings of π′P and π′Q
by the inverse of ∂c, then we have πP : P ` Γ , πQ : Q ` Γ and πP →c

h πQ.
Every execution sequence of P with label c is an execution sequence of ∂c (P)

with the same label. By lemma 1, π′P enjoys strong subject reduction as of the-
orem 2, hence every run of ∂c (P) labelled by c corresponds to a head reduction
sequence in π′P labelled by c. By relabelling with ∂−1c , every run of P labelled
by c corresponds to a head reduction sequence πP →c

h πQ.

In other words, every execution of a term can be exactly characterized up
to permutation by typing, in the sense that the execution sequences of the term
within the same pairing will be exactly the head reduction sequences of the
associated typing proof. By combining determinisation (definition 6) and strong
subject reduction (theorem 2) we get that, conversely, each regular typing of a
term defines a set of executions stable by permutation.

7 Conclusion and further works

In this work we have developed, in the simple framework of multiplicative CCS,
a precise logical description of executions of processes. A key technical tool is
the use of pairings, by which we separate non-determinism in communication
from the multiplicity of equivalent schedulings; this technique extends well to
more expressive frameworks (full CCS, π-calculus, etc.). The logical interpre-
tation we propose moves beyond the traditional Curry-Howard for concurrency
by accepting non-deterministic terms, albeit with a change of interpretation in
the correspondence. Indeed, the logic we use is well studied and has a wide
range of existing tools (efficient correctness criteria, proof search, etc.) but its
interpretation in our paradigm of proof-as-executions is new.

Logical expressiveness The restriction to purely multiplicative objects, in MCCS
and MLL, lets us concentrate on the precise role of multiplicatives and axioms as
descriptions of how a process interacts with its environment but hides the com-
plexity inherent to the other defining features of concurrent systems like choice,
recursion, name passing, etc. It should be stressed that extending the calculus or
the logic are two different things. Extending the calculus enriches the set of pos-
sible executions, by introducing more subtle synchronization possibilities: choice
allows for conflict between actions, replication allows for arbitrarily large runs
with some uniformity, value passing allows for communication of ground values,
name passing allows the set of synchronizable pairs to evolve along execution.
After determinisation, all these features essentially disappear and deterministic
runs can still be formulated in MCCS. On the other hand, enriching the logic
leads to richer descriptions of the control flow in processes, for instance using a
first order language with predicates to describe properties of continuations.

Causality A crucial feature of our work is the interpretation of axioms as a way
to transfer causality. This idea suggests new ways of analyzing causality in inter-
active systems, and the fact that the flow of causality is often as complicated as
the flow of information. Besides, a similar fact is illustrated by the expressiveness
of solos [15, 3], where communication is used to carry all prefixing information
in processes. Our interpretation may provide a logical insight on this matter.

Cut elimination In the present work, as in proofs-as-programs formalisms, com-
position of processes is represented by the cut rule and execution corresponds to
a particular cut elimination strategy. An interesting direction for future work is
the study of the meaning of full cut-elimination, from the proofs-as-executions
point of view. The operationally relevant part is the elimination of dual actions,

which means executing all internal transitions in advance. This implies mak-
ing choices with respect to synchronisation. In other words, eliminating cuts
in a MLLa proof yields a more deterministic process that can still exhibit the
behaviour given by the considered type.

References

1. S. Abramsky. Proofs as processes. TCS, 135(1):5–9, 1994.
2. E. Beffara. A concurrent model for linear logic. ENTCS, 155:147–168, 2006.
3. E. Beffara and F. Maurel. Concurrent nets: a study of prefixing in process calculi.

TCS, 356(3):356–373, 2006.
4. Emmanuel Beffara and Virgile Mogbil. Proofs as executions. Technical Report

00586459, HAL, July 2012. http://hal.archives-ouvertes.fr/hal-00586459.
5. P. Bruscoli. A purely logical account of sequentiality in proof search. In Peter J.

Stuckey, editor, ICLP, volume 2401 of LNCS, pages 302–316. Springer, 2002.
6. L. Caires and F. Pfenning. Session types as intuitionistic linear propositions. In

CONCUR, volume 6269 of LNCS, pages 222–236. Springer, 2010.
7. V. Danos and L. Regnier. The structure of multiplicatives. Archive for Math.

Logic, 28(3):181–203, 1989.
8. P. Jacobé de Naurois and V. Mogbil. Correctness of linear logic proof structures

is NL-complete. TCS, 412(20):1941–1957, 2011.
9. T. Ehrhard and O. Laurent. Interpreting a finitary π-calculus in differential inter-

action nets. In CONCUR, volume 4703 of LNCS, pages 333–348. Springer, 2007.
10. T. Ehrhard and L. Regnier. Differential interaction nets. TCS, 364(2):166–195,

2006.
11. J.-Y. Girard. Linear logic. TCS, 50(1):1–102, 1987.
12. J.-Y. Girard. Proof-nets : the parallel syntax for proof theory. Logic and Algebra,

180, 1996.
13. M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concurrency.

Journal of the ACM, 32(1):137–161, jan 1985.
14. K. Honda and O. Laurent. An exact correspondence between a typed π-calculus

and polarised proof-nets. TCS, 411(22–24):2223–2238, 2010.
15. C. Laneve and B. Victor. Solos in concert. In J. Wiederman, P. Boas, and

M. Nielsen, editors, ICALP, volume 1644, pages 513–523. Springer Verlag, 1999.
16. H. Mairson and K. Terui. On the computational complexity of cut-elimination in

linear logic. In ICTCS, volume 2841 of LNCS, pages 23–36. Springer, 2003.
17. F. Maurel. Nondeterministic light logics and NP time. In M. Hofmann, editor,

TLCA, volume 2701 of LNCS, pages 241–255. Springer, 2003.
18. K. Mazurak and S. Zdancewic. Lolliproc: to concurrency from classical linear logic

via curry-howard and control. In ICFP, pages 39–50, 2010.
19. D. Miller. The π-calculus as a theory in linear logic: preliminary results. In WELP,

volume 660 of LNCS, pages 242–264. Springer, 1992.
20. R. Milner. Communication and concurrency. Prentice Hall, 1989.
21. V. Mogbil. Non-deterministic boolean proof nets. In M. van Eekelen and O. Shkar-

avska, editors, FOPARA, volume 6324 of LNCS, pages 131–145. Springer, 2010.
22. A. Tiu and D. Miller. A proof search specification of the π-calculus. ENTCS,

138(1):79–101, 2005.
23. G. Winskel. Event structures. In Advances in Petri nets: applications and rela-

tionships to other models of concurrency, pages 325–392. Springer Verlag, 1987.
24. N. Yoshida, M. Berger, and K. Honda. Strong normalisation in the π-calculus. In

LICS, pages 311–322, 2001.

