
On Union-Free and Deterministic Union-Free

Languages

Galina Jirásková 1,⋆ and Benedek Nagy 2⋆⋆

1 Mathematical Institute, Slovak Academy of Sciences,
Grešákova 6, 040 01 Košice, Slovakia

jiraskov@saske.sk
2 Department of Computer Science, Faculty of Informatics,

University of Debrecen, Debrecen, Hungary
nbenedek@inf.unideb.hu

Abstract. The paper continues the study of union-free and determin-
istic union-free languages. In contrast with the fact that every regular
language can be described as a finite union of union-free languages, we
show that the finite unions of deterministic union-free languages define a
proper subfamily of regular languages. Then we examine the properties
of this subfamily.

1 Introduction

The regular languages are the most common, well-known, and well-applicable
languages. They are the simplest languages in the Chomsky-hierarchy, and can
be represented by regular expressions or finite automata. Nowadays, some sub-
families of the regular languages have become important in various fields [4–6].
One of them is the family of union-free languages: those languages described by
regular expressions without the union operation.

Since the Parikh images of regular languages coincide with semi-linear sets, it
is an interesting question if the Parikh images of languages in a subregular class
still contain every semi-linear set. We address this question in Section 3, and
show that only certain special semi-linear sets — the so-called conditional-linear
sets — can be obtained by Parikh images of union-free languages.

The union-free languages are accepted by special nondeterministic finite au-
tomata, the so called one-cycle-free-path automata, in which there is exactly one
cycle-free path from each state to the final state [10]. The deterministic ver-
sions of one-cycle-free-path automata are not as powerful, and define the class
of deterministic union-free languages [8].

⋆ Research supported by the Slovak Research and Development Agency under contract
APVV-0035-10 “Algorithms, Automata, and Discrete Data Structures”.

⋆⋆ Research supported by the TÁMOP 4.2.1/B-09/1/KONV-2010-0007 project. The
project is implemented through the New Hungary Development Plan, co-financed
by the European Social Fund and the European Regional Development Fund.

One of the most important results on union-free languages states that every
regular language can be expressed as a union of a finite number of union-free
languages [9]. Moreover, the minimal number of required union-free languages is
algorithmically computable [3].

Motivated by these results, we address an analogous question for determinis-
tic union-free languages, and provide a negative answer by describing a regular
language which cannot be expressed as a union of a finite number of determin-
istic union-free languages. Our proof uses the representation of deterministic
union-free languages by so-called balloon automata.

We also define the classes dUn as the classes of regular languages that can
be described as a union of n deterministic union-free languages, and show that
they define a proper hierarchy.

Finally, we consider the class dU∗ as the union of classes dUn, and conclude
the paper with some closure properties.

2 Preliminaries

We assume that the reader is familiar with the basic concepts of formal languages
and automata theory. For all unexplained notions, we refer the reader to [7, 11].

For a finite non-empty set of symbols Σ, called an alphabet, Σ∗ denotes the
set of all strings over Σ including the empty string ε. A language over Σ is any
subset of Σ∗. We denote the size of a finite set A by |A| and its powerset by 2A.

A regular expression over an alphabet Σ is defined inductively as follows: ∅,
ε, and a, for a in Σ, are regular expressions. If r and t are regular expressions,
then also (r+ t), (r · t), and (r)∗ are regular expressions. A regular expression is
union-free if no symbol + occurs in it. A regular language is union-free if there
exists a union-free regular expression describing the language.

A nondeterministic finite automaton (nfa) is a quintuple M = (Q,Σ, δ, s, F),
where Q is a finite set of states, Σ is an input alphabet, s is the initial state, F is
the set of accepting states, and δ is the transition function that mapsQ×(Σ∪{ε})
into 2Q. The transition function is naturally extended to the domain Q × Σ∗.
The language accepted by nfa M is L(M) = {w ∈ Σ∗ | δ(s, w) ∩ F 6= ∅}.

AutomatonM is deterministic (dfa) if it has no ε-transitions, and |δ(q, a)| ≤ 1
for all states q in Q and symbols a in Σ. Hence, we consider incomplete dfa’s,
in which some transitions may be undefined.

A path from state p to state q in an nfa/dfaM is a sequence p0a1p1a2 · · · anpn,
where p0 = p, pn = q, and pi ∈ δ(pi−1, ai) for i = 1, 2, . . . , n. The length of this
path is n; note that p0 is a path of length 0. The path is a cycle if n > 0 and
p0 = pn. The path is called a cycle-free accepting path if pn is an accepting
state, and either the path is of length 0, or pi 6= pj whenever i 6= j. An nfa/dfa
is a one-cycle-free-path (1cfp) nfa/dfa if there is a unique accepting cycle-free
path from each of its states. It is known that the family of union-free languages
coincides with the set of languages accepted by 1cfp nfa’s [10]. The 1cfp dfa’s
define the family of deterministic union-free languages [8].

2

The accepting path from the initial state of a 1cfp automaton defines the
backbone of the automaton, and the string accepted by this path is called the
backbone string. The backbone string is contained in each string of the accepted
language in a scattered way, and therefore the shortest string is unique in every
union-free language [10].

3 On Parikh Images of Union-Free Languages

The Parikh image of a string w over an ordered alphabet {a1, . . . , ak} is the
vector Ψ(w) = (m1, . . . ,mk) of non-negative integers such that mi is the number
of occurrences of ai in w. The Parikh image of a language L is the set of vectors
Ψ(L) = {Ψ(w) | w ∈ L}.

A set of the form {α0 + n1α1 + · · · + nmαm | nj ≥ 0 for j = 1, 2, . . . ,m},
where α0, α1, . . . , αm are vectors of non-negative integers, is said to be a linear
set. A semilinear set is a finite union of linear sets. It is well-known that the
Parikh images of regular languages coincide with semilinear sets.

The aim of this section is to analyse the Parikh images of union-free lan-
guages. We show that the Parikh images of union-free languages are somewhere
between linear and semilinear sets. Then we define the so-called conditional-
linear sets, and prove that such sets coincide with the Parikh image of union-free
languages.

Lemma 1. Every linear set is the Parikh image of a union-free language.

Proof. Let a linear set be given by the vectors αj for j = 0, 1, . . . ,m. For each
vector αj , consider a string wj with Parikh image αj . First, construct an nfa
accepting the singleton set {w0}. Now, in the final state, add m disjoint cycles
labelled by strings wj for j = 1, . . . ,m. This results in a one-cycle-free-path nfa
accepting a union-free language with desired Parikh image. ⊓⊔

We have seen that the set of Parikh images of union-free languages is a
superset of linear sets, now we give ‘upper and lower bounds’:

Lemma 2. There exists a union-free language whose Parikh image is not linear.

Proof. Consider the language given by the regular expression a(bb(aab)∗ba)∗a.
Its Parikh image is {(2, 0)+n(1, 3) | n ∈ N}∪{(3, 3)+m(1, 3)+k(2, 1) |m, k ∈ N}.
This set cannot be described by only one linear set. Moreover, this language is
even deterministic union-free. ⊓⊔

Lemma 3. There exists a semilinear set W such that there is no union-free
language L with Ψ(L) = W .

Proof. Consider the semilinear set W = {(3, 1), (4, 0)}. Every language with
Parikh image W is finite and contains at least two shortest strings. ⊓⊔

3

Lemma 4. Let a language be accepted by a one-cycle-free-path nfa that consists
of a backbone and several, up to starting state, disjoint cycles starting and ending
in a state of the backbone; each cycle contains just one state of the backbone.
Then the Parikh image of the language is a linear set.

Proof. The Parikh image of the language is a linear set given by the Parikh
vector of the backbone, and the Parikh vectors of the labels of all the cycles. ⊓⊔

The previous result can be stated as follows: The Parikh image of a union-
free language with star-height 1 is linear. Now we define conditional-linear sets
and show that they coincide exactly with Parikh images of union-free languages.

Definition 1. A set of vectors W is conditional-linear if every vector α is in
W if and only if it can be written in the form

α = α0 + δ1n1α1 + δ2n2αi + · · ·+ δmnmαm,

where nj are non-negative integers and αj are fixed vectors of non-negative in-
tegers, and δi are conditional coefficients defined in the following way: δ1 = 1,
and if i > 1, then δi is either without any condition and equals 1, or depends
on the coefficient of some αj with j < i, and in such a case it is equal to 1 if
δjnj > 0 and to 0 if δjnj = 0:

δi = 1, if there is no condition for αi,

δi =

{

1, if δjnj > 0,
0, if δjnj = 0,

if αi depends on the coefficient of αj .

Having δi = 1 for all i without any conditions, the linear sets can be obtained.
Thus conditional-linear sets are a kind of extension of linear sets. Moreover,
all conditional linear sets are semilinear; however not every semilinear set is
conditional linear. In a conditional-linear set some vectors αi have conditions,
i.e., they can be present only if another vector with a smaller index is present.

Theorem 1. Conditional-linear sets coincide with the Parikh images of union-
free languages.

Proof. Let a union-free language be given by a regular expression

x1(r1)
∗x2 · · ·xn(rn)

∗xn+1,

where the parts xi are star-free; it is allowed that xi = ε for some i. Let α0

be the Parikh vector of x1x2 · · ·xn+1, that is, of the backbone string; these
symbols are not under any Kleene-star in the tree for the expression. Next,
let αi be the Parikh image of the string obtained from the child-subexpression
ri by substituting ε for the parts under Kleene-star inside. These symbols are
below exactly one Kleene-star in the tree. The obtained vectors αi are without
conditions, because their mother expression is the original expression, so let
δ1 = · · · = δn = 1.

4

Now, for any subexpression r∗ which has not been considered yet, using the
order of subexpressions as they are in the tree form of the regular expression
starting from the top, let the next vector αi be the Parikh image of the symbols
under this Kleene-star using ε for its child-subexpressions of the form p∗. Let
the conditional coefficient δi depend on the coefficient of the vector αj where j is
the index of the mother subexpression. Since the union-free expression contains
finitely many stars this procedure terminates after finitely many steps.

Next, let a conditional-linear set W be given by its vectors and δ’s. Con-
struct a one-cycle-free-path nfa with Parikh image W as follows. Let A be the
automaton accepting only a backbone string with Parikh vector α0. Consider
every vector αi which is without condition, that is, δi = 1 independently on any
other values. Add a cycle labelled by a string with Parikh vector αi starting and
ending at the same state of the backbone of A.

Then consider each other vector αi in order of increasing i. Let the condition
for this vector depend on the coefficient of a vector αj . The cycle for vector αj

is already included in the automaton, since j < i. Add new states to form a
subcycle labelled by a string with Parikh vector αi in a state of the cycle for αj ;
it always can be done by adding new states and ε-transitions to the cycle for αj .
Finally, after adding subcycles for all the vectors, we get a one-cycle-free-path
nfa that accepts a language with Parikh image W . ⊓⊔

4 Representation of Deterministic Union-Free Languages

Let us turn our attention to deterministic union-free languages defined as lan-
guages accepted by deterministic one-cycle-free-path dfa’s [8].

First we fix further terms used in the paper. A state p of a 1cfp automaton
is a branching state if at least two transitions are defined from state p, thus if
δ(p, a) = q1 and δ(p, b) = q2, where q1, q2 are states of the automaton and a, b

are symbols in the input alphabet such that a 6= b. Since the automaton is a
1cfp automaton, we must have q1 6= q2. The accepting state is a branching state
if there is at least one transition defined from it. If p is not the accepting state,
then exactly one transition from p lies on the cycle-free accepting path from
state p. All the other transition defined in state p start different cycles. All the
transitions in the accepting state start new cycles.

Let a path paq contain a transition (p, a, q) starting a cycle. In the case p = q,
the cycle has length 1. Otherwise, let us consider the cycle-free accepting path
from state q. This path must contain state p, thus the path is of the form qz1pz2,
where z1 ∈ Σ(QΣ)∗ and z2 ∈ (ΣQ)∗. The cycle paqz1p is a starting cycle at
state p. As an example, consider the cycles 4a6b4 and 4c2a3a4 that are starting
cycles at state 4 in Fig. 2 (left).

Cycles may only start at branching states. The state where a cycle contains
a previously (surely) visited state is the returning state of the cycle. A cycle
may return to a previously (surely) visited state in various ways: A cycle may
return at the same state as it starts like the cycle 4a6b4 in Fig. 2 (left), or a

5

Fig. 1. A toydog from long balloon.

cycle may return to another state like the cycle 2b0a1a2 in Fig. 2; here state 0
is the returning state.

Since a one-cycle-free-path dfa over a unary alphabet cannot have a branch-
ing state, except the accepting state, the automaton may only have one cycle
starting at the accepting state. Consequently, a deterministic union-free lan-
guage over a unary alphabet either contains at most one string or is of the form
am(an)∗ for some positive integers m,n. The other direction also holds: All these
languages are accepted by 1cfp dfa’s. Therefore, the unary case seems to be not
so interesting. In what follows, we always assume that an alphabet has at least
two symbols.

There can be several one-cycle-free-path dfa’s for the same language. One
of them plays an important role for us. We call it a balloon automaton. This
name comes from the toys made by clowns for children from long balloons; for
example, toydog (see Fig. 1).

Now we give the definition of a balloon automaton. We use balloon automata
later to get regular expressions for deterministic union-free languages.

Definition 2 (Balloon DFA). A backbone 1cfp dfa, that is, a dfa consisting
of states of the backbone connected through the symbols of the backbone string is
a balloon dfa. If A is a balloon automaton, then any extension of A obtained in
the following way is a balloon automaton:

– pick a state p of A and a string a1 · · · ak of length k with k ≥ 1 such that
there is no transition on a1 from p in A;

– add k − 1 new states p1, . . . , pk−1 to A connected through transitions

p
a1−→ p1

a2−→ p2
a3−→ · · ·

ak−1

−→ pk−1

ak−→ p.

Thus a deterministic one-cycle-free-path automaton is called a balloon dfa,
if every starting cycle returns at the same (branching) state as it starts. Fig. 2
shows a one-cycle-free-path dfa and the corresponding balloon automaton.

The following result helps us to characterize deterministic union-free lan-
guages by regular expressions.

6

b

a

b

a

a b

a

a

0 1 2 3 4 5
a a a a

a

b

b

6

b

a

a

0 1 2 3 4 5
a a a a

a

b

b

b c
c

6

a

c

a

a

a

c

ca

Fig. 2. A 1cfp dfa (up) and the corresponding balloon automaton (down).

Theorem 2. Every deterministic union-free language is accepted by a balloon
dfa.

Proof. Let a deterministic union-free language L be given by a 1cfp dfa A. We
are going to construct a regular expression and a balloon automaton for L in
parallel from 1cfp dfa A. We use mixed-form expressions that contain symbols
and names of the states of the automaton alternatively. We start with the ex-
pression r0 = sx1q1x2 · · · qm−1xmf that contains the symbols of the backbone
string x1x2 · · ·xm and the names of the states s, q1, . . . , qm−1, f that occur on
the backbone. All the states in expression r0 are pairwise distinct.

As an example, consider the 1cfp dfa shown in Fig. 2. In this example, we
have r0 = 0a1a2a3a4b5.

The construction of the balloon automaton starts with the deterministic au-
tomaton A0 that accepts only the backbone string: accordingly, it has states
s′, q′1, . . . , q

′
m−1, f

′.
We continue recursively while the automaton has branching states, that is,

states that go to at least two distinct states by some symbols.
If the initial automaton A has no branching state, then it only accepts the

backbone string, and it is a balloon automaton.

7

A0

0 1 2 3 4 5
a a baa

0 1 2 3 4 5b

6

a
c

a

a

a
c

A

a a a

b a

a

a

b
a c

a

2

a ab

a

b

a

b

a

0 1 2 3 4 5
a a a a

a

b

b

b c
c

6

A

a

0 1 2 3 4 5a a a a

a

b

b

6

b

a

a

a

c

a

a

a
c

ca

A

0 1 2 3 4 5a a a a

a

b

b

6

c
a

A1

3

b

a

a b

a

a b

a

Fig. 3. The construction of a balloon automaton.

Assume that our current expression is ri, and our current automaton is Ai.
Construct expression ri+1 by modifying expression ri as follows. Choose the last
branching state p that has not been considered yet, that is, the branching state
that has the last occurrence in the mixed form ri among the not yet considered
mixed states. Put a pair of brackets into expression ri to the points immediately
after each occurrence of p. Put a star after the brackets, that is, use the following
form:

u1p()
∗u2 · · ·ump()∗um+1,

where p has m occurrences in ri, and uj’s do not contain any p. Then put into
these brackets as many sequences ()∗ as many starting cycles exist at state p.
After this, write into these brackets the mixed form expressions for the starting
cycles using all the starting branches at state p without symbol p. The resulting
expression is ri+1. If only one cycle starts from a branching state, then the form
((z)∗)∗ can be simplified to (z)∗, where z denotes the mixed form representing
the cycle. In our example, we have

r1 = 0a1a2a3a4((a6b)∗(c2a3a)∗)∗b5,

r2 = 0a1a2a3(c2a)∗a4((a6b)∗(c2a3(c2a)∗a)∗)∗b5,

r3 = 0a1a2(b0a1a)∗a3(c2(b0a1a)∗a)∗a4((a6b)∗(c2(b0a1a)∗a3(c2(b0a1a)∗a)∗a)∗)∗b5.

8

Notice that after each step, the number of occurrences of p remains m; and all
the states which occur in, say, k cycles starting from p have km new occurrences.
Moreover, since the automaton is a 1cfp dfa, there are no states appearing in
the new brackets which have already been considered.

Now construct automaton Ai+1 corresponding to expression ri+1 by modi-
fying automaton Ai. Extend automaton Ai by cycles corresponding to the new
subexpressions (z)∗; the ones that are not in ri, but which are in ri+1. For each
of these new subexpressions, add a new cycle to every copy of state p′ starting
and ending in this state (in a similar way as we draw the backbone). In this
step, we use various copies of the original states. Fig. 3 shows automata Ai in
our example.

Repeat the above procedure until no more branching states exist. Since there
are only finitely many branching states in the given automaton, this procedure
terminates after finitely many steps. Let rn be the resulting expression. After
deleting the names of the states in rn, we get a union-free expression which de-
scribes language L. The resulting automaton An accepts language L. Moreover,
after each step, automaton Ai is a balloon automaton. ⊓⊔

The proof of the previous theorem gives also a regular expression for every
one-cycle-free-path dfa. By this construction, we can characterize the determin-
istic union-free languages by regular expressions as follows. Every deterministic
union-free language can be expressed by a regular expression of the following
form:

(i) there is at most 1 symbol that continues the expression “in the same level”;
(ii) the other symbols may enter for brackets: if there is one such symbol, then

we use b: (b · · ·)∗; if there are two or more symbols, then we use b1, b2, . . . , bℓ:
((b1 · · ·)∗(b2 · · ·)∗ · · · (bℓ · · ·)∗)∗).

On the other hand, every regular expression that satisfies (i) and (ii) describes
a deterministic union-free language since a 1cfp dfa for such a language can be
constructed by our proof.

We conjecture that the balloon dfa has maximal number of states among all
the incomplete dfa’s that accept the language and for each of its state there is
exactly one accepting cycle free path.

A rough idea for the proof of the conjecture could be the following: By the
construction of the balloon automata for a 1cfp dfa, the number of its states is
not smaller than the number of the states of the original automaton. Moreover,
the balloon automaton cannot be extended further by states. Since it is deter-
ministic, by adding a new state, some new transitions are needed. This modifies
the backbone or a cycle, or creates a new cycle; thus modifies the accepted
language.

One of the most important complexity measures of regular languages is the
star height that is connected to the number of nested stars in the regular ex-
pressions [11]. To measure the complexity of balloon automata, we define the
following concept.

9

Definition 3 (Cycle Depth of Balloon Automata). The cycle depth of a
balloon automaton is the maximal number of its nested cycles.

The cycle depth of a balloon automaton is 0 for cycle-free automata. For
example, the depth of the automaton A0 in Figure 3 is 0. Such automata only
accept singleton languages. The cycle depth of A1, A2, A3 is 1, 2 and 3, respec-
tively.

The cycle depth of the balloon automata and the (nested) star-height of the
obtained regular expressions have a strong relation: Actually, if expressions of the
form ((r1)

∗(r2)
∗)∗ are rewritten of the form (r1 + r2)

∗, then this new expression
has the same star height as the cycle depth of the original balloon automaton.

A cycle pzp of a 1cfp dfa, where z ∈ Σ(QΣ)∗, is called an inner cycle if there
is no branching state in z. For example, the cycle 2b0a1a2 in Figure 2 is an inner
cycle. In balloon automata, these cycles are at the deepest level. For example,
the cycles of length 2 of A2 in Figure 3 are inner cycles.

We have some important observations about graphs of 1cfp deterministic
automata, in particular, we formulate them for balloon automata.

Lemma 5. Let A = (Q,Σ, δ, s, f) be a 1cfp dfa accepting a non-empty language.
Then

1. The branching factor at each state of A is at most |Σ|.
2. If the cycle depth of a balloon automaton is zero, then there is a state, in

which at most one symbol in Σ defines a transition; the transition on the
other symbols are undefined.

3. If the cycle depth of a balloon automaton is at least one, and the length of
the/an inner cycle is at least two, then there is a state where only one of the
symbols defines a transition.

Proof. 1. In every state of a dfa, at most |Σ| transitions may be defined.
2. Balloon automata with cycle depth zero accept exactly one string, and all

the transitions in the final state f are undefined.
3. If the cycle depth of a balloon automaton is one, then there is a cycle

starting from a state on the backbone with, by our assumption, length at least
two. This means that after the first transition of this cycle, there is a state that
is outside of the backbone. In this inner state, exactly one transition is defined.

Now assume that the cycle depth of a balloon automaton is at least two.
The argument is quite similar to the previous case. In a balloon automaton,
one transition could go to the direction of the final state; the first symbol of
the unique cycle-free accepting path gives this transition. All the other symbols
may start a new cycle going more deeply in the cycle depth of the automaton.
Consider the/an inner cycle; its length is at least two by the assumption of the
lemma. In this cycle, there is no new starting cycle. Therefore, in the/an inner
state, there exists only one transition, which starts the cycle-free accepting path
from that state. ⊓⊔

We conclude this section with the following result showing that the class of
deterministic union-free languages is not closed under basic regular operations.

10

Theorem 3 (Closure properties). The class of deterministic union-free lan-
guages is not closed under boolean operations, concatenation, square, star, re-
versal, cyclic shift, homomorphism, and inverse morphism.

Proof. For each operation, we present deterministic union-free languages such
that the language resulting from the operation is not deterministic union-free.
Recall that if a language has at least two shortest strings, or if its minimal dfa
has at least two final states, then the language is not deterministic union-free.

Complement: {ε}c = Σ+,
Union: {a} ∪ {b} = {a, b},
Intersection: b∗ab∗ ∩ a∗ba∗ ⊆ {ab, ba} ∪ {a, b}≥3

Symmetric difference: {a} ⊕ {b} = {a, b},
Cyclic shift: Shift({ab}) = {ab, ba},
Shuffle: {a} {b} = {ab, ba},
Inverse morphism: h−1({aa}) = {aa, ab, ba, bb}
h(a) = h(b) = a

For square and concatenation, consider the deterministic union-free language
L1 accepted by the 1cfp dfa shown in Fig. 4 (left). For reversal, consider the
deterministic union-free language L2 accepted by the 1cfp dfa shown in Fig. 4
(middle), and for star, the deterministic union-free language L3 accepted by the
1cfp dfa shown in Fig. 4 (right). The minimal dfa’s for L2

1, L
R
2 , and L∗

3 have two
final states, and therefore the resulting languages are not deterministic union-
free.

a a

b b

a

b
b

a a

b aL L L
1 2 3

Fig. 4. The 1cfp dfa languages L1, L2, L3 such that L2

1, L
R

2 , and L∗

3 are not deterministic
union-free.

For homomorphisms, consider the deterministic union-free language ab∗ac∗

and homomorphism h(a) = a, h(b) = ab, h(c) = c. Then h(ab∗ac∗) = a(ab)∗ac∗,
the minimal dfa for which has two final states. ⊓⊔

5 Finite Union of Deterministic Union-Free Languages

Every regular language can be expressed as the union of a finite number of
union-free languages [9]. This is one of the most important results on union-free
languages. We can ask whether or not a similar result also holds for deterministic
union-free languages. The next theorem provides a negative answer, and states
one of the main results of this paper.

11

Theorem 4. The language L described by the regular expression ((a+b)(a+b))∗

cannot be expressed as a union of a finite number of deterministic union-free
languages.

Proof. The language L contains exactly the strings over {a, b} of an even length.
Therefore, each string over {a, b} is a prefix of infinitely many strings in L.

Assume for the contradiction that L is given as a finite union of some de-
terministic union-free languages. Let us consider the balloon automata for these
languages. None of these automata has a cycle of length one because otherwise
this loop would allow to pump some strings of the accepted language symbol by
symbol which would lead to the acceptance of strings of an odd length.

Now let us order all the balloon automata in a list A1, A2, . . . , Aℓ. By Lemma
5, each of these automata contains at least one state, in which at most one symbol
defines a transition. Moreover, such a state is reachable from every state of a
balloon automaton: If there is no cycle at the final state, then the final state is
such a state. If there is a cycle starting at the final state, then there is an inner
cycle here with at least one such state. And since this state is reachable from
the final state, it can be reached from each state of the automaton. Let qi refer
to such a state in automaton Ai.

Let us construct a string w in the following way: Let the prefix of w be the
string w1 that leads to the state q1 in automaton A1. Then let the next symbol
of w be the one for which there is no transition from q1. Now let i = 2, and hence
the next automaton in the list is considered. Let us continue the construction of
w by appending wi to it, where wi is defined as follows. If the already constructed
initial part of w cannot be processed by the automaton Ai, then wi is the empty
string. Elsewhere let q′i be the state reached by automaton Ai after reading w.
Then wi is the string that leads automaton Ai from state q′i to state qi. The
next symbol of w is the/a symbol, for which there is no transition from qi in Ai.
Then, we increase i and consider the next automaton in the list until all of them
are considered.

Finally, we add one or two symbols to the end of w, depending on length of
w; for example, we add a if the length of w is odd, and aa in the other case.
The constructed string has an even length, and therefore it is in L. However,
our construction proves that no automaton in our list accepts the constructed
string, which is a contradiction to our assumption that L is expressed as the
union of languages L(Ai). The theorem is proved. ⊓⊔

The proof also works for any language L that has the the following properties:

– the minimal complete dfa for the language has no dead state, that is, each
string w in Σ∗ is a prefix of a string in L;

– L contains only strings of an even/odd length.

To conclude the paper, let us consider the finite unions of deterministic union-
free languages.

12

Definition 4. For every positive integer n, we define dUn as the family of lan-
guages that can be expressed as a union of n deterministic union-free languages.
Furthermore, let

dU∗ =

∞
⋃

i=1

dUi.

The following result shows that the classes dUn define a proper hierarchy.

Theorem 5. For every n, there exists a language Ln such that Ln ∈ dUn \ dUn−1.

Proof. Let Ln = {aibn−i | i = 1, 2, . . . , n} be a language consisting of n strings
over {a, b} of length n. Then Ln is accepted by the union of n backbone au-
tomata. On the other hand, this language cannot be accepted by the union of
any n − 1 deterministic one-cycle-free-path automata because otherwise one of
them would accept a language containing at least two shortest strings. ⊓⊔

Now we give some non-closure properties of the language classes dUn.

Theorem 6. The classes dUn are not closed under union, concatenation, square,
cyclic shift. If n ≥ 4, then the class dUn is not closed under star.

Proof. For n = 1, that is, for the class of deterministic union-free languages,
we have already proved these non-closure properties. Otherwise, consider the
languages K = {bi | 1 ≤ i ≤ n} and L = {aib | 1 ≤ i ≤ n} in dUn. The union of
these languages, as well as their concatenation, is a finite language, however, it
contains more than n strings. The square of the language L, as well as its cyclic
shift, is a finite language containing more than n strings.

The star of the language aa+ ab+ ba+ bb is not in dU∗ by Theorem 4, and
therefore the last statement of the theorem holds. ⊓⊔

The next theorem gives some closure properties of the class dU∗.

Theorem 7. The class dU∗ is closed under union, and it is not closed under
star, intersection, and complement.

Proof. For star, consider the language {ε, aa, ab, ba, bb} which is in dU5. After
applying the star operation, we get the language ((a+b)(a+b))∗. By Theorem 4,
this language is not in dU∗.

For intersection, consider the languagesK = ((b∗a)2)∗b∗ and L = ((a∗b)2)∗a∗,
the first of which contains the strings with an even number of a’s, while the sec-
ond one consists of strings with an even number of b’s. The proof of Theorem 4
works for the language K ∩ L as well since every string in {a, b} is a prefix of a
string in K ∩ L, and K ∩ L contains only strings of an even length.

Hence the class dU∗ is not closed under complement because otherwise, since
it is closed under union, it would be closed also under intersection. ⊓⊔

We leave as an open problem whether or not the class dU∗ is closed under
other regular operations.

13

6 Conclusions

We examined in detail the classes of union-free and deterministic union-free
languages. First we studied the Parikh images of union-free languages, and we
proved that they coincide with so-called conditional-linear sets.

Then we defined balloon automata for deterministic union-free languages,
and we used them to get regular expressions for deterministic union-free lan-
guages, as well as to prove one of the main results of our paper. This result
shows that the finite unions of deterministic union-free languages describe a
proper subfamily of regular languages. We also investigated the properties of
classes represented as a finite union of deterministic union-free languages.

Some closure properties remain open. The characterization of the subregular
language class containing the regular languages that cannot be expressed as a
finite union of deterministic union-free languages is an interesting further task.
Providing minimal 1cfp dfa for deterministic union-free languages, and prov-
ing/disproving our conjecture about the maximality of the balloon automata
seem to be interesting challenges as well.

References

1. http://www.funstufffordogs.com/Qstore/Qstore.cgi?CMD=

011&PROD=1296626935&PNAME=Balloon+Animal+Dog+Toy+-+Dog
2. http://www.facebook.com/pages/Black-Balloon-Shop-baguio-Only/

183737488331381
3. Sergey Afonin, Denis Golomazov: Minimal Union-Free Decompositions of Regular

Languages. Language and Automata Theory and Applications, LNCS 5457 (2009),
83–92.

4. Jürgen Dassow: Contextual Grammars with Subregular Choice. Fundamenta In-
formaticae 64 (2005), 109–118.

5. Jürgen Dassow, Florin Manea, and Bianca Truthe: Networks of Evolutionary Pro-
cessors with Subregular Filters. Language and Automata Theory and Applications,
LNCS 6638 (2011), 262–273.

6. Henning Bordihn, Markus Holzer, Martin Kutrib: Determination of finite automata
accepting subregular languages. Theoretical Computer Science 410/35 (2009),
3209–3222.

7. John E. Hopcroft and Jeffrey D. Ullman: Introduction to Automata Theory, Lan-
guages and Computation. Addison-Wesley Publishing Company, Reading MA,
1979.

8. Galina Jirásková and Tomáš Masopust: Complexity in union-free regular lan-
guages. International Journal of Foundations of Computer Science 22 (2011) 1639–
1653.

9. Benedek Nagy: A normal form for regular expressions. In: Supplemental Papers
for DLT’04 (eds: C. S. Calude, E. Calude, M. J. Dinnen), CDMTCS, Auckland,
2004.

10. Benedek Nagy: Union-free regular languages and 1-cycle-free-path-automata. Publ.
Math. Debrecen 68 (2006) 183–197.

11. Yu, S.: Chapter 2: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Hand-
book of Formal Languages - Vol. I, pp. 41–110. Springer, Heidelberg (1997)

14

