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Abstract. We give a characterisation of languages on infinite alphabets in a vari-
ant of nominal regular expressions with permutations (p-NREs). We also intro-
duce automata with fresh name generations and permutations (fp-automata), in-
spired by history-dependent automata (HDAs) and fresh-register automata. Note-
worthy, permutations require to deal with dynamic context-dependent expres-
sions. Finally, we give a Kleene theorem for p-NREs and fp-automata to formally
characterise languages on infinite alphabets.

1 Introduction

The study of languages on infinite alphabets has been pushed by the need of formalising
data structures built on top of infinite domains of values [16]. In this context, it is nat-
ural to appeal to the theory of automata [11, 19, 3, 22] operating on a countably infinite
alphabet N of names to express languages of interest such as L1 below, see [22],

L1 = {n1 . . .nk ∈N ∗ ∣∣ ∀i .1≤ i < k .ni 6= ni+1}

In [13], we extended this line of investigations to languages where words do not only
consist of names but also of binders (e.g. lambda-calculus terms). In particular, [13]
studies a notion of regular expression for words with binders and the associated notion
of finite automata, aiming at applications to the design and analysis of programming
languages (as in [20] or [18]) or to verification and testing.

Here, we move back to languages of words without binders and apply the techniques
of [13] in order to obtain a novel notion of regular expression for languages on infinite
alphabets. While being built from concatenation, sum, and Kleene star in the usual way,
the nominal regular expressions introduced in this paper may also contain a binder

〈nne〉mn (1)

Intuitively, 〈nne allocates a fresh resource within ne, whereas 〉mn deallocates it. The
crucial new ingredient, which allows us to capture for example the language L1 above,
is that 〉mn permutes n and m before deallocating n. For example, we can read

〈m (〈n n〉mn )∗ 〉mm (2)

as follows. First 〈m allocates a name m, then 〈n allocates a fresh (i.e. different) name
n. Now the permutation specified by 〉mn makes sure that it is the first name m that is
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deallocated and the second name n that is retained, before looping back to the beginning
as specified by the Kleene star ∗.

Note that permutations have a slightly subtle effect on concatenation. For example,
in 〈m 〈n n〉mn ◦ne〉mm, due to the permutation specified by 〉mn , the name m in ne semanti-
cally represents n. So it will take some care, in § 3, to describe how nominal regular
expressions give rise to nominal regular languages. In § 4 we introduce the correspond-
ing notion of automata with fresh-name generation and permutations (fp-automata).
Like HD-automata they have allocation transitions, corresponding to 〈n, but unlike HD-
automata permutations only appear in special deallocation transitions corresponding
to 〉mn . In § 5 we prove a Kleene-type theorem stating that the languages accepted by
fp-automata are precisely the nominal regular languages.

Finally, we argue that the work nominal languages with binders also sheds new light
on well-established work on languages on infinite alphabets.

Related Work Apart from languages on infinite alphabets, our research draws on HD-
automata [17, 14] and nominal sets [9], as well as on the recent confluence of these
three areas in [6, 22, 3, 8, 4, 13]. Moreover, the way we deal with scope and binders is
related to nested words [1] and automata working on lambda-calculus terms [21].

Although our paper does neither require nor use the theory of nominal sets, the
work on nominal sets does suggest to view automata as (co)algebras in the category of
nominal sets. As nominal sets are themselves permutation algebras one would expect
regular expressions, as it is the case in our work, to contain permutations, see [15].

A form of regular expressions, called UB-expressions, for languages on infinite al-
phabets investigated in [10]. There it is shown that UB-expressions are as expressive as
finite-state unification based automata (FSUBA), which are somewhat weaker than the
finite-memory automata (FMA) of [11]. In a nutshell, FSUBA do not account for fresh-
ness (they can, for example, accept the first but not the second language of Example 6
in § 3.2). Moreover, UB-expressions do not have permutations, although their device of
labelling the Kleene-star allows them to accept L1 in a similar fashion to ours.

2 Motivating examples: languages on infinite alphabets

Languages on infinite alphabets can suitably formalise data structures on infinite do-
mains (take data words in [16, 5] as an example). In this context, typical languages
consist of finite words — that is finite sequences of symbols — whose symbols are
possibly drawn from an infinite set. This is illustrated in the next example.

Example 1 ([22]). Assume that a,a′,a1, . . . range on an infinite set A. The language

L1
def
= {a1 · · ·ak

∣∣ k ≥ 0 ∧ ∀i ∈ {1, . . . ,k−1}.ai 6= ai+1}

consists of finite sequences on A in which all two consecutive letters are different. �

In general, the infinite alphabet has a very simple structure that permits to test just
for equality or inequality of symbols (see e.g., [16]) as in Example 1 (in recent work this
is being reconsidered, see § 6 for a discussion). For practical reasons, it is sometimes
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convenient to consider words whose letters can be taken either from an infinite alphabet
or from a disjoint finite set, as in Example 2.

The next example shows how languages on infinite alphabets could be used to repre-
sent computations where resources have to be acquired and released before their usage.

Example 2. Assume that a,a′,a1, . . . range on an infinite set A while α (for “acquire”)
and ρ (“for release”) are two distinguished symbols not in A. The language

Lαρ

def
= αA∗ρ∪

⋃
a 6= a′

{
α a · · ·a︸ ︷︷ ︸

i≥0 times

α a1 · · ·a j ρ a′ · · ·a′︸ ︷︷ ︸
h≥0 times

ρ
∣∣ j≥ 0 ∧ ∀1≤ r≤ j.ar ∈{a,a′}

}
represents the executions of a process that acquires, uses, and then releases either one
or two resources. �

3 Nominal regular expressions with permutations

In order to characterise languages on infinite alphabets, we extend regular expressions
with name-abstraction and permutation. Let N be an infinite set of names and S a finite
set of letters. We assume that N and S are disjoint. A language on N ∪S is a subset of
(N ∪S)∗, namely a collection of words on infinite alphabets.

The nominal regular expressions with permutations (p-NREs) are given by

ne ::= 1 | 0 | n | s | ne+ne | ne◦ne | ne∗ | 〈nne〉mn
where 1 denotes the singleton with the empty word, 0 denotes the empty language, n
ranges over N , s ranges over S ; the operators +, ◦, and ∗ are as the classical operators
of regular expressions, while 〈nne〉mn is a binder. Note that the superscript m on the
closing bracket is not bound unless it is the same as the subscript. Closed and bound
occurrences of names are defined in the natural way and we call closed any p-NRE with
no occurrence of free names.

Intuitively, 〈nne allocates a fresh resource within ne; as in nominal calculi, this is
rendered by declaring a fresh local name n. Novel is here that 〉mn specifies a permutation
when disposing the resource denoted by n, to the effect that to the right of 〉mn every
syntactic occurrence of m is semantically read as n. One can think of n and m as registers
whose contents are swapped when n is deallocated. To make this work, we assume
that the superscript m on 〉mn is in the syntactic scope of some 〈m. For example, the p-
NRE 〈n〈mnm〉nmn〉nn is acceptable while 〈n〈mnm〉lmm〉nn is not, because the subexpression
〈mnm〉lm is not within a scope of a 〈l, and the rightmost m is outside of the scope of 〈m.

We aim to contribute to a foundational theory of interactions based on nominal cal-
culi. This requires to consider interactions with an environment that can be seen as a
resource handler for requiring and releasing resources. In this respect, the role of the
execution environment can be suitably represented using contexts. In our theory, con-
texts capture two fundamental notions: one notion is the fresh name generation (read
the environment) and the other is the permutation action (change the environment). To
generate a fresh local name, we have to know which names are already in the envi-
ronment. And, to leave the permutation result, we must update the environment which
could be different from the original environment.
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Our contexts are finite lists of names in N . For a p-NRE ne, we call a triple L ‡
ne ‡ R an expression-in-contexts, where L and R are respectively called pre- and post-
context. Intuitively, L ‡ ne ‡ R is an expression ne that is interpreted in the pre-context
L and modifies it to the post-context R.

3.1 Preliminaries

Given a function f , the update f[a 7→b] extends dom( f ) to dom( f )∪{a} with f (a) = b;
⊥ is the empty map. Let L, M, . . . range over lists of N and let lth(L) be the length of
the list L. The empty list is denoted as []. For n ∈N , write n#L (read “n is fresh for L,”)
when n 6= l for any element l in L and write L@n to be the list appending n to the tail
of L. We consider only lists with no repeated elements. Given a list L we may abuse the
notation and denote its underlying set by L.

The transposition of n and m, denoted by (m n), is the permutation that swaps m
and n and is the identity on any other names. Given two lists of the same length k, say
N = [n1, . . . ,nk] and M = [m1, . . . ,mk], let NBM be the bijection from N to M such that

NBM : ni 7→ mi for each i ∈ {1, . . . ,k}
and define the bijection π[NBM] on N as

π[NBM](x)
def
=


NBM(x), if x ∈ N
NCCM(x), if x ∈M \N
x, if otherwise

where NCCM(x) is a function from M \N to N \M recursively defined as follows:

NCCM(mi)
def
=

{
(NBM)−1 (mi), if (NBM)−1 (mi) 6∈ N \M
NCCM(m j), if (NBM)−1 (mi) = m j for some j 6= i

For example, if M = [b,c,d] and N = [a,b,c], we have π[NBM] as follows:

N

π[NBM]

��

· · · x_

��

· · · a_

��

b_

��

c_

��

d_

��
N · · · x · · · b c d a

where the target of d (defined by NCCM) is traced by going backwards along � // and
the dashed lines.

We define the action of a permutation π on p-NREs and on lists as follows. For a
p-NRE ne, the permutation action of π on a p-NRE ne, denoted as π ·ne, is

1. π ·1 = 1; π ·0 = 0; π ·n = π(n); π · s = s
2. π · (ne1 +ne2) = (π ·ne1)+(π ·ne2)
3. π · (ne1 ◦ne2) = (π ·ne1)◦ (π ·ne2)
4. π · (ne∗) = (π ·ne)∗
5. π · (〈nne〉mn ) = 〈π(n)(π ·ne)〉π(m)

π(n)

while, the permutation action of π on L = [l1, . . . , lk] is π ·L = [π(l1), . . . ,π(lk)].



Languages on Infinite Alphabets with Nominal Regular Expressions 5

3.2 From p-NREs to languages on infinite alphabets

The interpretations of p-NREs depend on pre- and post-contexts, therefore we introduce
the set of rules in Fig. 1.

L ‡ ne1 +ne2 ‡ R
(+̂1)

L ‡ ne1 ‡ R
L ‡ ne1 +ne2 ‡ R

(+̂2)
L ‡ ne2 ‡ R

L ‡ ne1 ◦ne2 ‡ R
(◦̂)

L ‡ ne1 ‡ L L ‡ ne2 ‡ R

L ‡ ne∗ ‡ R
(∗̂)

L ‡ ne◦ · · · ◦ne︸ ︷︷ ︸
k times

‡R

L ‡ 〈nne〉mn ‡ R m 6= n
(♦̂6=)

(L@?) ‡ (n ?) ·ne ‡ (((m ?) ·R)@m)

L ‡ 〈nne〉mn ‡ R m = n
(♦̂=)

(L@?) ‡ (n ?) ·ne ‡ (R@?)

Fig. 1. Rules computing expressions-in-contexts

Given a closed p-NRE ne, we start applying the rules to the expression-in-contexts
[] ‡ ne ‡ []. In (∗̂) in Fig. 1, k is a natural number; if k = 0, the conclusion of the rule is
L ‡ 1 ‡ R. Also, in (♦̂=) and (♦̂6=), ? denotes a name fresh for L and for R.

Fact 1 For any derivation of L ‡ ne′ ‡ R from an expression-in-contexts [] ‡ ne ‡ [] using
the rules in Fig. 1 we have that

– there is a permutation π such that R = π ·L (and hence lth(L) = lth(R))
– names in L are pairwise disjoint (and similarly for R)

Example 3. Application of the rules in Fig. 1 to 〈m〈nm〉mn 〈nnm〉nn〉mm gives:
[] ‡ 〈m〈nm〉mn 〈nnm〉nn〉mm ‡ []

(♦̂=)
[a] ‡ 〈na〉an〈nna〉nn ‡ [a]

(◦̂)
[a] ‡ 〈na〉an ‡ [a]

(♦̂ 6=)
[a,b] ‡ a ‡ [b,a]

[a] ‡ 〈nna〉nn ‡ [a]
(♦̂=)

[a,c] ‡ ca ‡ [a,c]
(◦̂)

[a,c] ‡ c ‡ [a,c] [a,c] ‡ a ‡ [a,c]

the derivation tree is
read from top to bot-
tom

Note that b and c are distinct from a, but b may be the same as c (Fact 1). Also, in
the first step of the derivation, we can take n instead of a as a fresh name, yielding
[n] ‡ 〈mn〉nm〈mmn〉mm ‡ [n] as the conclusion. �

By the rules of Fig. 1, there may be more than one derivation tree for [] ‡ ne ‡ [] (one
can choose either of the branches in a sum or unfold any number of times a Kleene-star).
We associate a language to each derivation tree T . This is done by applying the rules in
Fig. 2, starting from the leaves of T and going upwards to the root. Finally, we define
the language of ne to be the union of the languages of all derivation trees for ne, and
call such languages nominal regular.

To define the rules in Fig. 2, we extend the notation of expressions-in-contexts to
languages and write e.g., L ‡ L(ne) ‡ R. Rules (1), (0), (n) and (s) yield the natural
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L ‡ 1 ‡ R
(1)

L ‡ {ε} ‡ R
L ‡ 0 ‡ R

(0)
L ‡ /0 ‡ R

L ‡ n ‡ R
(n)

L ‡ {n} ‡ R
L ‡ s ‡ R

(s)
L ‡ {s} ‡ R

L ‡ L(ne1) ‡ M M′ ‡ L(ne2) ‡ R
(◦̌)

L ‡ {w◦
(

π[M′BM] · v
)
| w ∈ L(ne1),v ∈ L(ne2)} ‡

(
π[M′BM] ·R

)
(L@n) ‡ L(ne) ‡ (R@m)

(♦̌)
L ‡ {(n ?) ·w | ? ∈N ,w ∈ L(ne) and ?#L} ‡ ((n ?) ·R)

Fig. 2. Rules computing languages

interpretation for basic expressions. Rule (◦̌) deals with the concatenation of languages;
note that, since permutations may change the post-context, it is necessary to rename
everything by a permutation π[M′BM] before combining them (recall π[M′BM] from § 3.1).
Also, the fact that the rule is applied on proof trees obtained by rules in Fig. 1 implies
that lth(M′) = lth(M).

Rule (♦̌) deallocates n. If n∈R, then (n ?) ·R remembers the fresh name ? in the new
post-context. This rule maintains the invariant that the set of names in the pre-context
is in bijection to the set of names in the post-context.

For simplicity, in Fig. 2 we do not explicitly consider e.g., rules for the + operator;
when such kind of nodes are reached, the computed language is just the language of the
branch and similarly for the Kleene-star (cf. Example 5 below).

Example 4. Starting from the tree in Example 3, we calculate the language of the ex-
pression 〈m〈nm〉mn 〈nnm〉nn〉mm

[a,b] ‡ a ‡ [b,a]
(a)

[a,b] ‡ {a} ‡ [b,a]
(♦̌)

[a] ‡ {(b ?1) ·a | ?1 ∈N ,?1 6= a} ‡ [?1]

[a] ‡ {a | ?1 ∈N ,?1 6= a} ‡ [?1]

[a,c] ‡ c ‡ [a,c]
(c)

[a,c] ‡ {c} ‡ [a,c]

[a,c] ‡ a ‡ [a,c]
(a)

[a,c] ‡ {a} ‡ [a,c]
(◦̌)

[a,c] ‡ {ca} ‡ [a,c]
(♦̌)

[a] ‡ {(c ?2) · ca | ?2 ∈N ,?2 6= a} ‡ [a]

[a] ‡ {?2a | ?2 ∈N ,?2 6= a} ‡ [a]
(◦̌)

[a] ‡ {a◦ ((a ?1) ·?2a) | ?1,?2 ∈N ,?1 6= a,?2 6= a} ‡ [?1]

[a] ‡ {a?2 ?1 | ?1,?2 ∈N ,?1 6= a,?2 6= ?1} ‡ [?1]
(♦̌)

[] ‡ {(a ?3) ·a?2 ?1 | ?1,?2,?3 ∈N ,?1 6= a,?2 6= ?1} ‡ []

[] ‡ {?3 ?2 ?1 | ?1,?2,?3 ∈N ,?1 6= ?3,?2 6= ?1} ‡ []

(where the dashed lines are just simplifications of expressions) and we obtain that
L(〈m〈nm〉mn 〈nnm〉nn〉mm)

def
= {acb | a,b,c ∈N .b 6= a and c 6= b}.

Interestingly, the application of rule (♦̌) in the left branch of the above derivation
corresponds to the deallocation of m (which yields the name a) and the contextual re-
naming of the content of n with the new name chosen for n (that is ?1) due to the
permutation dictated by the subexpression 〈nm〉mn . Instead, the application of (♦̌) in the
right branch, simply cuts out the last names of both the left and right contexts because
the subexpression 〈nnm〉nn does not involve any permutation. �

Example 5 below shows that the language L1 in Example 1 is nominal regular.
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Example 5. To show how the rules in Fig. 2 apply when the expressions contain a
Kleene-star, we consider 〈m(〈nn〉mn )∗〉mm with the derivation tree corresponding to a three-
fold unfolding of the Kleene-star.

[] ‡ 〈m(〈nn〉mn )∗〉mm ‡ []
(♦̂=)

[a] ‡ (〈nn〉an)∗ ‡ [a]
(∗̂)

[a] ‡ 〈nn〉an〈nn〉an〈nn〉an ‡ [a]
(◦̂)

[a] ‡ 〈nn〉an ‡ [a]
(♦̂ 6=)

[a,b] ‡ b ‡ [b,a]

[a] ‡ 〈nn〉an〈nn〉an ‡ [a]
(◦̂)

[a] ‡ 〈nn〉an ‡ [a]
(♦̂ 6=)

[a,c] ‡ c ‡ [c,a]

[a] ‡ 〈nn〉an ‡ [a]
(♦̂ 6=)

[a,d] ‡ d ‡ [d,a]

[a,b] ‡ b ‡ [b,a]
(b)

[a,b] ‡ {b} ‡ [b,a]
(♦̌)

[a] ‡ {?1 | ?1 6= a} ‡ [?1]

[a,c] ‡ c ‡ [c,a]
(c)

[a,c] ‡ {c} ‡ [c,a]
(♦̌)

[a] ‡ {?2 | ?2 6= a} ‡ [?2]

[a,d] ‡ d ‡ [d,a]
(d)

[a,d] ‡ {d} ‡ [d,a]
(♦̌)

[a] ‡ {?3 | ?3 6= a} ‡ [?3]
(◦̌)

[a] ‡ {?2?3 | ?2 6= a,?3 6= ?2} ‡ [?3]
(◦̌)

[a] ‡ {?1 ?2 ?3 | ?1 6= a,?2 6= ?1,?3 6= ?2} ‡ [?3]
(♦̌)

[] ‡ {?1 ?2 ?3 | ?1 6= ?0,?2 6= ?1,?3 6= ?2} ‡ []

[] ‡ {?1 ?2 ?3 | ?2 6= ?1,?3 6= ?2} ‡ []

Generalising to a k-fold unfolding, we have the language Lk = {a1 · · ·ak | a1 6=
a0, . . . ,ak 6= ak−1} which yields

L(〈m(〈nn〉mn )∗〉mm)
def
=

⋃
k∈N

Lk = {a1 · · ·ak | ∀k ∈ N,∀i ∈ {1, . . . ,k−1}.ai 6= ai+1} �

We can also express the following languages taken from [11]. Note that the second is
not quasi-regular in the sense of [11], that is, it cannot be accepted by FMAs.

Example 6. Define N
def
= 〈nn〉nn. Note that L(N) = N . We have

L(〈nN∗nN∗n〉nnN∗) = {a1 · · ·ak | ∃i, j .1≤ i < j ≤ k & ai = a j},
L(〈nN∗n〉nn) = {a1 · · ·ak | ∀i .1≤ i < k ⇒ ai 6= ak}. �

The language Lαρ in Example 2 is nominal regular as discussed in the next example.

Example 7. Calculations similar to those in Examples 4 and 5 can be done to show that
the p-NRE α〈m((m∗〈n(m+n)ρ〉mn m∗)+m∗)ρ〉mm (where α,ρ ∈ S ) defines Lαρ. �

α-conversion on p-NREs. Permutations can be used to define α-conversion on p-NREs.
Let S be a finite set of N and let πS be a bijection on N which fixes each element in S.
We say that L ‡ πL ·ne ‡ R is an α-conversion of an expression-in-contexts L ‡ ne ‡ R.
For a p-NRE ne, ne′ is an α-conversion of ne, if ne′ is obtained by α-converting a
subexpression of ne which appears in a derivation tree from [] ‡ ne ‡ [] using the rules
Fig. 1 (taking care of unfolding Kleene-stars only once and of avoiding any renam-
ings in name abstractions). For example, a p-NRE 〈m〈nm〉mn 〈nnm〉nn〉mm is α-converted to
〈l〈ml〉lm〈nnl〉nn〉ll.

[a] ‡ 〈na〉an ‡ [a]
(m n)

[a] ‡ 〈ma〉am ‡ [a] [a] ‡ 〈nna〉nn ‡ [a]
(◦̂)

[a] ‡ 〈ma〉am〈nna〉nn ‡ [a]
(♦̂)

[] ‡ 〈a〈ma〉am〈nna〉nn〉aa ‡ []
(l a)

[] ‡ 〈l〈ml〉lm〈nnl〉nn〉ll ‡ []

Proposition 1. α-conversion on p-NREs is an equivalence relation on p-NREs.
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Theorem 1. For p-NREs ne1 and ne2, if they are α-equivalent, they define the same
nominal regular languages, i.e. L(ne1) = L(ne2).

The above results are due to the fact that a completely fresh name is always available
when applying the rules (♦̂6=) and (♦̂=) in Fig. 1

4 Automata with fresh-name generations and permutations

To handle binders (fresh names) and permutations, we extend automata on binders over
S and N fin in [13]. Denote the set of natural numbers with N and define i as {1, . . . , i}
for each i ∈ N.

The automata in Definition 1 below have a set (of states) Q and a map ‖ ‖ : Q→ N
which yield the local registers of q ∈ Q as ‖q‖. Also, given q ∈ Q,

L(q) def
= S ∪‖q‖∪{?}∪{	i| i ∈ ‖q‖},

is the set of possible labels of q.

Definition 1. An automaton with fresh-name generation and permutations over S , an
fp-automaton for short , is a tuple H = 〈Q,q0,F, tr〉 such that

– Q is a finite set (of states) equipped with a map ‖ ‖ : Q→ N
– q0 ∈ Q is the initial state and ‖q0‖= 0
– F ⊆ Q is the set of final states and ‖q‖= 0 for each q ∈ F
– for each q ∈ Q and α ∈ L(q)∪ {ε}, the set tr(q,α) ⊆ Q contains the successor

states of q; for all q′ ∈ tr(q,α), the following conditions must hold:

α = ? =⇒ ‖q′‖= ‖q‖+1
α =	i for i ∈ ‖q‖ =⇒ ‖q′‖= ‖q‖−1

α ∈ S ∪‖q‖ or α = ε =⇒ ‖q′‖= ‖q‖

An fp-automaton is deterministic, if for each q ∈ Q and each label α ∈ L(q){
|tr(q,ε)|= 0,
|tr(q,α)|= 1, otherwise.

Finally, the i-th layer of H is the subset Qi def
= {q ∈ Q | ‖q‖= i} of Q.

In an fp-automaton, the i-th layer is connected only by ? to the (i+ 1)-th layer, and
only by {	 j| j ∈ i} to the (i−1)-th layer. Note that the i-th layer forms an automaton
over S ∪ i∪ {ε} in the classical sense. Note that each state on the 0-th layer cannot
have any 	 transition, by definition; similarly, states in the highest layer cannot have
?-transitions. For a technical reason, we assume every fp-automaton is accessible in the
usual sense.

Hereafter we fix an fp-automaton as H = 〈Q,q0,F, tr〉. A configuration of H is a
triple 〈q,w,σ〉 consisting of a state q, a map σ : ‖q‖ →N assigning names to the local
registers in q and a word w. The following definition is almost the same as the one in
[13]. The only exceptions are ?-transitions and 	i-transitions.
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Definition 2. Given q,q′ ∈ Q and two configurations t = 〈q,w,σ〉 and t ′ = 〈q′,w′,σ′〉,
an fp-automaton H moves from t to t ′ (written t H→ t ′) if there is α ∈ L(q)∪{ε} such
that q′ ∈ tr(q,α) and

α ∈ ‖q‖, w = σ(α) w′ and σ′ = σ

α ∈ S , w = α w′ and σ′ = σ

α = ε, w = w′ and σ′ = σ

α = ?, w = w′,n ∈N \ Im(σ) and σ′ = σ[‖q′‖7→n]

α =	i, w = w′ and σ′ = (σ · (‖q‖ i))|‖q′‖

where (σ · (‖q‖ i))|‖q′‖ is the restriction on ‖q′‖ of the function σ · (‖q‖ i), i.e. σ per-
muted by (‖q‖ i). A configuration 〈q,w,σ〉 is initial if q = q0, w is a word and σ = ⊥,
and it is accepting if q ∈ F, w = ε and σ =⊥.

The set reachH (t) of states reached by H from the configuration t is defined as

reachH (t) def
=

{
{q} if t = 〈q,ε,σ〉⋃

t H→t ′
reachH (t ′) otherwise

A run of H on a word w is a sequence of moves of H from 〈q0,w,⊥〉.

Intuitively, ? means “generate a fresh name” and store it in the highest register. Transi-
tions labelled by 	i are meant to permute the value in highest register with the one in
the i-th register and dispose the highest register. The ? and 	i transitions are performed
independently of the word w and introduce some non-determinism even to deterministic
fp-automata.

Definition 3. The fp-automaton H accepts, or recognises, a word w on S ∪N when
F ∩ reachH (〈q0,w,⊥〉) 6= /0. The language of H is the set LH of words accepted by H .

Example 8. The fp-automaton below

2nd layer

1st layer

0th layer
?

?

?

 1

 1

 2

1 1

2

?

accepts the language L(〈m〈nm〉mn 〈nnm〉nn〉mm), see Examples 3 and 4. �
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5 A Kleene Theorem

We show a Kleene theorem for nominal regular languages: Every nominal regular lan-
guage is recognised by an fp-automaton (Theorem 2) and, vice versa, every language
accepted by an fp-automaton is nominal regular (Theorems 3 and 4).

The interpretation of p-NREs via the rules of Fig. 1 has to be extended to expressions-
in-contexts and to languages-in-contexts. For example, for [a] ‡ 〈nn〉an〈nn〉an ‡ [a], the
language-in-contexts is [a] ‡ {cd | ∀c 6= a,∀d 6= c} ‡ [a].

5.1 From p-NREs to fp-automata

Given a p-NRE ne, we shall inductively construct an fp-automaton:

Theorem 2. Given a p-NRE ne, there exists an fp-automaton H which accepts the
nominal language L(ne), i.e. L(ne) = LH .

As seen in § 3, our expressions are context-dependent and the contexts are dynamic.
Similarly, we construct automata-in-contexts L ‡ H ‡ R, that is generalised fp-automata
where initial and final states may have lth(L) = lth(M) registers equipped with a func-
tion η mapping the h-th register of the initial state to the h-th name of L. Abusing
notation, we let H to range over automata-in-contexts.

Base cases. Let L ‡ ne ‡ R be an expression-in-contexts. By Fact 1, we can assume that
L and R have the same elements (hence lth(L) = lth(R)). Since L and R are in general
non-empty, we equip fp-automata with a function η that maps the local registers of the
initial state to names (in L).

When ne= 1 or ne= 0, we define

HL1M = 〈Q,q0, tr,F,η〉 as follows

– Q def
= {q0} with ‖q0‖= lth(L);

– tr(q0,α)
def
= /0 for each α ∈ L(q0);

– F def
= {q0};

– η(k) def
= lk, for each k ∈ {1, . . . , lth(L)}.

HL0M = 〈Q,q0, tr,F,η〉 as follows:

– Q def
= {q0} with ‖q0‖= lth(L);

– tr(q0,α)
def
= /0 for each α ∈ L(q0);

– F def
= /0;

– η(k) def
= lk for each k ∈ {1, . . . , lth(L)}.

When ne= n, we let HLnM = 〈Q,q0, tr,F,η〉 as follows:

– Q def
= {q0,q1} with ‖q0‖= lth(L) and ‖q1‖= lth(L);

– tr(q0,α)
def
=

{
{q1} α = k and lk = n
/0 otherwise

and tr(q1,α)
def
= /0 for each α ∈ L(q1);

– F def
= {q1}; η(k) def

= lk for each k ∈ {1, . . . , lth(L)}.

When ne= s, we let HLsM = 〈Q,q0, tr,F,η〉 as follows:

– Q def
= {q0,q1} with ‖q0‖= lth(L) and ‖q1‖= lth(L);

– tr(q0,α)
def
=

{
{q1} α = s
/0 otherwise

and tr(q1,α)
def
= /0 for each α ∈ L(q1);
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– F def
= {q1}; η(k) def

= lk for each k ∈ {1, . . . , lth(L)}.

Proposition 2. The automata-in-contexts L ‡ HL1M ‡ R, L ‡ HL0M ‡ R, L ‡ HLnM ‡ R and
L ‡ HLsM ‡ R accept the languages-in-contexts L ‡ {ε} ‡ R, L ‡ /0 ‡ R, L ‡ {n} ‡ R and
L ‡ {s} ‡ R, respectively. Furthermore, for every final state q in L ‡ HL1M ‡ R, L ‡ HL0M ‡
R, L ‡ HLnM ‡ R and L ‡ HLsM ‡ R, we have ‖q‖= lth(R).

For automata-in-contexts we consider configurations and runs as in Definition 2, with
the exception that the η in the initial and final configurations 〈q,w,η〉 takes into account
the names in the pre- and post-contexts.

Example 9. The automaton-in-contexts [m,n] ‡ HLnM ‡ [n,m] below
2nd layer

1 7!
2 7!n

2m 1 7!
2 7!n

m

is constructed from [m,n] ‡ n ‡ [n,m] �

Union. Let L ‡ HLne1M ‡ R and L ‡ HLne2M ‡ R be automata-in-contexts, where HLne1M =
〈Q1,q1,0, tr1,F1,η1〉 and HLne2M = 〈Q2,q2,0, tr2,F2,η2〉 for the corresponding expressions-
in-contexts L ‡ ne1 ‡ R and L ‡ ne2 ‡ R. Therefore, η1 and η2 are identical. Then, we
let HLne1+ne2M = 〈Q+,q+0 , tr

+,F+,η+〉 as follows:

– Q+ def
= {q+0 }]Q1]Q2 with

∥∥q+0
∥∥= lth(L);

– tr+(q+0 ,α)
def
=

{
{q1,0,q2,0} α = ε

/0 otherwise
and the others are the same as before;

– F+ def
= F1]F2; η

def
= η1 (= η2).

Proposition 3. The automaton-in-contexts L ‡ HLne1+ne2M ‡ R accepts the language-in-
contexts L ‡ L(ne1 +ne2) ‡ R. Furthermore, for each final state q in L ‡ HLne1+ne2M ‡ R,
we have ‖q‖= lth(R).

Concatenation. By the context calculus of Fig. 1, the post-context of the first expression
must be the same as the pre-context of the second expression. Let L ‡ HLne1M ‡ L and
L ‡ HLne2M ‡ R be automata-in-contexts with HLne1M = 〈Q1,q1,0, tr1,F1,η1〉 and HLne2M =
〈Q2,q2,0, tr2,F2,η2〉, and L ‡ ne1 ‡ L and L ‡ ne2 ‡ R the corresponding expressions-in-
contexts. By the definition of the context calculus, the post-context of the first expres-
sion must be the same as the pre-context of the second expression. We let HLne1◦ne2M =
〈Q◦,q◦0, tr◦,F◦,η◦〉 as follows:

– Q◦ def
= Q1]Q2; q◦0

def
= q1,0; F◦ def

= F2; η◦ def
= η1;

– tr◦(q,α) def
=


tr1(q,α)∪{q2,0} q ∈ F1 and α = ε

tr1(q,α) q ∈ Q1 and either q 6∈ F1 or α 6= ε

tr2(q,α) q ∈ Q2

.

Proposition 4. The automaton-in-contexts L ‡ HLne1◦ne2M ‡ R accepts the language-in-
contexts L ‡ L(ne1 ◦ne2) ‡ R. Furthermore, for each final state q in L ‡ HLne1◦ne2M ‡ R,
we have ‖q‖= lth(R).
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Name-abstraction. Let (L@n) ‡ HLneM ‡ (R@m) be an automaton-in-contexts, where
HLneM = 〈Q,q0, tr,F,η〉, and (L@n) ‡ ne ‡ (R@m) the expression-in-contexts. We let
HL〈nne〉mn M = 〈Q♦,q♦0 , tr♦,F♦,η♦〉 as follows:

– Q♦ def
= Q]{qs,qt} with ‖qs‖= lth(L) and ‖qt‖= lth(L);

– q♦0
def
= qs; F♦ def

= {qt}; η♦
def
= η;

– tr♦(q,α) def
=



{q0} q = qs and α = ?

/0 q = qs and α 6= ?

/0 q = qt

{qt} q ∈ F and α =	k for k with rk = n
/0 q ∈ F and α =	k for k with rk 6= n
tr(q,α) otherwise

;

where (R@m) = [r1, . . . ,rlth(R)+1] (so rlth(R)+1 = m).

Proposition 5. The automaton-in-contexts L ‡ HL〈nne〉mn M ‡ R recognises the language-
in-contexts L ‡ L(〈nne〉mn ) ‡ R. Furthermore, for the final state qt in L ‡ HL〈nne〉mn M ‡ R,
we have ‖qt‖= lth(R).

Example 10. For [m,n] ‡ HLnM ‡ [n,m], the fp-automaton below
2nd layer

1st layer

Traces of fresh names 1 7!
2 7!

1 7!
2 7!

1 7!m

m
? ?

?

2

 1

m

1 7! ?

is constructed according to the name-abstraction in contexts [m] ‡ HL〈nn〉mn M ‡ [m]. �

Kleene star. For an automaton-in-contexts L ‡ HLneM ‡ R with HLneM = 〈Q,q0, tr,F,η〉
and the expression-in-contexts L ‡ ne ‡ R, let HLne∗M = 〈Q∗,q∗0, tr∗,F∗,η∗〉 as follows:

– Q∗ def
= Q; q∗0

def
= q0; F∗ def

= {q∗0}; η∗ def
= η;

– tr∗(q,α) def
=

{
tr(q,α)∪{q∗0} q ∈ F and α = ε

tr(q,α) otherwise
.

Proposition 6. The automaton-in-contexts L ‡ HLne∗M ‡ R recognises the language-in-
contexts L ‡ L(ne∗) ‡ R. Furthermore, for the final state q0 in L ‡ HLne∗M ‡ R, we have
‖q0‖= lth(R).

Example 11. For [m] ‡ HL〈nn〉mn M ‡ [m], the fp-automaton
2nd layer

1st layer

Traces of fresh names 1 7!
2 7!

1 7!
2 7!

1 7!1 7!m

m
?

?

?
?

2

✏

 1

is replaced bym ?

m
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is the Kleene star construction for [m] ‡ HL(〈nn〉mn )∗M ‡ [m]. �

From the fp-automaton in Example 11 we build an fp-automaton that accepts the
language L1 in Example 1 by name-abstraction of [m] ‡ HL(〈nn〉mn )∗M ‡ [m]. This yields the
following fp-automaton

2nd layer

1st layer

0th layer

Traces of fresh names 1 7!
2 7!

1 7!
2 7!

1 7!1 7!?1

?1 ?1
?2

?2

?2

?

?

2

✏

 1

 1

is replaced by?1 ?2

5.2 From fp-automata to p-NREs

Deterministic and non-deterministic fp-automata are equivalent.

Theorem 3. Given an fp-automaton H , there is a deterministic fp-automaton which
accepts the same language as LH .

Proof (Sketch). The main proof technique is a “layer-wise” powerset construction.
Since the i-th layer is basically a classical automaton over S ∪ i∪ {ε}, the powerset
construction allows us to make each layer deterministic. The only thing we have to care
about is how to connect these deterministic layers by ? and {	i′ | i′ ∈ i} in a determin-
istic way. This is shown below.

For each subset {qi
1, . . . ,q

i
k} of the i-th layer Qi, we let

tr({qi
1, . . . ,q

i
k},?)

def
= {qi+1 ∈ Qi+1 | ∃ j ∈ k. qi+1 ∈ tr(qi

j,?)}
tr({qi

1, . . . ,q
i
k},	i′)

def
= {qi−1 ∈ Qi−1 | ∃ j ∈ k. qi−1 ∈ tr(qi

j,	i′)}

for each i′ ∈ i. Hence we obtain a deterministic automaton of H . ut

Note that the powerset construction in the proof above has to be performed layer-wise
due to the presence of local registers.

Theorem 4. Any language accepted by a deterministic fp-automaton H is a nominal
regular language. That is, there exists a p-NRE ne such that LH = L(ne).

Proof (Sketch). The states Q of a deterministic fp-automaton H can be decomposed
into h = maxq∈Q ‖q‖ layers (where h is the highest layer of H ):

Q0 = {q0
1, . . . ,q

0
m0
}, Q1 = {q1

1, . . . ,q
1
m1
}, · · · Qh = {qh

1, . . . ,q
h
mh
} (3)
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Note that q0 ∈ Q0 (we assume q0
1 = q0) and F ⊆ Q0. We fix an arbitrary order on states

given by their index in (3), let sRk
i, j denote the set of paths from qs

i to qs
j which visit only

states on layers higher than s or states qs
r ∈ Qs with r ≤ k, and let Ei, j

def
= /0 if i 6= j and

Ei,i
def
= {ε}. Then, sRk

i, j is defined by

hR0
i, j

def
= {α

∣∣ qh
j ∈ tr(qh

i ,α)}∪Ei, j
hRk

i, j
def
= hRk−1

i,k

(
hRk−1

k,k

)∗
hRk−1

k, j ∪ hRk−1
i, j

on the highest layer h. On the other layers (s < h), it is defined by

sR0
i, j

def
= {α

∣∣ qs
j ∈ tr(qs

i ,α)}∪
⋃

s′∈s+1

〈
s+1

⋃
(i′, j′)∈Γ

s,s′
i, j

s+1Rms+1
i′, j′

〉s′

s+1
∪Ei, j

sRk
i, j

def
= sRk−1

i,k

(
sRk−1

k,k

)∗
sRk−1

k, j ∪ sRk−1
i, j ∪

⋃
s′∈s+1

〈
s+1

⋃
(i′, j′)∈Γs

i, j

s+1Rms+1
i′, j′

〉s′

s+1

where Γ
s,s′
i, j

def
= {(i′, j′)

∣∣ qs+1
i′ ∈ tr(qs

i ,?) & qs
j ∈ tr(qs+1

j′ ,	s′)} for each s′ ∈ s+1. Hence,⋃
s′∈s+1

〈
s+1

⋃
(i′, j′)∈Γ

s,s′
i, j

s+1Rms
i′, j′

〉s′

s+1
is the collection of all paths from qs

i to qs
j visiting only

states on the higher layers. Finally, we translate all paths from the initial state to final
states into a nominal regular expression, but this is analogous to the classical theory.
The only distinction is how to choose fresh names for binders. However, this is done by
reserving names for fresh names as a distinct subset {n1, . . . ,nh} of N , with the

〈
s+1

and
〉s′

s+1
indicating how to generate expressions for the binding construct. ut

Therefore, by the above theorems, we conclude that every fp-automaton H has a
p-NRE ne such that LH = L(ne).

6 Conclusion

We have extended the nominal regular expressions and automata presented in [13] with
permutations in order to provide a notion of regular expression for languages on infinite
alphabets (without binders). Our main technical contribution is a Kleene theorem that
establishes an equivalence between nominal regular expressions with permutations and
fp-automata.

A novelty of our approach is how to handle the environments and how permutations
change the local views of the environment. This is done with the help of the context
calculus in Fig. 1, which represents the views on the environments by “contexts” similar
to Hoare triples. The language construction of Fig. 2 then explains how this information
flow generates nominal regular languages.

Yet another delicate aspect of our theory is the subtle non-deterministic behaviour
present even in deterministic automata. As highlighted by the first language of Exam-
ple 6, Definition 2 does not require the automaton to consume a letter if moving on
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an allocation or deallocation transition. These moves are non-deterministic in the sense
that they are not controlled by the word to be recognised. This is crucial to the equiva-
lence established in Theorem 4. Indeed, non-deterministic models are more expressive
than deterministic ones when considering languages on infinite alphabets [11, 16].

The natural next step to take in our research is to exploit the results presented here to
compare the expressiveness of nominal regular expressions with other models featuring
languages on infinite alphabets. We note that our nominal regular languages are closed
under union, intersection, concatenation and Kleene-star, but not under complement.
Whereas the regular languages of [13] are closed under resource-sensitive complement,
this is no longer the case here, since allocation and deallocation transitions are no longer
controlled by explicit binders in the words. This situation is similar to the FMA of [11]
although FMA do not accept the second language of Example 6. A precise comparison
with FMA and related models such as those of [16] or [22] is left for future work.

Further investigations should reveal the categorical and (co)algebraic nature of our
automata. In particular, the fact that the automata work level-wise suggests a many-
sorted approach via presheaves (see also the two-sorted coalgebras of [7]). It would also
be interesting to combine the work of this paper with [13] along the lines suggested
by [2], which investigates how the implicit scope of names in words without binders
interacts with binders having explicit scope. In another direction, we plan to extend
our approach towards Kleene algebras (with tests) [12] and possible applications to
verification. Other interpretations of the binders in the style of the research programme
devised in [4] will also be of interest.
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