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Abstract. We introduce a continuous time stochastic broadcast calculus for mo-
bile and wireless networks. The mobility between nodes in a network is mod-
eled by a stochastic mobility function which allows to change part of a network
topology depending on an exponentially distributed delay and a network topology
constraint. We allow continuous time stochastic behavior of processes running at
network nodes, e.g. in order to be able to model randomized protocols. The in-
troduction of group broadcast and an operator to help avoid flooding allows us to
define a novel notion of broadcast abstraction. Finally, we define a weak bisim-
ulation congruence and apply our theory on a leader election protocol.

1 Introduction

Mobile and wireless networks have become an important part of our life, for instance
they have been applied to areas like wireless local area networks, mobile ad-hoc net-
works, sensor networks, and cellular networks for mobile telephony. Broadcast calculi
for this kind of networks have been studied considerably for the last five years, e.g. in
[1–5]. A common characteristic for all those calculi is that they deal with mobility and
connectivity between nodes abstractly, i.e. a node can move arbitrarily and cause arbi-
trary change of the network topology, and either a node is connected or disconnected to
another node, so none of the calculi address the problem of unreliable links.

In a recent paper [6] we introduced the feature of letting a communication link be-
tween two nodes not just be in either ‘connected’ or ‘disconnected’ in that we allowed
a decoration of connection links with a probability. The meaning being that messages
broadcasted along a connection decorated with a probability ρ will be received by that
probability. Intuitively this reflects that connection links in wireless networks may not
always be reliable. We also enforced restricted mobility by means of a probabilistic mo-
bility function saying that a given node with a certain probability may move and thereby
change the probability of the connection to another node. The models we obtain are dis-
crete and each network in our calculus in [6] gives rise to a probabilistic automata [7]. A
major contribution of this paper is a generalization of the notion of a mobility function.
In [6] a mobility function returns the change (the new probability) of just a single con-
nection between two nodes, in this paper we let a mobility function be able to change
a number of connections at the same time, i.e. we recognize that mobility of a single
node may not just influence the connection to a single neighbor, instead a mobility step
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may change a larger part of the network topology. Moreover, the new kind of mobility
functions introduced in this paper makes use of network topology constraints. For in-
stance we may specify that the probability for the node l being connected to m must be
the same as k being connected to m, i.e. ρl 7−→m = ρk 7−→m. Intuitively this may represent
that k and l are always within the same distance from m. Another example could be to
require that the likelihood one of k and l receiving a broadcast message from m is suffi-
ciently high, we may for instance specify ρl 7−→m + ρk 7−→m ≥ 0.9, intuitively meaning that
m is always sufficiently close to at least one of k and l. We demonstrate the usefulness
of topology constraints in Section 5.

Another contribution of this paper is the introduction of stochastically timed behav-
ior for models for mobile and wireless networks, our contribution follows the tradition
of having rates for exponential probability distributions, known from say continuous
time Markov processes, as part of our calculus. A major motivation for this contribu-
tion is that we would like to more realistically being able to model mobility of nodes as
time dependent stochastic phenomenon, this is obtained by letting a stochastic mobility
function return no longer a discrete probability as in [6] but a rate for an exponential
probability distribution. Formally we will write mf (C,C′, φ) = λ where C is the current
(partial) network configuration, C′ is the new configuration reached by a mobility step,
φ is the network topology constraint the transition from C to C′ depends on, and the
transition occurs with a delay exponentially distributed by λ. Intuitively the rate signi-
fies how fast the network topology will change, i.e. the higher rate the more likely it
is that the topology will change fast. Another reason for introducing continuous time
stochastic behavior is that many protocols for mobile and wireless networks make use
of time dependent randomized back-off techniques. In order to be able to model such
protocols we introduce, in the style of Interactive Markov Chains [8], a prefix construct
λ for processes such that we may write e.g. A = p + λ · A meaning that A may behave
as p or it may after some delay exponentially distributed by λ back off and iterate its
behavior. This back-off style encoding is utilized in our model of a leader election pro-
tocol for mobile and wireless networks defined in Section 5. By the introduction of the
continuous time stochastic behavior it turns out that the semantics of our calculus is a
combination of discrete and continuous time probability, non-determinism, and concur-
rency and thus gives rise to a Markov Automaton (MA) [9]. In [10] a related stochastic
restricted broadcast process theory is introduced to model and analyze mobile ad hoc
network protocols. Their stochastic model is in PEPA style [11] where the duration of
each action is exponentially distributed. After resolving non-determinism a continuous-
time Markov chain is derived for each network. Differently our stochastic model is in
Interactive Markov Chain [8] style where the rate is used to specify the delay rather
than the duration of each action.

A third contribution is that we allow for two novel operators as part of our calculus.
To the best of our knowledge these two operators have not before been considered in
calculi for mobile and wireless systems. In many broadcast protocols it is quite common
for a node to broadcast messages just to a limited number of nodes and hence not to all
nodes in the network; to accommodate this feature we introduce a group broadcast
prefix in our calculus denoted by 〈x B L〉 where x is the message to be broadcasted and
L is the set of intended receivers of x. The other new operator is a kind of a low level
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protocol that is often used in many wireless broadcast protocols, it is meant to deal with
the problem of flooding. Flooding occurs when the same message is broadcasted over
and over again in the execution of a protocol, but where it is sufficient to have received
and dealt with the message just once. Flooding may e.g. occur in a protocol if a node is
naively supposed to forward all requests for being part of a protocol, a node receiving
similar requests for participating in the same execution of the protocol from multiple
neighbors will then forward each of these requests to its neighbors although forwarding
just one of these identical requests would ideally be sufficient. The operator is defined
by introducing a memory M for each node, formally we write bpcMl for a node with the
processes p running a location l and with memory M. Intuitively the semantics is that
whenever the node receives a broadcast message x it is first checked whether x belongs
to M, if it does x is discarded and p will remain unchanged, otherwise x is added to
M and p is updated accordingly. In this short version of our theory flooding avoidance
input is the only broadcast input dealt with.

A fourth and major contribution is that we introduce a novel notion of broadcast
abstraction. We abstract from the sender of a broadcast message since two broadcast
messages should not be distinguished if they can deliver the same message to the same
destinations with the same probability, despite that they may originate at different loca-
tions. Due to the introduction of group broadcast we can move even further such that one
broadcast message can be simulated by several broadcast messages in a row. Intuitively,
if a broadcast message α can deliver x to nodes at locations l and k with probability ρ1
and ρ2 respectively, and if we have two broadcast messages β1 and β2 such that β1 can
only deliver x to l with probability ρ1 and β2 can only deliver x to k with probability ρ2,
then β1 and β2 together can simulate α. In general we need to assume that the destina-
tions of β1 and β2 are disjoint, since otherwise nodes at joint locations may receive x
twice with positive probability which will never happen by performing α. The memory
M plays a role here, if a node has received x, it will simply ignore it and stay unchanged
whenever it receives x again, thus in this case the destinations of β1 and β2 may not nec-
essarily be disjoint. For instance, if α can only deliver x to location l with probability
ρ, and β1 and β2 can only deliver x to l with probability ρ1 and ρ2 respectively, then
β1 and β2 in sequence can simulate α provided that 1 − (1 − ρ1) · (1 − ρ2) = ρ, where
(1 − ρ1) · (1 − ρ2) equals the probability of x failing to reach l after both β1 and β2.

In summary, the main contribution of this paper is a continuous time stochastic
broadcast calculus for wireless networks with a stochastic mobility function depending
on topology constraints where group broadcast and flooding avoidance are integrat-
ed operators. As illustrated above the two operators facilitate abstraction of broadcast
messages where several messages may be simulated by one. The paper is organized as
follows: the syntax of the calculus is presented in the next section and in Section 3 we
give a labeled transition system semantics of our calculus. In Section 4 a weak bisimu-
lation is defined. We apply our calculus on a leader election protocol [12] in Section 5.
Finally we end by a conclusion.
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2 The Calculus

We presuppose a countable set N of names, ranged over by x, y, z and a countable
set L of location names, ranged over by k, l,m, and n. Accordingly K, L,M, and N are
used to range over finite subsets of L. We also write l directly for a singleton set {l}. In
addition, we also suppose a finite set of probabilities ℘ including 0 and 1 ranged over
by ρ, ρ′, ρ1 . . .. We define a location connectivity set, ranged over by L,K . . ., as a finite
set {(ρ, l) | l ∈ L, ρ ∈ ℘}. We use l(L) = {l | (ρ, l) ∈ L} to denote all the locations in L.

Let P denote the set of the processes which is ranged over by p, q, r . . ., and defined
by the following grammar:

p, q ::= 0 | Act · p | p + q | [x = y]p, q | νxp | A where Act ::= λ | 〈x B L∗〉 | (x)

where 0 is the deadlock process. Act · p means that p is prefixed by Act and will behave
as p after Act being performed. Specially, λ · p means that p is guarded by a delay
which is exponentially distributed with rate λ ∈ Q+.1 Let 〈xBL∗〉 and (x) denote (group)
broadcast and reception respectively where L∗ is either L orL. We usually write 〈xBL〉
as 〈x〉 for simplicity. If L∗ = L, then 〈xBL〉 denotes a group broadcast which can deliver
the message x only to nodes at locations in L. p + q denotes nondeterministic choices
between p and q. [x = y]p, q is a conditional choice, it will evolve into p if x = y,
otherwise it evolves into q. νxp means that x is bounded in p. A ∈ A is a process

constant where A is a set of process identifiers. By defining A
def
= p, A will behave in

the same way as p. The set of networks N is defined by:

E, F ::= 0 | bpcMl | {L 7−→ l} | νxE | E ‖ F

where node bpcMl is a process p at location l with memory M which is used to keep
track of all the messages having been received. The parameter M is often omitted if
it is not important for the discussion. νxE and E ‖ F are restriction and parallel com-
position respectively which have the standard meaning; {L 7−→ l} denotes connectivity
information, i.e. if (ρ, k) ∈ L, the node at location k is connected to l and can receive
messages from l with probability ρ. Let CN be the set of connectivity networks which
only contain connectivity information, that is, C,C′ ::= 0 | {L 7−→ l} | C ‖ C′.

A network distribution is a function E : N → [0, 1] satisfying |E| =
∑

E∈N E(E) ≤ 1.
Let ND denote the set of distributions over N , ranged over by E,F,G . . .. The support
of E, Supp(E) = {E | E(E) > 0}, is the set of networks in E with positive probability.
Sometimes we also write {(ρi : Ei) | E(Ei) = ρi} to denote E. If E(E) = 1, then E is the
Dirac distribution δE . Given a real number a, a·E is the distribution such that (a·E)(E) =

a ·E(E) for each E ∈ Supp(E) if a · |E| ≤ 1. Moreover E = E1 +E2 whenever for each E,
E(E) = E1(E) + E2(E). Parallel composition of network distributions E ‖ F is defined
as a distribution such that (E ‖ F)(E ‖ F) = E(E) · F(F). Given an equivalence relation
R on networks, E R F iff E(S ) = F(S ) for each S ∈ N/R where E(S ) =

∑
E∈S E(E).

A substitution {y/x} can be applied to a process, network, or network distribution.
When applied to a network distribution, it means applying the substitution to each net-
work in the support of the distribution. The set of free and bound names in E, denoted by

1 Q+ is the set of all the positive rational numbers.
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Table 1. Structural congruence of processes and networks.

p + 0 ≡ p p + q ≡ q + p νxνyp ≡ νyνxp (p + q) + r ≡ p + (q + r)
E ‖ 0 ≡ E νxνyE ≡ νyνxE {∅ 7−→ l} ≡ 0 bνxpcMl ≡ νxbpcMl , x < M

E ‖ F ≡ F ‖ E (E ‖ F) ‖ G ≡ E ‖ (F ‖ G) νxE ‖ F ≡ νx(E ‖ F), x < fn(F)
bpcMl ≡ bqc

M
l , p ≡ q {L1 7−→ k} ‖ {L2 7−→ k} ≡ {L1 ∪ L2 7−→ k}, l(L1) ∩ l(L2) = ∅

fn(E) and bn(E) respectively, are defined as expected except that fn(bpcMl ) = fn(p)∪M.
Structural congruence of processes and networks, ≡, is the least equivalence relation
and congruence closed by α-conversion and the rules in Table 1, which can be ex-
tended to distributions as usual. Let loc(E) denote the set of locations located in a
network, i.e. loc(0) = ∅, loc(bpcl) = {l}, loc({L 7−→ l}) = ∅, loc(νxE) = l(E), and
loc(E ‖ F) = l(E) ∪ l(F). Differently, l(E) is used to denote all the location names
appearing in E including those in connectivity information. The definition of l(E) coin-
cides with loc(E) except that l({L 7−→ l}) = l(L) ∪ {l}.

We use ρk 7−→l(E) to denote the connection probability from k to l in E. When the
requested probability does not occur in E the result is θk 7−→l which denotes an unknown
probability, i.e. ρk 7−→l(E) = ρ if E ≡ {{(ρ, k)} 7−→ l} ‖ E′ for some E′, otherwise
ρk 7−→l(E) = θk 7−→l. We generalize network distributions to contain unknown probabili-
ties. In the following let %1, %2 ::= ρ | θk 7−→l | (1 − θk 7−→l) | %1 · %2 be the generalized
probability which may contain unknown values. The set of generalized network distri-
bution, GND, is defined inductively as follows: i) µ ∈ GND if µ ∈ ND; ii) µ ∈ GND
if there exists % and µ1, µ2 ∈ GND such that µ = % · µ1 + (1 − %) · µ2. Without causing
any confusion, we also use µ, µ′, µ1, . . . to range over GND. For a generalized network
distribution µ, we may substitute unknown probabilities in µ with known probabilities.
In order to do so, we introduce the operator ◦ such that µ ◦Dl(E) is a distribution equal
to µ except that an unknown probability θk 7−→l in µ has been replaced with the probabil-
ity ρ if (ρ, k) ∈ Dl(E). Formally, (µ ◦Dl(E))(F) = (µ(F)) ◦Dl(E) for each F ∈ Supp(µ)
where ◦ is overloaded to deal with generalized probabilities such that i) % ◦ Dl(E) = ρ
if % = ρ; ii) θk 7−→l ◦ Dl(E) = ρ and (1 − θk 7−→l) ◦ Dl(E) = 1 − ρ if (k, ρ) ∈ Dl(E); iii)
(%1 · %2) ◦ Dl(E) = (%1 ◦ Dl(E)) · (%2 ◦ Dl(E)).

As mentioned in the introduction we make use of network topology constraints in
order to restrict the mobility of nodes. We define the syntax of topology constraints Φ,
ranged over by φ, as follows: φ ::= ρk 7−→l = ρ | φ ∧ φ | φ ∨ φ where ρk 7−→l refers to the
variable connection probability from k to l, ρ ∈ ℘, and φ evaluates to true and false in
the obvious way. The above syntax is simple but expressive. For example we can define
constraints such as ρl 7−→k ≥ 0.8 and ρl 7−→m +ρl 7−→n = 1 as follows where ./ ∈ {<, >,≤,≥}:

1. ρl 7−→k ./ ρ = ∨
ρ′∈℘∧ρ′./ρ

ρl 7−→k = ρ′,

2. ρl 7−→m + ρl 7−→n ./ ρ = ∨
ρ1,ρ2∈℘∧ρ1+ρ2./ρ

(ρl 7−→m = ρ1 ∧ ρl 7−→n = ρ2).

Given a topology constraint φ, define operator E[φ] to evaluate φ under a network E by
E[φ1 ./ φ2] = E[φ1] ./ E[φ2] with ./ ∈ {∧,∨}, E[ρl 7−→k = ρ] = true if ρl 7−→k(E) = ρ,
otherwise E[ρl 7−→k = ρ] = false, and boolean operators are evaluated as usual.
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Topology constraints together with connectivity networks is the source for defin-
ing continuous time stochastic mobility. A stochastic mobility function (SMF) mf :
CN × CN × Φ → Q+ is a partial function where mf (C,C′, φ) returns the mobility rate
from C to C′ given the topology constraint φ. We assume mf (C,C, true) = 0 if the con-
nectivity network C is static, i.e. it cannot evolve into other networks. For simplicity
we let mf (C,C′, φ) = ⊥ denote that the mobility rule from C to C′ under condition φ
is undefined. An SMF is valid if for each C,C′ such that mf (C,C′, φ) , ⊥ for some
φ, then ρk 7−→l(C) = θk 7−→l iff ρk 7−→l(C′) = θk 7−→l for all k and l. Intuitively, the condition
guarantees that when a mobility step from C to C′ happens, it only changes the proba-
bility of connectivities in C, we can neither obtain information about connectivities not
in C, nor lose connectivities in C. For instance let C = {{(0.5,m), (0.9, n)} 7−→ l} and
C′ = {{(0.8,m)} 7−→ l}, a mobility rule from C to C′ is not valid since the connectivity
information of ρn 7−→l is lost in C′, similarly a mobility rule from C′ to C is not valid
either. In the following we will only consider valid SMFs, and we assume that there is
a given mf throughout the paper.

Since we have infinitely many connectivity networks, it is not reasonable to always
define mobility rules for all of them. Instead we allow an mf to be defined for just
finitely many pairs C and C′ and topology constraints φ. We call those rules explicit
mobility rules. A connection probability ρl 7−→k has an explicit mobility rule if there
exists mf (C,C′, φ) , ⊥ with ρl 7−→k(C) , θl 7−→k. For any connection probability ρl 7−→k

with no explicit mobility rule we assume it has the implicit mobility rule mf ({{(0, l)} 7−→
k}, {{(0, l)} 7−→ k}, true) = 0, that is l is not and will never be connected to k. The default
implicit mobility can be changed without affecting our theory.

The structural congruence closed set of well-formed networks Nmf under a given
SMF mf is inductively defined as follows:

1. 0 ∈ Nmf , bpcMl ∈ Nmf , and νxE ∈ Nmf if E ∈ Nmf ,
2. E ‖ F ∈ Nmf if E, F ∈ Nmf with loc(E) ∩ loc(F) = ∅ and there does not exist

l, k ∈ L such that ρl 7−→k(E) , θl 7−→k and ρl 7−→k(F) , θl 7−→k,
3. C ∈ Nmf if there exists C′ and φ such that mf (C,C′, φ) , ⊥.

Clause 1 is trivial. Clause 2 means that locations are unique and that connectivity in-
formation for a single connection can only appear once, while clause 3 (together with
clause 2) requires that the connectivity network part of a network can be divided into
subnetworks for each of which mobility must be defined by the given mf .

3 Labeled Transition System

We useAp to denote the actions of processes, defined as follows:

αp ::= νx̃〈x B L∗〉 | (x) | λ,

where νx̃〈xBL∗〉 denotes broadcasting the message x to nodes at locations in L∗. When-
ever x is bounded x̃ = {x}, otherwise x̃ = ∅. The (x) means that the process can re-
ceive a (group) broadcast message. λ denotes a Markovian action with specified rate.
The semantics of processes is given in Table 2 where all the rules are standard, and
 = (−→ ∪�) with� denoting Markovian transitions.
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Table 2. Labeled Transition System of Processes

λ · p
λ
� p

(MAR)
〈x B L∗〉 · p

〈xBL∗〉
−−−−−→ p

(PRE)
p
αp
 p′

p + q
αp
 p′

(SUM)
p
αp
 p′ x = y

[x = y]p, q
αp
 p′

(IF)

(x) · p
(y)
−−→ p{y/x}

(INP)
p
αp
 p′ x < fn(αp)

νxp
αp
 νxp′

(RES)
q
αp
 q′ x , y

[x = y]p, q
αp
 q′

(ELSE)

q ≡ p
αp
 p′ ≡ q′

q
αp
 q′

(STR)
p
αp
 p′ A

def
= p

A
αp
 p′

(CON)
p
〈xBL∗〉
−−−−−→ p′ y < fn(νxp)

νxp
νy〈yBL∗〉
−−−−−−−→ p′{y/x}

(bOPEN)

We useA to denote the actions of networks defined as follows:

α ::= νx̃〈x B L∗,L〉@l | (x@L∗,L) C l | λ | φ : λ | τ.

Different from process actions, for the actions of networks connectivity information is
attached to any broadcast and reception action. Action νx̃〈x B L∗,L〉@l denotes that
the node at location l can broadcast the message x to the node at location k ∈ L∗ with
probability ρ if (ρ, k) ∈ L. Accordingly (x@L∗,L) C l means that the node at location
k ∈ L∗ can receive the message x from location l with probability ρ if (ρ, k) ∈ L. The
φ : λ is a novel action named condition guarded Markovian action. This action is used
to model topology constrained mobility where mobility is triggered only when certain
conditions are satisfied. The τ and λ are standard.

The semantics of networks is given in Table 3 with  (as in Table 2) being the
union of � and −→. For readability we also write δE directly as E. The behavior of a
node is determined by the process in it, but the actions of a node may be enriched with
connectivity information as well as the source and destination respectively if the action
is either a broadcast or a reception action. Rule (nREC1) says that when a process in a
node located at a location can perform a reception, then the node can also perform a re-
ception action, similarly for (nBRD) which deals with broadcast actions. In (nBRD) we
remove l from L∗ since a node cannot receive messages broadcasted from itself. Note in
(nBRD) and (nREC1) there is no connectivity information, so the corresponding con-
nectivity sets in the labels are empty, and furthermore in (nREC1) the node at location
l is able to receive a message from location k with unknown probability denoted by
θl 7−→k, this is the only rule where unknown probability is added. Two parallel networks
E and F communicate by broadcast as shown by (nSYN) where one network can per-
form a broadcast action while the other one can perform a reception action, similarly
in (nREC2) we let two networks in parallel can perform a reception action simultane-
ously. As shown in both (nSYN) and (nREC2), we require that the destinations of the
broadcast and reception actions of the two participants coincide.

Rules (nBRD), (nREC1), (nREC2), and (nSYN) deal with group broadcast when
L∗ = L. Different from broadcast where the broadcast messages can be received by
any node in any location, group broadcast has specified destinations, nodes at locations
which are not in the set of the destinations will simply ignore the messages and stay
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unchanged, this is taken care of by rule (nIGN). As explained in the introduction we
introduce a low level protocol taking care of flooding assuming that a message can only
be received by a node at most once. The parameter M at a node is used to keep track
of the messages already received, so only if the coming message is not already in M, it
will be dealt with, otherwise it will be simply ignored as explained in rules (nREC1) and
(nIGN). On the other hand, if process p at location l cannot perform a reception, it will
simply ignore all the coming messages, and stay unchanged as illustrated by (nIGN).

In (nSYN) E and F may obtain new connectivity information L and K from each
other and update the unknown probabilities that might appear in distributions E and
F via the operator ◦, similarly for (nREC2). In (nSYN) K is the union of the set of
locations in F, loc(F), and the set of locations inKwhich are not connected to l,Z(K) =

{k | (0, k) ∈ K}. We remove K from the resulting action where L \ K = {(ρ, k) ∈
L | k < K}. It makes sense to remove Z(K) from the destination set of the broadcast
action since nodes at locationsZ(K) will for sure not receive messages from l. Also we
remove locations loc(F) since all the nodes at locations loc(F) in F after the transition
will receive the broadcast message.

If an action is not broadcast or reception, networks can execute in parallel without
synchronization, this gives the rule (nPAR). Network {K 7−→ l} only contains connec-
tivity information about l, it can reveal its connectivity information by performing a
(group) reception which is shown by (nCONN); it can also, in order to synchronize on
broadcast from locations not being l, perform a (group) reception whose source loca-
tion is different from l with empty connectivity information as illustrated by the rule
(nLOS). A broadcast with empty destination has no impact to the outside of the emit-
ting network, therefore it should be seen as an internal action τ which is shown by
(nLOC). Due to (nSYN) and (nREC2), (nLOC) can only happen at top level. Rule (n-
MOB) allows a connectivity network to evolve into another according to the mobility
rule defined by the given mf carrying out a condition guarded Markovian action φ : λ.
By (nTRU) if φ is evaluated to true, then φ : λ will become a Markovian transition λ.
Note in (nREC1) and (nIGN), we require that l , k which means that a process at loca-
tion l cannot receive messages broadcasted from the same location. The rules (nOPEN),
(nRES), (nMAR), and (nSTR) are standard.

In our calculus we allow continuous delay, probabilistic choice, and non-deterministic
choice, as result each network corresponds to a Markov Automaton [9] which is the in-
tegration of probabilistic automata [7] with interactive Markov chains [8]. As usual we
assume networks to be free of divergence with probability 1, see e.g. [7], in order to
avoid an unrealistic situation where infinitely many actions can happen in finite time.

For instance network E
def
= bAcl ‖ bλ · 0ck with A

def
= 〈x〉 · A is not free of divergence,

since E can perform broadcast from l for infinitely many times, and thus blocks the
Markovian transition at k for ever.

4 Weak Bisimulation

In this section we provide a weak bisimulation congruence for our calculus. We say

that a network E is stable, written E ↓, if E
τ
9 and E

〈xBL∗,L〉@l
9 . Note that broadcasts are

considered to be immediate and take no time, since they are non-blocking and will be
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Table 3. Labeled Transition System of Networks

p
(x)
−−→ p′ (l ∈ L∗ ∧ x < M ∧ k , l)

bpcMl
(x@L∗ ,∅)Ck
−−−−−−−−→ {(θl 7−→k : bp′cM∪{x}l ), (1 − θl 7−→k : bpcMl )}

(nREC1)

E
νỹ〈yBL∗ ,L〉@l
−−−−−−−−−−→ E F

(y@L∗ ,K)Cl
−−−−−−−−→ F ỹ ∩ fn(F) = ∅ K = loc(F) ∪Z(K)

E ‖ F
νỹ〈yB(L∗\K),(L∪K)\K〉@l
−−−−−−−−−−−−−−−−−−→ (E ◦ D(F)) ‖ (F ◦ D(E))

(nSYN)

E
〈xBL∗ ,L〉@l
−−−−−−−−→ E y < fn(νxE)

νxE
νy〈yBL∗ ,L〉@l
−−−−−−−−−−→ E{y/x}

(nOPEN) E
(x@L∗ ,L)Cl
−−−−−−−−→ E F

(x@L∗ ,K)Cl
−−−−−−−−→ F

E ‖ F
(x@L∗ ,L∪K)Cl
−−−−−−−−−−→ (E ◦ D(F)) ‖ (F ◦ D(E))

(nREC2)

p
λ
� p′

bpcMl
λ
� bp′cMl

(nMAR)
p

νx̃〈xBL∗〉
−−−−−−→ p′

bpcMl
νx̃〈xB(L∗\l),∅〉@l
−−−−−−−−−−−−→ bp′cMl

(nBRD)
E

φ:λ
−−→ E E[φ] = true

E
λ
� E

(nTRU)

F ≡ E
α
 E ≡ F

F
α
 F

(nSTR)
E

α
 E α ∈ {λ, φ : λ}

E ‖ F
α
 E ‖ F

(nPAR) E
νỹ〈xB∅,L〉@l
−−−−−−−−−→ E

E
τ
−→ E

(nLOC)

E
α
 E x < fn(α)

νxE
α
 νxE

(nRES)
mf (C,C′, φ) = λ

C
φ:λ
−−→ C′

(nMOB)
k , l ∧ (l < L∗ ∨ x ∈ M ∨ p

(x)
9)

bpcMl
(x@L∗ ,∅)Ck
−−−−−−−−→ bpcMl

(nIGN)

l , k

{K 7−→ k}
(x@L∗ ,∅)Cl
−−−−−−−−→ {K 7−→ k}

(nLOS)
{K 7−→ l}

(x@L∗ ,K)Cl
−−−−−−−−→ {K 7−→ l}

(nCONN)

triggered immediately. Accordingly, a network distribution E is stable, written E ↓, iff
E ↓ for each E ∈ Supp(E).

In order to evaluate the exit rate of a network we, similar with [8], define the function
γ : Nmf × 2Nmf 7→ Q+ which returns the exit rate from a given network to a set of
networks via Markovian transitions. The formal definition is as follows where {||} denotes
multiset: γ(E, S ) =

∑
{|λ · E(S ) | E

λ
� E|}. Due to a race condition [11, 8] among

Markovian transitions they will compete in order to be executed first, this gives us the

following natural transitions. Let E
λ
−→ E if E ↓ where λ = γ(E,Nmf ) and E(F) =

γ(E,{F})
λ

for all F. Refer to the following example for an illustration of race condition.

Example 1. Let E = bλ1 ·p+λ2 ·qcl. It is easy to see that E has two Markovian transitions

according to Table 2 and 3: E
λ1
� bpcl and E

λ2
� bqcl. The exit rate of E is equal to

λ = λ1 + λ2, and moreover the two Markovian transitions will compete to be executed
first. Due to the race condition, the first transition will be executed with probability λ1

λ
,

while the second one will be executed with probability λ2
λ

, i.e. E
λ
−→ {

λ1
λ

: bpcl, λ2
λ

: bqcl}.

We use E
α

==⇒ E to denote that a distribution E is reached through a sequence of
steps which are internal except one being equal to α. Formally

α
==⇒ is the least relation

such that, E
α

==⇒ E iff

1. α = τ and E = δE , or
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2. there exists a step E
β
−→ E′ such that E =

∑
E′∈Supp(E′) E

′(E′) · EE′ , where E′
τ

==⇒ EE′

if β = α, otherwise E′
α

==⇒ EE′ and β = τ.

As in [7] we also define the combined transition
α

=⇒c such that: E
α

=⇒c E iff there exists
{E

α
==⇒ Ei}1≤i≤n and {wi}1≤i≤n with

∑
1≤i≤n wi = 1 and

∑
1≤i≤n wi · Ei = E.

As an abstraction we disregard the emitter of a broadcast message and allow to
equate νx̃〈x B L∗,L〉@l and νx̃〈x B L∗,L〉@k indicating that in a wireless broadcast
setting the sender of a message is not important, that is only the message (and the
probability by which it is received), since the receiver of a message may not precisely
know whom is the actual emitter of the message. To further enforce what we in the
Introduction called broadcast abstraction we will also allow that a broadcast can be
simulated by several broadcast messages. In order to do so we define the combination
of two broadcast actions such that

νx̃〈x B L1,L1〉@l1 ⊗ νx̃〈x B L2,L2〉@l2 = νx̃〈x B L,L〉@l

where L = L1 ∪ L2, l is any location name, and L = M1 ∪M2 with

M1 = {(ρ, k) ∈ L1 | k ∈ L1 \ L2} ∪ {(ρ, k) ∈ L2 | k ∈ L2 \ L1},

M2 = {(1 − (1 − ρ1) · (1 − ρ2), k) | k ∈ L1 ∩ L2 ∧ (ρ1, k) ∈ L1 ∧ (ρ2, k) ∈ L2}.

Intuitively, the resulting combination of two actions has the same effects as the orig-
inal two. There are three cases to consider. If a location k is only in L1, then the
probability for location k receiving the broadcast message x will not be changed by
νx̃〈x B L2,L2〉@l2, similarly for locations only in L2. For a location k appearing in both
L1 and L2, the probability for k not receiving x is equal to (1−ρ1) · (1−ρ2) if (ρ1, k) ∈ L1
and (ρ2, k) ∈ L2, as a result the probability for a node at location k receiving x is equal
to 1 − (1 − ρ1) · (1 − ρ2). Obviously, ⊗ is associative and commutative. We extend the

broadcast transitions in the following way: E
〈xBL∗,L〉@l

========⇒ E iff E
α1

==⇒
α2

==⇒ . . .
αn

==⇒ E with
〈x B L∗,L〉@l = ( ⊗

1≤i≤n
αi).

According to Table 3 there might occur unknown probabilities during the evolu-
tion of networks. Intuitively, to compare two network distributions where unknown
probabilities may occur, we consider all the possibilities for substitution of those un-
known probabilities by concrete probabilities i.e. two networks are equivalent if they
behave equivalently in all possible substitution contexts. In order to do so, we in-
troduce operator • such that E • C denotes a network behaving like E but obtain-
ing new information from C, that is, E • 0 = E, E • (C ‖ C′) = (E • C) • C′,
and E • ({{(ρ, k)} ∪ L 7−→ l}) = E • ({L 7−→ l}) if ρk 7−→l(E) , θk 7−→l, otherwise
E • ({{(ρ, k)} ∪ L 7−→ l}) = (E ‖ {{(ρ, k)} 7−→ l}) • ({L 7−→ l}). Intuitively • is used
to supply a network E with auxiliary connection probabilities, information about con-
nections which probability are already known in E will simply be ignored.

In the definition of our bisimulation we make use of the following finite sets of
connectivity networks: CNL = {C ∈ CN | ∀l, k ∈ L.ρk 7−→l(C) , θk 7−→l}. Intuitively, CNL

contains all the connectivity networks such that the probability of ρk 7−→l is known for
all l, k ∈ L. Below follows the definition of weak bisimulation of networks where we
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use CE,F,k to range over CN (l(E)∪l(F)∪{k}), and we let αk range over all actions including
λ except the reception actions from locations l where l , k.

Definition 1. An equivalence relation R ⊆ Nmf ×Nmf is a weak bisimulation iff E R F

implies that for each k and CE,F,k, whenever E•CE,F,k
αk
−−→ E, there exists F•CE,F,k

αk
=⇒c F

such that E R F. Let E and F be weak bisimilar, written as E ≈mf F, if there exists a
weak bisimulation R such that E R F.

The cases when αk is τ or λ are standard. When αk = (x@L,L) C k, any received
message must be matched by receiving the same message with the same probabilities
from the same sender. Observe that the source of the message cannot appear in loc(E)
due to the semantics in Table 3, as a consequence one may prove that E ≈mf F implies
loc(E) = loc(F).

Example 2. Given a mf such that l and k can always connect to all locations except m
with the same probability, and all locations can always connect to l and k with the same
probability. Then b(x) · 〈x〉cl ‖ b0ck ‖ b0cm ≈mf b(x) · 〈x〉ck ‖ b0cl ‖ b0cm but since
l and k can receive messages from the node at location m with different probabilities
b(x) · 〈x〉cl ‖ b0ck 0mf b(x) · 〈x〉ck ‖ b0cl.

When a network is not stable, then all the Markovian transitions are blocked, and
cannot affect the behavior of the network. This is related to the maximal progress as-
sumption which is a quite common in time (discrete and continuous) process algebra
[13, 14, 8].

Example 3. Consider two networks:E = b〈x B L〉 · p + λ · qcl and F = b〈x B L〉 · pcl,

since E is not stable due to E
〈xBL,∅〉@l
−−−−−−−→, therefore the Markovian transition E

λ
−→ can be

omitted, obviously E ≈mf F.

When αk = νx̃〈x B L∗,L〉@l any broadcast message x must be matched by a broad-
cast action containing the same x, and x must be received at the same locations with the
same probability, but the emitter need not be the same.

Example 4. Given a mf where l is disconnected from k forever, then b〈xBl〉ck ≈mf b0ck.
If ρl 7−→k is not always 0 then b〈x B l〉ck 0mf b0ck, but if reception at the node at l has no
effect then e.g. b〈x B l〉ck ‖ b0cl ≈mf b0ck ‖ b0cl.

Additionally when αk = νx̃〈x B L∗,L〉@l, we also allow that a broadcast can be
simulated by a series of broadcasts whose combination is equivalent to the original
broadcast. This relies on the assumption that each message can only be received by a
node at most once.

Example 5. Given a mf such that location l can receive messages from location k with
probability either 1 or 0. Then b〈x B l〉 · 〈x B l〉ck ‖ bpcMl ≈mf b〈x B l〉ck ‖ bpcMl for
any p. The reason is that after the process at location k receives the message x, it will
remember it, and if it receives the same message for the second time, it will simply
ignore it and stay unchanged.
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In all cases in Definition 1 we use CE,F,k to eliminate all the possible unknown
probabilities during the evolution of both E and F. Observe that unknown probabilities
can only appear in derivatives on networks in case of broadcast and reception actions.
The reason to include k is because k might be any location not appearing in either E or
F, thus when E or F performs a reception from k, an unknown probability θl 7−→k with
l ∈ l(E) ∪ l(F) may arise. Such an unknown probability may be eliminated by applying
any CE,F,k. When performing broadcasts the only possible unknown probability in a
derivative from E and F is of the form θm7−→n with m, n ∈ l(E)∪ l(F), thus it can also be
removed by applying any CE,F,k.

Example 6. Suppose a mf such that ρm7−→n is always equal to 0.5 and two networks:
E = {{(0.5,m)} 7−→ n} and F = 0. Without applying a CE,F,k, we will conclude that

E 0mf F since E
(x@L∗,{(0.5,m)})Cn
−−−−−−−−−−−−−→ δE which cannot be simulated by F. This is against

our intuition since we know that ρm7−→n is always equal to 0.5, thus F should be able
to exploit this fact from the given mf . By applying any CE,F,k it is easy to check that
E ≈mf F.

The following theorem shows that the weak bisimulation is a congruence.

Theorem 1. ≈mf is a congruence.

The definition of our bisimulation depends on a given SMF mf , the more restricted
the mf the more bisimilar networks we can obtain. For instance, if we consider the
extreme case where all the nodes are disconnected from each other all the time, that is,
they cannot influence each other’s behaviors, we then have bpcl ≈mf bqcl for any p, q.

5 A Leader Election Protocol

We illustrate the application of our calculus by modeling an adaption of the leader elec-
tion protocol in [12]. Before giving the model we first explain how this protocol works.
It is assumed that each node has a unique ID i. A node may regularly initiate an election
of a new leader; it will start the process of building a spanning tree by broadcasting a
message Election to its neighbors and then wait for acknowledgement messages, Ack,
from its children in the tree. An Ack message will contain the information about the
node with the highest ID the child has found. When a node j receives an Election from
another node i, it will set i as its parent and then propagate Election to its neighbors and
then wait for the acknowledgements Ack from its children. In a state waiting for Ack
messages a node keeps track of the highest ID received before it times out after a cer-
tain time limit. When timing out a node (not being the root of the spanning tree) reports
the highest ID found to its parent via an Ack message and enters a state where it waits
to be informed about the new leader found. When the initiator of the run of the proto-
col times out waiting for Ack messages it broadcasts the new leader, i.e. the node with
the highest ID found, to its neighbors via the message Leader. Notice that due to node
mobility a child may disconnect from its parent before it sends the acknowledgement,
the time out in this case prevents the parent getting stuck waiting for the acknowledge-
ment forever. Similarly for a node waiting for announcements of a new leader, it will
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Model 1 The model of the leader election protocol
Node(i, l,m, p) = λinit · 〈E i B I〉 · Init(i, l,m, p)

+
∑

x,i(E x) · 〈E i B I〉 · waitAck(i, l,m, x)
Init(i, l,m, p) =

∑
x,i(A x) · ([x > m]Init(i, l, x, p), Init(i, l,m, p))

+ λexp · 〈L m B I〉 · Node(i,m,m, p)
waitAck(i, l,m, p) =

∑
x,i(A x) · ([x > m]waitAck(i, l, x, p),waitAck(i, l,m, p))

+ λexp · 〈A m B p〉 · waitLeader(i, l,m, p)
waitLeader(i, l,m, p) =

∑
x,i(L x) · Node(i, x,m, p)

+ λpar · 〈L m B I〉 · Node(i,m,m, p)

either receive the announcement in time, or it will time out and announce the node with
highest ID it has found so far as the new leader.

The state of a node is represented by Node(i, l,m, p) where i is the ID, l is the ID of
its leader, m is the maximum ID known in a protocol run, and p is the ID of its parent.

To model this protocol we define three types of messages (names) where I is a finite
set of all the possible ID numbers: {E i | i ∈ I} is the set of Election messages, {A m |
m ∈ I} is the set of Ack messages, and {L l | l ∈ I} is the set of Leader messages which
announces the elected leader. In [12] the messages in a given election are all assigned
a unique index used to distinguish the protocol run from other runs. For simplicity we
omit these details in the model of the protocol in this paper.

To make the model more compact we extend the match operator in the following
way: [x > m]p, q denotes that the process will evolve into p if x > m, otherwise it will
evolve into q, this operator can be defined using the standard operators in a straightfor-
ward way. The operator

∑
x,i(E x) means that the input only accepts Election messages

not from i, and ignores all the other messages, the operator can easily be encoded by
a sequence of conditional operators prefixed by (x). We introduce similar operators for
accepting just one type of protocol messages. The model of the protocol is given in
Model 1 where λinit and λexp denote the rate of initializing a new run of the protocol and
the rate of timeout from waiting for the acknowledgements from children respectively.
If a node is not involved in any election, it will be at state Node. The node with ID i can
initialize an election by broadcasting the message E i to its neighbors, and evolve into
Init. When the neighbor nodes receive the message E i, they will join the election and
evolve into waitAck after forwarding the Election message to their neighbors. While
at Init or waitAck, a node will wait for the acknowledgements from its neighbors. In
order not to get stuck and wait for the acknowledgements forever, we let each node stop
waiting with rate λexp. When the node at Init stops waiting for the acknowledgements,
it will announce m, the maximal ID found so far, as the new leader. Differently, when
timing out nodes at waitAck will send an acknowledgement together with the parameter
m to their parents, and then evolve into waitLeader waiting for the announcement of the
new leader. It may happen that a node will timeout when waiting for the announcement
from its parent while at waitLeader, in this case it will simply announce m as its leader
and terminate the election. Each node at waitLeader will timeout with a certain delay
by rate λpar.

Next we will show how to define mobility rules for our example. For simplicity we
assume that there are four locations in the network: l, k,m, and n where all the nodes
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are stationary except the node at l. Suppose that nodes at location k and l are always
disconnected, thus the move of node at l will not affect the value of ρk 7−→l and ρl 7−→k.
There are two possible positions Pos1 and Pos2 for the node at location l such that when
in Pos1 it will be closer to the node at location m than the node at location n i.e. ρm7−→l >
ρn 7−→l while in Pos2 we have ρm7−→l < ρn 7−→l. When the node at location l is at Pos1, it
will move to Pos2 with rate 2, while in Pos2 it will move to Pos1 with rate 5. Moreover
no matter how the node at location l moves, we guarantee that ρm 7−→l +ρn 7−→l = 1 as long
as ρm7−→n = 1 and ρn 7−→m = 1. Since ρm7−→l and ρn 7−→l may both change when l moves,
their mobility rules should be defined together in our SMF. Suppose that ρm7−→l = 0.8
and ρn 7−→l = 0.2 when the node at location l moves to Pos1, and ρm7−→l = 0.3 and
ρn 7−→l = 0.7 when it is at Pos2. By letting mf (C1,C2, φ) = 2 and mf (C2,C1, φ) = 5
we complete the definition of the mobility rules with C1 = {{(0.8,m), (0.2, n)} 7−→ l},
C2 = {{(0.3,m), (0.7, n)} 7−→ l}, and φ = (ρm7−→n = 1 ∧ ρn 7−→m = 1). Note that more
complicated rules can be defined, for instance when the condition φ does not hold i.e.
m and n are not close enough, we can let the ρm7−→l and ρn 7−→l evolve into other values
such that ρm7−→l + ρn 7−→l , 1. For simplicity we will omit the details.

It is not hard to see that in this example we use group broadcast often between nodes
internally in the network, as a result we can abstract from the concrete execution of the
model. Suppose we only care whether each node in a network has a leader or not, then
the model can be simplified as Model 2 where the node which initializes the election
always chooses itself as the new leader.

In Model 2, the acknowledgement messages 〈A i B I〉 can be abstracted totally, and
we can establish that: ‖

i∈I
bNode′(i)ci ≈mf ‖

i∈I
bNode(i, l,m, p)ci. Intuitively, this equiva-

lence holds because all the group broadcasts will become internal. In Model 2 the group
broadcasts dealing with acknowledgements used to find the node with the highest ID
are abstracted away, since we do not care about the specific ID of the leader. Essentially
in Model 2 the node which initializes the election simply commutes between two states
depending on whether it has a valid leader or not, while the nodes participating in an
election simply commutes between three states depending on whether they have a valid
leader, are part of an election waiting for acknowledgements from children, or are part
of an election waiting for the announcement of the leader.

6 Conclusion

In this paper we have introduced a novel continuous time stochastic broadcast calcu-
lus for mobile and wireless broadcasting networks, which is able to model stochastic
phenomena in mobile networks, like e.g. random back off protocols. We also allow for
simultaneous mobility of several nodes due to a stochastic mobility model, and the mo-
bility of nodes may be limited due to network constraints. Also, in order to minimize
the state space of our models we have introduced an operator to avoid flooding in net-
works, and we allow for group broadcast, these two operators facilitate a novel notion of
abstraction of broadcast messages where several broadcast messages may be simulated
by just one broadcast message or simply be abstracted and become an internal message.
A weak bisimulation congruence ≈mf is defined and applied on the example of a leader
election protocol for wireless networks.
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Model 2 An simplified model of the leader election protocol
Node′(i) = λinit · 〈E i B I〉 · Init′(i) + (E x) · 〈E i B I〉 · waitAck′(i)
Init′(i) = λexp · 〈L i B I〉 · Node′(i)
waitAck′(i) = λexp · waitLeader′(i)
waitLeader′(i) = (L x) · Node′(i) + λpar · 〈L i B I〉 · Node′(i)
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