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Abstract Traditional security policies largely focus on access control. Though es-
sential, access control is only one aspect of security. In particular, the correct behav-
ior and reliable operation of a system depends not only on what users are permitted
to do, but oftentimes on what users are required to do. Such obligatory actions are
integral to the security procedures of many enterprises. Unlike access control, obli-
gations assigned to individual users are often unenforceable, that is, the system can-
not ensure that each obligation will be fulfilled. Accurately determining who was at
fault when obligations are not met is essential for responding appropriately, be it in
terms of modified trust relationships or other recourse. In this paper, based on a for-
mal metamodel of obligations, we propose an approach for fault assessment through
active online tracking of responsibilities and dependencies between obligations. We
identify and formalize two key properties for the correct assessment of fault, and
design responsibility assignment and fault assessment algorithms for a concrete yet
general access control and obligation system.

1 Introduction

A security policy defines the correct behavior of an information system. Today, a
majority of techniques, literature, and infrastructure in security policy management
focus on access control. Though essential, access control is only one aspect of se-
curity. In particular, the correct behavior and reliable operation of a system relies
not only on what users are permitted to do, but oftentimes on what users are re-
quired to do. Such obligatory actions are integral to the security procedures of many
enterprises. For instance, when an employee leaves a firm, it is usually very im-
portant that the employee’s computer accounts and physical access be deactivated.
Obligations are also essential to privacy policies. Enterprises that collect or use the
private information of individuals must abide by laws that require certain actions,
such as deleting data after a certain period of time. Finally, oblgations are often key
elements of contracts and other agreements.
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Recently, we have witnessed an increasing trend to express obligations explic-
itly as part of security policies [5, 10, 14, 18, 19]. Obligation policies have different
properties from access control policies. In particular, obligations assigned to indi-
vidual users, though monitorable (i.e., a system can determine whether and when an
obligation is fulfilled), are, in general, not enforceable (i.e., the system cannot en-
sure that an obligation is always fulfilled). Thus, the handling of failed obligations
is an indispensable part of obligation management. Besides conducting necessary
actions to compensate for failed obligations, a system should appropriately assign
culpability to responsible parties. In this paper, we call this process fault assessment.

Fault assessment can be significant for several reasons. It may be a simple ques-
tion of evaluating the performance of employees at their assigned tasks. However,
an obligation failure may result in the violation of a contract, which may lead to
sanctions against the responsible party or the organization he represents. Even when
an agreement does not rise to the level of a legal contract, failing to meet one’s obli-
gations has and should have consequences for one’s reputation and the level of trust
that others place in one.

At a first sight, the solution to the fault assessment problem seems straightfor-
ward. Indeed, in many cases, if a user does not complete her obligation, she is to
blame for the failure. On the other hand, it is common that one or more obligations
provide necessary privileges or resources to enable the fulfillment of other obliga-
tions. For example, in work-flow systems, frequently one user’s obligation can be
fulfilled only if some other users first complete their obligations, thus making the
necessary resources available. A dependency between two obligations occurs if one
user is obligated to grant an authorization necessary to enable another user to ful-
fill his obligation. Fairness requires that if a user cannot fulfill an obligation due to
a lack of sufficient privileges or necessary resources, the user should not be con-
sidered to be at fault. A lack of privileges may be caused by other users failing to
fulfill their obligations. Clearly, in such cases, fault assessment requires analyzing
and maintaining the dependencies between obligations, which is a non-trivial task.

In this paper, we propose an active approach to fault assessment through online
tracking of responsibilities and dependencies between obligations. The contribu-
tions of this paper include:

e Instead of relying on postmortem analysis of the dependency between failed obli-
gations, we propose a framework that allows a system to dynamically observe
dependencies at the time when obligations are assigned to users and assign re-
sponsibility at that point. We show that such online responsibility tracking signif-
icantly reduces the complexity of fault assessment of failed obligations.

e Fault assessment is often application or policy dependent. Instead of advocating
a single solution, we identify and formalize two key properties for responsibility
tracking based on a metamodel of obligation and access control systems. We ar-
gue that any responsibility tracking algorithm should satisfy these two properties
in order to achieve correct blame assignment.

e We present an algorithm that computes fault assessment when given a set of failed
obligations and their resposibility graph maintained by a system.
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e We further instantiate the metamodel and study fault assessment in a concrete
access control and obligation system based on an access-matrix model. We show
that obligation dependency can be efficiently identified in this system. We pro-
pose a generalized obligation responsibility-tracking algorithm, and prove that
it satisfies the key properties for responsibility tracking that we identify in the
contribution mentioned above.

The rest of the paper is organized as follows. In section 2, we discuss work
closely related to this paper. In section 3 and 4, we briefly describe the construc-
tion of a metamodel of access control and obligation systems, and introduce the
concept of accountability, a security objective for obligation systems. The fault as-
sessment problem and the two properties for responsibility tracking are articulated
in section 5. Our discussion of fault assessment in a concrete obligation and access
control system is presented in section 6. We conclude in section 7.

2 Related Works

Obligations are common features of security policies in a variety of application do-
mains. For example, due to requirements from laws and other regulations, enterprise
privacy policies often include obligations regarding the handling of private informa-
tion collected from individuals. Typical examples concern the retention and deletion
of customers’ personal and transactional information, notification when such infor-
mation is shared with other parties, and auditing after access to private informa-
tion [12, 13]. Obligations are also integral to the security policies of cross-domain
data sharing, since data sharing and handling contracts between autonomous enti-
ties, such as responsive forwarding and nondisclosure agreements and usage notifi-
cation, are often specified in the form of obligations [17].

Several policy languages have been proposed that support the specification of
obligations in security policies. XACML [18] and KAoS [19] both have a limited
model of obligations. Specifically, they model obligations assigned to a system and
cannot describe user obligations, i.e., obligations assigned to ordinary users who
are not always trusted to fulfill obligations. Ponder [5], SPL [14], and Rei [10] all
support the specification of user obligations.

To the best of our knowledge, Bettini et al. [1] were the first to investigate the
analysis of obligations in the context of access control. They studied the problem
of choosing appropriate policy rules to minimize the provisions and obligations that
a user incurs in order to take a certain action. However, they assume actions in
obligations are not subject to access control, and thus they can always be fulfilled.
Bettini et al. [2, 3] further extended their work to place under policy control the
handling of obligation violations.

Heimdall [6] is a prototype obligation monitoring platform which tracks pending
obligations. It detects when obligations are fulfilled or violated. This requires the
modeling of time constraints in obligations, which are explicitly supported in its
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policy language xSPL. Sailer and Morciniec [15] propose a means of using a third
party to monitor obligation compliance in contracts in a web services settings.

Hilty, et al. [8] describe how to formally model obligation policies and how to en-
force obligation policies which might initially appear to be unable to be monitored.
Their work is complimentary to ours.

Responsibility assignment is also related to auditing systems, which collect audit
data and analyze them to discover security violations [16]. Most works in auditing
target intrusion detection, which is distinct from the problem addressed in this paper.

Obligations and contracts are central concepts in collaborative multi-agent sys-
tems. Deontic logic [11] is commonly used to express the agreed obligations among
agents. Works in this area typically do not concern the interaction between obli-
gations and access control. Instead, they focus on expressing the dependencies be-
tween obligations, assuming such dependencies have already been identified [4, 7].
In this paper, we formalize the key properties for correct identification of dependen-
cies between obligations.

3 Metamodel

We now present a highly abstract model of an obligation system, which we call
a metamodel. Any concrete model instantiates one or more of its features. This
metamodel was first presented in [9] and more detail can be found there.

We model an obligation as a tuple obl(s,a, O,,t,), in which [t,?,] is the time
interval during which subject s is obliged to take action @ and O is a finite sequence
of zero or more objects that are parameters to the action. An obligation system
consists of the following components:

e 7:acountable set of time values.
e .7 aset of subjects.
e 0O aset of objects with .7 C 0.

e o/ afinite set of actions that can be initiated by subjects. Each action is a func-
tion that takes as input the current system state (defined just below), the subject
performing the action, and a finite sequence of zero or more objects. It outputs a
new system state.

e B=9 x4 X0 xT xT: aset of obligations that can be introduced to the
system. Given an obligation b € %, we use b.s to refer to the subject, b.a for the
action, b.0 for the objects that are parameters to the action, and b.t; and b.t, to
refer to the start and end times.

o ST =IFXGFP(S)X FP(O)xXxFP(RA) : the set of system states.
Here, we use .# P (Z") = {X C Z'|X is finite} to denote the set of finite subsets
of the given set. We use st = (¢, 5,0, 6, B) to denote systems states, where 7 is the
time in the system, S and O are the subjects and objects currently in the system,
B is the set of pending obligations, and o is a fully abstract representation of all
other features of the system state. X, the domain of abstract states, is possibly



326 K. Irwin et al.

infinite'. We use st = (feur, Scur> Ocur Ocur, Beur) to denote the current state of
the system.

o Z: aset of policy rules. Each policy rule specifies an action that can be taken,
under what circumstances it may be taken, and what obligations (if any) results
from that action. Each policy rule p has the form p = a(st,s,0) < cond : Fyp,
in which a € & and cond (denoted by p.cond) is a predicate in . X J x X X
0™ — {true, false}, indicating that subject s is authorized to perform action a on
objects O at time ¢ with the system in state ¢ if cond(s,t,0,0) is true. Fy; is
an obligation function, which takes the current state of the system o, the current
time, the subject s, and the arguments O as its input and returns a finite set B C &
of obligations resulting from the action. Obligations in B may not be incurred by
the same subject who performed the action.

We assume that actions scheduled for a given time can be finished in a single
clock tick, and their effect will be reflected in the state of the next clock tick.

Suppose a (finite) set of actions are attempted at the same time, ¢ = i, in state st;.
We denote such a set by AP C .¥ x &/ x 0*. (AP stands for action plan.) The order
in which the elements of AP are executed is given by a fixed, arbitrary total order
over . X @/ x 0*. This means that two actions, if present in AP, will be executed
in the same order regardless of other actions that may or may not be in the set. Let
us assume |AP| =n and apg,apy,...,ap,—1 enumerates AP in the order mentioned
above.

Given st; and AP, we let the function apply(AP,st;) = st;1; in which st is
obtained by ordering and applying the actions. Details of how this would be carried
out can be found in the previous paper. This defines the transition from st; to st; i
determined by AP. Given st;, AP, and ap € AP, we let permitted(ap,AP, st;) = true
if ap is permitted when it is attempted. Otherwise, permitted(ap, AP, st;) = false.

An obligation-abiding transition corresponds to the system evolution where sub-
jects take actions (i.e., contribute actions to AP) only to fulfill their obligations. A
sequence of valid obligation-abiding transitions corresponds to the situation where
subjects are diligent and always fulfill their obligations. An obligation-abiding tran-
sition is valid if no pending obligations in st; become violated in st; 1.

4 Accountability

Since obligations are unenforceable, a system can never guarantee that an obligation
will be fulfilled. What a system can seek to ensure is that all obligations could be
fulfilled if the obligated user is diligent. Roughly speaking, what we want is that the
only reason that an obligation will go unfulfilled is due to negligence on the part of
a user, not because of insufficient privileges or resources.

If performing a requested action would cause some user to incur an obligation
they could not fulfill, the system should deny that action. Conversely, if the user will

1'% would certainly be instantiated in any concrete model.
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have sufficient privileges to fulfill the obligation, then the system should allow the
requested action. However, it is not obvious what the appropriate behavior should be
if the ability of the user to perform the obligation depends on whether or not other
actions are taken which change his privileges.

In [9], we propose a concept we call accountability as a more satisfactory
obligation-security notion. Intuitively, if all users will have sufficient privileges and
resource to carry out their obligations provided every other user diligently carries
out his or her obligations (and no other actions are performed), then we say the sys-
tem is in an accountable state. Starting from an accountable state, if no actions are
initiated other than existing obligations being diligently carried out, then the first
obligation that becomes violated must be due to lack of diligence on the part of the
obligated subject, and that subject should be assigned the blame.

Notice that if at some point the system is in an accountable state and then tran-
sitions to a new state through diligent obligation fulfillment, the new state is also
accountable. However, when actions are requested that are not required by an ex-
isting obligation, to remain in an accountable state, the system needs to analyze the
would-be effect of the action on accountability. Once the system determines whether
the resulting state will be accountable or not, it can permit or deny the action accord-

ingly.

Definition 1. Let sz be a system state with time sz.f = ¢ and pending obligations
st.B={by,...,b,}. We say st is a type-1 undesirable state if there exists B’ C {b €
st.Blb.ty <t <b.t,} and, letting AP’ = {(b.s,b.a,b.0)|b € B'}, there exists ap € AP
such that permitted(ap,AP’, st) = {false}.

A state is type-1 undesirable if a subject cannot fulfill an obligation although the
current time is within the time window of the obligation.

Definition 2. A state st is strongly accountable if there exists no sequence of valid
obligation-abiding transitions that lead st to a type-1 undesirable state.

5 Fault Assessment

An aspect of obligation systems which we wish to automate is the assessment of
fault. When an obligation failure occurs, we wish to know which party is at fault for
that failure. The first question to examine is whether or not the user to whom the
obligation was assigned possessed the necessary privileges and resources to carry
out the obligation. If he did, then he is at fault for the failed obligation. If, however,
he did not, it is likely that someone else is at fault.

One possibility is that the fault lies with the system. If an obligation is assigned
to a user who is unable to fulfill it, this may be because the system failed to ade-
quately ensure that needed permissions would be available to the user. However, if
the system achieved an accountable state at some point between the assignment of
the obligation and the obligation failure, then we know that this cannot be the case.
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Instead, the fault lies with one or more other users for failing to fulfill their own
obligations. We do not, however, assume that the system achieves an accountable
state all the time. Because of the nature of obligations, we do assume that the sys-
tem is making some attempt to achieve an accountable state, but the fault analysis
does not depend on such a state ever being achieved.

Failing to fulfill an obligation can potentially result in other users lacking needed
privileges. As such, a single failure can sometimes result in a cascade of obligation
failures and some of the failures can have quite serious consequences. However,
modeling and understanding the dependencies between different obligations turns
out to be quite difficult.

In traditional (that is, non-automated) obligation systems, the assignment of fault
for failures is often carried out by examining the events surrounding the failures and
doing a postmortem analysis. Such an analysis often factors in a variety of facts
concerning responsibility such as who was assigned a task, who was able to do
it, and what communication there was concerning the task. Ideally we would do a
similar postmortem analysis in our automated system. But simple information about
which obligations were assigned to which users is not going to be sufficient. Given
a series of failed obligations, an automated tool may be able to determine which
obligations, had they been fulfilled, would have satisfied the preconditions of other
failed obligations. However, this information alone is not adequate to determine
where the fault lay.

Example 1. Let us consider, for instance, a situation in which there are three users,
Alice, Bob and Carol, such that each of these users has an obligation, and Carol
cannot fulfill her obligation unless at least one of Alice and Bob fulfills theirs. If
neither Alice nor Bob fulfill their obligations and, as a result, Carol fails hers, are
Alice and Bob both equally at fault? The answer depends on further information of
the circumstances. If Alice’s job was specifically to make sure that Carol has what
she needs, but Bob’s task only enabled Carol as an incidental side-effect, then the
responsibility would fall more on Alice. If, instead, Alice was known to be very busy
and Bob was given the task in order to ensure that it got done even if Alice could not
do it, then the responsibility would fall more on Bob. Further, if Bob had told Alice
that he would do it and that she did not have to worry about Carol failing if Alice
failed her obligation, then clearly the fault in Carol’s failure would be Bob’s. As
such, it is clear that issues of responsibility and fault are more complex than simply
determining if an action will cause a precondition to be satisfied.

Any postmortem analysis of the responsibility for failures would need to include
information about the policies, intents of the policies, communication between par-
ties, and other factors. Such analysis is certainly possible, but it would be very dif-
ficult, if not impossible to automate.

As such, we instead propose solving the basic problem of determining responsi-
bility by tracking responsibility in an active, on-line fashion rather than attempting
to determine it after the fact. Because responsibility is tied into the intent behind
the assignment of obligations, we propose a policy-driven system for responsibility
tracking. Instead of attempting to discover, afterwards, who could have prevented



Assigning Responsibility for Failed Obligations 329

the situation, we propose to keep track ahead of time of what the consequences of
an obligation failure are.

What we propose is a module in an obligation management system which keeps
track of which obligations bear responsibility for which other obligations. Essen-
tially, the module will keep a directed graph of responsibility, indicating which obli-
gations are responsible for which other obligations. As obligations are fulfilled and
discharged, and as other circumstances change, this module should update the graph
to reflect changes in responsibility.

The responsibility information in the module will serve as a means of determin-
ing fault both after the fact and before the fact. For example, users can consult the
module to better understand the implications of their actions, in case there are cir-
cumstances where they only have time to fulfill one of the obligations assigned to
them.

Because, as we demonstrated above, there are a variety of different possible in-
tents behind the assignment of obligations, we wish to allow for a policy which de-
scribes what the assignment of responsibility should be. In other words, this policy
specifies, given an obligation b, what other obligations are considered responsible
to provide the necessary privileges and resources to b.

Such a responsibility assignment policy is application specific. In practice, we
would like to have policies that consist of one general rule and some special-case
exceptions. That way, instead of having to imagine every possible situation and write
a policy for it, the administrator could choose a default policy and then worry about
specifying more specific policy rules only for exceptional cases. For example, if
both obligations b and b, provides the same needed privileges for obligation b, the
administrator may determine that in general the early one of | and b, is responsible
for b. The administrator may further specify the special situations where this general
rule does not apply.

5.1 Desirable Properties

Although we have argued that fault assessment is not simply about knowing which
obligations enable which other obligations, the dependencies between obligations
play an important role in determining fault. Intuitively, if two obligations are entirely
independent of each other, then the failure of one should not be blamed on the failure
of the other in any circumstance. Similarly, if one is completely, directly, and solely
dependent on another obligation, then clearly the failure of the later one should be
blamed on the failure of the earlier one.

These two properties effectively form an upper and lower bound for dependency
relationships between pairs of obligations. We do not expect that the majority of
pairs of obligations will have one of these two properties. Rather we expect that most
will live in the great grey area in the middle, where responsibility is unclear. This is
why we later describe the specifics of a policy-driven fault assessment engine. But
for pairs of obligations which do have one of these two properties, obviously our
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system should properly assign responsibility or the lack of it. We say a responsibility
assignment policy is valid if the above two properties are preserved. As such, we aim
to formalize the two properties so that we can prove that a given policy is valid. For
this purpose, we introduce the following notations to facilitate our discussion.

Let us assume that we have some set of obligations B, a start time, 7, and a set
of possible future times, T, such that for all ¢ € T,¢ > #y. For convenience below
we augment each obligation b = 0bl(s,a, O,t,,t.) € B with a version of the function
permitted, denoted b.permitted, that is specialized to b. The type of this function
is b.permitted : F P (' x o x 0*) x ST — {true,false}. Given a set of actions
AP to be executed in state st such that (b.s,b.a,b.0) € AP, b.permitted(AP,st) =
permitted((b.s,b.a,b.0),AP,st).

Definition 3. A schedule of obligations in B is a function H : B — T J{null} in
which H(b) =t means that b is performed at time ¢. If H(b) = null for some obli-
gation b € B, this means that in schedule H, b is not fulfilled.

We also define a helper function AP(H,t) = {b|H(b) =t}. In our obligation sys-
tem, all transitions are deterministic. As such, given a start state, sty at some time #,
any schedule H over B uniquely defines a sequence of states sty (¢), defined by let-
ting the action plan at any time ¢ be the set of actions associated with the obligations
in AP(H,t). Note that if an action plan includes obligations whose conditions are
not met, the system will reject them, and as such, they will not affect future system
states.

A schedule is considered to be valid for B, sty, and ty if for all b € B,
(b.permitted( AP(H,H (b)), st (H(b))) = true and b.ty < H(b) < b.t,) or H(b) =
null. Intuitively, in a valid schedule, the action of each obligation is authorized to
be performed at the scheduled time.

Given two schedules, H and H,, where H is defined over some set of obligations
By and H, is defined over some B, C By, we define H; ~ H to be the schedule H'
such that H'(b) = H»(b) when b € By and H'(b) = H, (b) otherwise. For example,
suppose we have two schedules H; = ((b1, 10), (b2,20), (b3,30), (b4,40)) and H, =
((b2,35), <b3,25)). Then H1 ~ H2 = (((b], 10), <b3,25), (b2,35), (b4740)).

Also for convenience, we denote by H?' the schedule defined over B such that
HB7(b) =t for all b € B. That is, given a set of obligations B, H? is the schedule
that says that all the obligations in B happens at time 7.

5.1.1 Not Responsible For

The first property we call not responsible for, which captures the concept that obli-
gations are completely unrelated to each other.

Formally, we say an obligation b is not responsible for another obligation b, at
some time #g, if given any valid schedule H over B such that

1. H(by) # null; and

2. for H = H ~ H"1bmdl ¢ s the case that for all ¢, bty < t' < by.t,,
—by.permitted( AP(H,t'), sty (t") V by.permitted(AP(H, '), sty (t')).
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To summarize, b; is not responsible for b, if there is no valid schedule H in
which b; happens, such that b, can happen in H, but such that b, cannot happen if
H is modified so that b; does not occur. Specifically, we compare H to a schedule
just like H except that we remove b; from it, which means that b; does not occur
and neither does any obligation whose condition is invalidated by the removal of
b1 from the schedule. So, if there exists any schedule for which whether or not b;
happens has a negative outcome on whether or not b, can happen, then we do not
say anything about b;’s responsibility for b,. But if no such schedule exists, then we
say that b; is not responsible for b;.

5.1.2 Definitely Responsible For

There also exists the converse idea. If an obligation is always fundamental to another
obligation, then clearly it should be responsible for that obligation.

Formally, we say that an obligation b is definitely responsible for another obli-
gation by, if both of the following hold:

1. For all valid schedule H defined over B such that H(b;) # null,
let H = H ~ H1ll Then for all # such that byt < ¢/ < bot,,
by .permitted(stz (¢'),AP(H',t")) is false.

2. There exists some valid schedule H defined over B where H (b ) # null, such that
for all ¢ such that by.t; < 1’ < by.1,, by.permitted(sty ('), AP(H,t')) is true.

To summarize in a plainer language, an obligation b is definitely responsible for
another obligation b, if there is no way that b, can happen when b; does not happen,
and there is at least some case in which b, can happen when b; does. The second
condition is needed because we do not want to blame by for b, in circumstances in
which there is no way that b, can occur.

5.2 Fault Assessment

Because we wish to discover who was at fault when an obligation failure occurs,
we need to keep track of which obligations are responsible for enabling which other
obligations. In order to do so, we represent responsibility using a directed graph.
Each node in the graph corresponds to an obligation. There is an edge in the graph
from obligations b to obligation b, if and only if b, is considered to be responsible
for bz.

If our assignments of responsibility are reasonable, then it should be the case that
any obligation depends only on obligations which are before it. It is worthwhile to
note that if this property holds, then it will be the case that our graph is acyclic. This
is a desirable property since if our graph contains cycles, we could wind up blaming
an obligation’s failure for causing itself to fail, which is not quite sensible.
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When there is an obligation failure, we can then use this graph to determine who
was responsible for the failure. In order to do so, we use an algorithm which traces
backwards following the links of responsibility in reverse, in order to figure out
which failed obligations are to blame for this failure.

The algorithm uses a working set, K, which contains obligations which are po-
tentially at fault and produces an output set, L, of obligations which are at fault.
The initial failed obligation is designated as b. The algorithm assumes the existence
of sufficient logs to check things such as what the system state, st, was at different
times, which we will designate as s¢(¢), and whether or not particular obligations
were carried out. The action plan which was executed at any particular time ¢ is
represented as AP(r).

1. K:={b}.L:=0
2. If K is empty, terminate.
3. Select an obligation ¥’ from K, K := K — {b'}
4. Using the system logs, check when &’ .permitted was true.
a. If
b'.permitted (s, AP(t) U{b'})
is true for all ¢ such that b’.t; <t < b’ t,, then
L:=LUJ{b'} and go to step 2.
5. Let F be the set of all obligations which have edges which point to »" and which failed.
K:=KUF
7. Goto step 2.

*

In essence, we simply move backwards through the graph, looking at each obli-
gation which could be responsible. For each obligation, if its condition was true,
then it must be the case that it was simply not done by the user to which it was
assigned. As such, we need not seek anyone further to blame for it. However, if its
condition was false, then the access control policy would prevent it from happening,
thus it is not the fault of the user to which the obligation was assigned. Instead, we
must look to the obligations which are responsible for that obligation and see which
of those failed, and in turn determine who was at fault for those.

It should be noted that it is possible that in some case the algorithm above could
return an empty, L set, indicating that no one is to blame. For instance, if an obliga-
tion did not have the permissions it needed to happen, but all of the other obligations
responsible for it occurred. At first, this could be seen as a failing of the analysis,
but instead it is an indicator which tells us that the system made a mistake. Most
likely this will occur when there is an obligation in the system which is simply not
able to be completed.

Even if a system strives to maintain an accountable state, it may be the case that
obligation failures push it out of that state. And then difficult decisions may need to
be made weighing the goal of returning to accountability against the overall goals of
the obligation policies. This may potentially result in the assignment of obligations
which cannot be fulfilled or obligations which interfere with the fulfillment of other
obligations.
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An empty L set could also indicate that the responsibility analysis has not iden-
tified all obligations which should have been considered responsible. As we will
outline in the next section, the assignment of responsibility is a task which de-
pends on the specifics of a system, and as such cannot be described only in terms of
the meta-model. Generally speaking, we expect that responsibility assignment will
not be algorithmically difficult, but there are theoretical systems for which it could
be quite difficult. As such, there may be some situations where responsibility as-
signment would be approximated, resulting in occasional mistakes in exchange for
greater efficiency.

5.3 Responsibility Assignment

Given a set of obligations, we wish to analyze them and form some assignment of
responsibility. There is a great deal of flexibility in assigning the responsibility, but
there are three properties which the assignment should meet. The first one is that no
obligation should depend on an obligation which comes after it. The second two are
based on our properties above. If, at the time that we are assigning responsibility, b
is not responsible for b, according to the definition presented in the previous sec-
tion, then b; should not be assigned responsibility for b,. If, at the time that we are
assigning responsibility, b; is definitely responsible for b, according to the defini-
tion presented in the previous section, then b; should be assigned responsibility for
bs.

However, the reverse may not be true as it is possible that for one obligation there
is no obligation definitely responsible for it. For instance, in example 1, since both
Alice’s and Bob’s obligations can enable Carol’s, according to our definition, neither
of them are definitely responsible for Carol’s obligation. In this situation, depending
on the policy, the system may choose one of Alice’s and Bob’s obligations to be
responsible for Carol’s.

As a result, there are likely many different ways to assign responsibility which
meet all three of the properties outlined above. In this paper we are going to present
an algorithm which can be adjusted to form a variety of different basic policies.
Unfortunately, the first step of this algorithm is not something which can be gener-
ally applied to any system which fits the meta-model. Instead, if must be done in a
system-specific way and there do exist specific systems for which the step cannot be
done. However, it is our belief that the step can be accomplished in many practical
systems in reasonable time. To back-up our argument, we describe how to perform
this step in a concrete example system in the next section.

This first step is as follows: given a set of outstanding obligations B and a par-
ticular obligation b, find a set of subsets of B, which we will call N(b), that has the
following properties:

1. In any schedule for which at least one member of each set occurs, then b will be
permitted.
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2. There exists a schedule in which all the obligations from any one set do not occur,
but all other obligations occur, in which b is not permitted.

Intuitively, each set in N(b) is a set of obligations which collectively supply some
needed permission or resource. Once we have a set of subsets of B which has such
a property, then we are going to choose precisely one member of each subset to be
considered responsible. Because there may be some subsets which overlap, it should
be noted that the number of subsets only forms an upper bound for the number of
responsible obligations. There are a number of different ways in which the particular
member can be selected, and these reflect different policies, as we discuss later.

However, whatever choice we make, our choice will satisfy the three properties
outlined earlier. The proofs that this is the case have been omitted for reasons of
space. However, this still leaves the question of how efficiently N(b) can be found.
As the determination of N(b) is system specific, we cannot argue that it will be
efficient in all systems, however we believe that it will be able to be computed
efficiently in many real-world systems. In section 6, we demonstrate a system in
which it is possible to follow our algorithm because the N(b) can be computed
efficiently.

As we have shown above, in our algorithm there is a lot of room for flexibility
concerning how we select the specific obligation which is considered to be respon-
sible. So long as at least one obligation from every set in N(b) is selected, then
the system is guaranteed to satisfy the principles outlined. As such, we can use any
policy we want to select the obligations, for example, oldest obligation, smallest
covering set, or highest ranking user, and still be guaranteed that the properties will
hold.

6 A Concrete Example

Lets us now consider how fault assessment would work in a more concrete sys-
tem. Specifically, we will use a system based on the Access Matrix Model. We first
introduced this system in [9], but we will summarize it here.

In our concrete model, X, the set of abstract states, is instantiated to be M =
27 %OX% the set of permission sets, in which Z is a set of access rights subjects
can have on objects. We denote permission sets by M and individual permissions by
m = (s,0,r). Each permission is a triple consisting of a subject, an object, and an
access right, and signifies that the subject has the right on the object.

Actions are also modified so as to operate on permission sets. Each action a € o/
performs a finite sequence of operations that each either add or remove a single
permission from the permission set (grant(m) and revoke(m)). Clearly, a subject or
an object with no associated permissions has no effect on the system, so we assume
that in every state st, an object or a subject exists in sz.0 and/or sz.S if and only if it
occurs in some permission in the permission set st.M.

Policy rule conditions consist of a Boolean combination of permission tests (m €
M., or m & M,,,) expressed in conjunctive normal form.
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6.1 Responsibility Assignment

In order to run the responsibility assignment algorithm for an obligation b, we need
to be able to compute N(b). Here we present the algorithm for doing so. Our con-
dition for a given obligation is in conjunctive normal form. Each conjunct (that is,
each disjunction) logically corresponds to a set in N(b), and that is, in fact, how we
build our sets.

For each conjunct, which we consider to be a set of permissions, we first check to
see if the conjunct is guaranteed to be true under any schedule. If it is, then it does
not need a set. The first step is to see if any permission and its opposite are both
tested for in our conjunct. If they are, then we are done, since mV —m is a tautology.
Assuming that this isn’t the case, then we have some distinct set of permission tests.

In what follows, we treat each permission test as being a positive test. We do
this without loss of generality since we can convert any negative test to a positive
test by reversing its presence in the current state (that is, adding it if it is not there
and removing it if it is) and changing all grants into revokes and vice versa. So, for
simplicity, we treat all tests in a given conjunct as positive, and hence represent the
tests as a set of permissions, M = {my,...,my}, but it is not the case that we are
actually assuming them to be positive.

Since each test is distinct from the others, our conjunct is only guaranteed to be
true if at least one of the needed permissions already exists in the system, and no
existing obligation can remove it without adding another permission we need. So,
in order to find this, we simply check our needed permissions against existing per-
missions in the system. If none of our needed permissions are already present, then
we know that the truth of our conjunct cannot be guaranteed, so we move to the next
step which is described in the next paragraph. If we find some of our needed permis-
sions to be present, then we check for obligations which would revoke them which
come before b or overlap b. If we do not find any such obligations, then we know
that our conjunct is true, and hence, does not need a set in H(b), and we move on to
the next conjunct. If we do find any such obligations which do this then we have to
examine whether or not they grant another permission which we need. If they do not,
then we know that our conjunct is not guaranteed to be true, and we go to the next
step. If they do, then we have to repeat these checks for the new permission, consid-
ering potential revoking obligations which overlap with our granting obligations or
which fall between them and b. If we do not find any sequence of obligations which
can result in needed permissions being revoked without corresponding ones being
granted, then we are not guaranteed, and we continue to the next step, constructing
our set for N(b).

Given our set of obligations B and our set of needed permissions, we first exclude
any obligations which overlap with or come after 5. We then define an output set,
which we’ll call N and a candidate set which we’ll call C. Both sets are initially
empty. Then we examine each obligation which grants a needed permission. If no
obligation which revokes that same right overlaps it or comes after it, then we add
the obligation to N'. If not, then we examine the obligations that might revoke the
right it needs. If all such obligations also grant a right needed, then we add our
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obligation to C, and note which obligation or obligations interfere with it (that is,
overlap it or come afterwards and revoke the granted permission).

Once we have completed this process for all permissions, we revisit our candidate
set. If there are any obligations in C which are being interfered with by obligations
which are not in C|JN’, then remove we them from C. We repeat this process until
all obligations which remain in C are interfered with only by other obligations in
CUUN'. Then our final setis CUN'.

We know that any set created using this process has the two needed properties.
Firstly, we know that if any one obligation occurs in our set occurs, then our con-
dition will be satisfied. Secondly, we know that if all the other obligations happen
and all of the ones in the set fail to occur, then there is a schedule for which the
condition for b will not be satisfied. This schedule is the one in which any grants
in obligations which we did not select happen prior to the revokes. We know that
this is a valid schedule because every grant which came after the last revoke is in
our set and because when a system is strongly accountable, any two overlapping
obligations must be able to happen in either order.

7 Conclusion

In this paper, we introduce the problem of blame assignment in obligation man-
agement, and discuss why straightforward approaches to blame assignment are not
feasible. We present an alternate general approach to blame assignment and formal-
ize two properties which any blame assignment algorithm should meet. We further
present a general algorithm for assigning blame, and prove that it has the requisite
properties. We presented a number of different specific policies which could be used
with the general algorithm, and demonstrate that the algorithm was workable on at
least some realistic real-world systems by demonstrating how it would work on one
particular system which instantiates the metamodel.

This work is part of a larger project to develop a comprehensive study of
obligation-management systems. Assuming users are diligent, we already know
how, in certain kinds of systems, to preserve accountability. With this paper we
also know how to assign blame when users are not diligent. In the future we plan,
among other things, to study methods of restoring the system to an accountable state
when users are not diligent.
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