Continuous Ratings in Discrete Bayesian
Reputation Systems

AudunJgsang, Xixi Luo and Xiaowu Chen

Abstract Reputation systems take as input ratings from members in a community,
and can produce measures of reputation, trustworthiness or reliability of entities in
the same community. Binomial and multinomial Bayesian reputation systems are
discrete in nature meaning that they normally take discrete ratings such as “aver-
age” or “good” as input. However, in many situations it is natural to provide input
ratings to reputation systems based on continuous measures. This paper describes
the principles of discrete Bayesian reputation systems, and how continuous mea-
sures can provide input ratings to such systems. The method is based on fuzzy set
membership functions.

1 Introduction

Online reputation systems have emerged as important decision support tools that
can help reduce the risk of engaging in transactions and interactions on the Inter-
net. Reputation systems stimulate higher quality online services, and are also being
investigated as a general method of social control in the online environment.

The same basic principles for creation and propagation of reputation in the phys-
ical world used by online reputation systems. The main difference is that online
reputation systems are supported by extremely efficient network and computer sys-
tems. While reputation formation in the physical world is mostly limited to local
communities, online reputation systems have no geographical limits.
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Reputation systems collect information about the performance of a given entity
asratings from other community participants who have had direct experience with
that entity. In the typical case of centralised reputation systems, the reputation centre
collects all the ratings and derives a reputation score for every party. The reputation
scores are published online so that they represent the public reputation of every
party in the community. Participants can then use each other’s scores, for example,
when deciding whether or not to transact with a particular party. The idea is that
transactions with reputable parties are likely to result in more favourable outcomes
than transactions with disreputable parties.

Fig.1 shows a typical centralised reputation system architecture, viemd B
denote parties with a history of transactions in the past, and who consider transacting

with each other in the present.
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Fig. 1 General reputation system architecture

Fig.1.a shows that the parties pite ratings about each other’s performance
after each transaction. The reputation centre collects ratings from all the agents,
and continuously updates each agent’s reputation score as a function of the received
ratings.

Fig.1.b shows that updated reputation scores are provided online for all the par-
ties to see. These are used by p@gndB to decide whether or not to transact with

each other.
Two fundamental elements of reputation systems are:

1. Communication protocolthat allow participants to provide ratings about trans-
action partners to the reputation centre, as well as to obtain reputation scores of
potential transaction partners from the reputation centre.

2. A reputation computation enginesed by the reputation centre to derive reputa-
tion scores for each participant, based on received ratings, and possibly also on
other information.

This paper focuses on the reputation computation engine. Bayesian reputation
systems represent a type of mathematically sound and well studied computation en-
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gines. We have previously proposed and studied binomial and multinomial Bayesian
reputation systems [3, 4, 5, @inomial reputation systems allow ratings to be ex-
pressed with two values, as either positive (ga@pd) or negative (e.dpad). Multi-
nomial reputation systems allow the possibility of providing ratings with graded
levels such as e.gnediocre - bad - average - good - excellent. In addition, multi-
nomial models are able to distinguish between the case of polarised ratings (i.e.
a combination of strictly good and bad ratings) and the case of only average rat-
ings. The ability to indicate when ratings are polarised can provide valuable clues to
the user in many situations. Multinomial reputation systems therefore provide great
flexibility when collecting ratings and providing reputation scores.

However, it is common that the subject matter to be rated is measured on a con-
tinuous scale, such as time, throughput or relative ranking, to name a few examples.
Even when it is natural to provide discrete ratings, it may be difficult to express that
something is strictly good or average, so that combinations of discrete ratings, such
as“average-to-good"would better reflect the rater’s opinion. Such ratings can then
be considered continuous. To handle this, it is important to have a sound and con-
sistent method for including continuous measures as normal ratings in reputation
systems. This paper investigates principles for including ratings based on continu-
0ous measures in reputation systems, and combining them with traditional discrete
measures. We show that this can be done through membership functions in the same
way as fuzzy set membership is computed in traditional fuzzy set theory.

The rest of the paper is structured as follows. Sec.2 briefly reviews the Bayesian
multinomial model, and Sec.3 describes how to design reputation systems based on
this model. Sec.4 describes how continuous measures can be taken as input ratings in
Bayesian reputation systems, and Sec.5 describes an example of using this method.
Sec.6 concludes.

2 The Multinomial Bayesian Model

This section briefly reviews the principles of the multinomial Bayesian model which
forms the basis for Bayesian reputation systems. For details, see [5, 1].

2.1 TheDirichlet Distribution

Multinomial Bayesian reputation systems allow ratings to be provided lodér
ferent levels which can be considered as a s&k disjoint elements. Let this set
be denoted ag = {Li,...Lx}, and assume that ratings are provided as votes on
the elements of\. This leads to a Dirichlet probability density function over the
component random probability variakpél;), i = 1...k with sample spac9, 1%,
subject to the simple additivity requiremeﬁ‘g1 p(L)=1.
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The Dirichlet distribution with prior captures a sequence of observations of the
k possible outcomes witk positivereal rating parametengL;), i = 1...k, each
corresponding to one of the possible levels. In order to have a compact notation
we define a vectop = {p(L;) | 1 <i <k} to denote th&-component probability
variable, and a vector= {r; | 1 <i <k} to denote th&-component rating variable.

In order to distinguish between tlaepriori default base rate, and theposteriori
ratings, the Dirichlet distribution must be expressed with prior information repre-
sented as a base rate vecarver the state space. This will be called the Dirichlet
Distribution with Prior.

Definition 1 (Dirichlet Distribution with Prior).

LetA = {L3,...Lx} be a state space consistingkahutually disjoint elements. Let

r represent the rating vector over the element4 @ind leta represent the base rate
vector over the same elements. Then the multinomial probability density function
overA is expressed as:

?

I (s (r(Li+CaL _ N
f(p|r,a) = “EELIEALD) e gt catt

k k
iglp(Li) =1 igla(Li) =1 (1)
where! and{
p(Li) > 0,Vi a(Lj) >0,vi.

The vectop represents probability variables, so that for a gipehe probability
densityf(p | r, &) represents their second order probability. The first-order variables
of p represent probabilities of rating levels, whereas the defi§ityr, a) represents
the probability of specific values for the first-order variables. Since the first-order
variablesp are continuous, the second-order probabifity | r, a) for any given
value ofp(L;) € [0,1] is vanishingly small and therefore meaningless as such. It is
only meaningful to computﬁppf f(p(Lj) | r, a) for a given intervalps, pz] and level
L;, or simply to compute the expectation valugot; ). The most natural is to define
the reputation score as a function of the expectation value. This provides a sound
mathematical basis for combining ratings and for expressing reputation scores. The
probability expectation of any of tHerandom probability variables can be written
as:

_r(Li)+Ca(L)
S CHyiar(L)

Thea priori constan will normally be set taC = 2 when auniform distribution
over binary state spaces is assumed. Selecting a larger valQevidresult in new
observations having less influence over the Dirichlet distribution, and can in fact
represent specifia priori information provided by a domain expert or by another
reputation system. It can be noted that it would be unnatural to require a uniform
distribution over arbitrary large state spaces because it would make the sensitivity
to new evidence arbitrarily small.

E(p(Li)|r,a) (2)
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For example, requiring a uniforia priori distribution over a statspace of car-
dinality 100, would forceC = 100. In case an event of interest has been observed
100 times, and no other event has been observed, the derived probability expectation
value of the event of interest will still only be abo%u which would seem totally
counterintuitiveIn contrast, when a uniforra priori distribution is assumed in the
binary case, and the same 100 observations are taken as input, the derived proba-
bility expectation of the event of interest would be close to 1, as intuition would
dictate.

The value ofC determines the approximate number of votes needed for a par-
ticular level to influence the probability expectation value of that level from 0 to
0.5

2.2 Visualising Dirichlet Distributions

Visualising Dirichlet distributions is challenging because it is a density function over
k — 1 dimensions, wherk is the state space cardinality. For this reason, Dirichlet
distributions over ternary state spaces are the largest that can be easily visualised.

With k = 3, the probability distribution has 2 degrees of freedom, and the equa-
tion p(L1) +p(L2) + p(L3) = 1 defines a triangular plane as illustrated in Fig.2.

Fig. 2 Triangular plane

In order tovisualise probability density over the triangular plane, it is convenient
to lay the triangular plane horizontally in they plane, and visualise the density
dimension along the-axis.

Let us consider the example of a reputation system with three discrete rating
levels:L1, Lo andLs (i.e. k = 3). Let us first assume that no other information than
the cardinality is available, meaning that the default base raaélig = 1/3 for
all states, and(L1) =r(L2) =r(L3) =0. Then Eq.(2) dictates that the expected
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a priori probability of picking a ball of any specific colour is the default base rate
probability, which is%. Thea priori Dirichlet density function is illustrated in Fig.3.

Density
f(p[r.a)

20
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Fig. 3 Prior Dirichlet distributionin case of three rating levels

Let us now assume that ratings have been giver(lag) = 6, r(L») = 1, and
r(Ls) = 1. Then thea posterioriexpected probability of level; can be computed
as Ep(L1)) = 2. Thea posterioriDirichlet density function is illustrated in Fig.4.

3 The Dirichlet Reputation System

Multinomial Bayesian systems are based on computing reputation scores by statis-
tical updating of Dirichlet Probability Density Function (PDF). This can be called
Dirichlet reputation system [5]. The posteriori(i.e. the updated) reputation score

is computed by combining theepriori (i.e. previous) reputation score with the new
rating. The same principle is also used for binomial Bayesian reputation systems
based on the Beta distribution [2, 4, 6, 7].

In Dirichlet reputation systems, an agent is allowed to rate another agent or ser-
vice, with any level from a set of predefined rating levels, and the reputation scores
are not static but will gradually change with time as a function of the received rat-
ings. Initially, each agent’s reputation is defined by the base rate reputation which
is distributed evenly among all agents. After evidence about a particular agent is
gathered, its reputation will change accordingly. Moreover, the reputation score can
be represented on different forms.
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Fig. 4 A posterioriDirichlet distritution after 6L1-ratings 1L-rating and 1L3-rating

3.1 Collecting Ratings

A general reputation system allows for an agent to rate another agent or service,
with any level from a set of predefined rating levels. Some form of control over what
and when ratings can be given is normally required, such as e.g. after a transaction
has taken place, but this issue will not be discussed here. Let théeelifferent
discrete rating levels. This translates into having a state space of cardinédity

the Dirichlet distribution. Let the rating level be indexedib¥he aggregate ratings

for a particular agent are stored as a cumulative vector, expressed as:

Ry = (Ry(Li) |i=1...K) . 3)

The simplest way of updating a rating vector as a result of a new rating is by
adding the newly received rating vectotto the previously stored vectd®. The
case when old ratings are aged is described in Sec.3.2.

Each new discrete rating of agegry an agenxk takes the form of a trivial vector
ry where only one element has value 1, and all other vector elements have value 0.
The indexi of the vector element with value 1 refers to the specific rating level.

3.2 Aggregating Ratings with Aging

Ratings may be aggregated by simple addition of the components (vector addition).
Agents (and in particular human agents) may change their behaviour over time,
so it is desirable to give relatively greater weight to more recent ratings. This can
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be achieved by introducing a longevity factoe [0, 1], which controls the rapidity
with which old ratings are aged and discounted as a function of time. With0,
ratings are completely forgotten after a single time period. With 1, ratings are
never forgotten.

Let new ratings be collected in discrete time periods. Let the sum of the ratings
of a particular ageny in periodt be denoted by the vectoy;. More specifically, it
is the sum of all ratings;; of agenty by other agents during that period, expressed

by:
Myt = ry 4)
XE%y_t Y

whereMy; is the set of all agents who rated aggluring period.

Let the total accumulated ratings (with aging) of aggafter the time period
be denoted byry;. Then the new accumulated rating after time petiedL can be
expressed as:

Ry t+1) =A Ryt +ry¢41), where 0< A < 1. (5)

Eq.(5) represents a recursive updating algorithm that can be executed once every
period for all agents. Assuming that new ratings are received betweert tmg
timet 4 n, then the new rating can be computed as:

Ry,(t+n) =A". Ry,t + ry’(Hn) ,0<A <L (6)

3.3 Convergence Values for Reputation Scores

The recursive algorithm of Eq.(5) makes it possible to compute convergence values
for the rating vectors, as well as for reputation scores. Assuming that a particular
agent receives the same ratings every period, the Eq.(5) defines a geometric series.
We use the well known result of geometric series:

. 1
M=—" for—1<A<1. 7
JZD Ty for <A< (7)

Letry represent the rating vector of aggrfior each period. The Total accumu-
lated rating vector after an infinite number of periods is then expressed as:

Ryw = 1r_—y)\, where 0< A < 1. (8)

Eq.(8) shows that the longevity factor determines the convergence values for the
accumulated rating vectors.
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3.4 Reputation Representation

A reputation score applies to member agents icommunityM. Before any evi-
dence is known about a particular aggnits reputation is defined by the base rate
reputation which is the same for all agents. As evidence about a particular agent is
gathered, its reputation will change accordingly.

The reputation score of a multinomial system can be represented on different
forms, which can bevidence representatiodensity representatiomrmultinomial
probability representation, gpoint estimate representation. Each form will be de-
scribed in turn below.

3.4.1 Evidence Representation

The most direct form of representation is to simply express the aggregate evidence
vectorRy. The amount of ratings of levefor agenty is denoted byRy(L;).

It is not necessary to express individual base rate vectors, as it will be the same
for all agents.

3.4.2 Density Representation

The reputation score of an agent can be expressed as a multinomial probability den-
sity function (PDF) in the form of Eq.(1). For ternary state spaces, the PDF can be
visualised as in Fig.4. Visualisation of PDFs for state spaces larger than ternary is
not practical.

3.4.3 Multinomial Probability Representation

The most natural is to define the reputation score as a function of the probability
expectation values of each element in the state space. The expectation value for
each rating level can be computed with Eq.(2).

Let R represent a target agent’s aggregate ratings. Then the \&dédined by:

Ry(Li)+Ca(l) .
: L)=-L"UT=2 521 k) . 9
S (Sy( ) C+3 L Ry(L) i ) (9)

is the corresponding multinomial probability reputatgnore. As already stated,
C = 2 is the value of choice, but larger value for the cons@uotn be chosen if a
reduced influence of new evidence over the base rate is required.

The reputation scor® can be interpreted like a multinomial probability measure
as an indication of how a particular agent is expected to behave in future transac-
tions. It can easily be verified that
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k
le(l-i) =1. (10)
i=

The multinomial reputation score can for examplke visualised as columns,
which would clearly indicate if ratings are polarised. Assume for example 5 lev-
els:

L; : Mediocre,
L, : Bad,
Discrete rating levels: L3 : Average, (12)
L4 : Good,
Ls : Excellent.

We assume a default base rate distribution. Before any ratings have been received,
the multinomial probability reputation score will be equal to 1/5 for all levels. Let us
assume that 10 ratings are received. In the first casayéi@dgeratings are received,
which translates into the multinomial probability reputation score of Fig.5.a. In the
second case, 5 mediocre and 5 excellent ratings are received, which translates into
the multinomial probability reputation score of Fig.5.b.

1 1
0.8+ 0.8
0.6 0.6
0.4 04T il
0.2+ 0.2

0-F 0

1 2 3 4 5 1 2 3 4 5
(a) After 10 average ratings (b) After 5 mediocre and 5 excellent rat-
ings

Fig. 5 lllustrating score difference resulting froaverage and polarised ratings

With a binomial reputation system, the difference between these two rating sce-
narios would not have been visible.

In case an agent receives the same ratings every period, the reputation scores
will converge to specific values. These values emerge by inserting the convergence
values of Eq.(8) into Eq.(9). Let, be the constant ratings that aggneceives every
period. The convergence score value for each rating i@zl then be expressed as:

_ A-ry(Li)+(1—-A)Ca(Ly)
(L-M)C+AFNqry(Ly)

Sy (Li) (12)

In particular it can be seen that when no ratings are received (iis.the null
vector), then the convergence score value for each level is simply the base rate for
that level.
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3.4.4 Point Estimate Representation
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Fig. 6 Sliding windows

While informative, the multinomial probabilityepresentation can require con-
siderable space to be displayed on a computer screen. A more compact form can be
to express the reputation score as a single value in some predefined interval. This
can be done by assigning a point valuéo each rating level, and computing the
normalised weighted point estimate score

Assume e.gk different rating levels with point values evenly distributed in the
range [0,1], so thav(L;) = % The point estimate reputation score is tloem-
puted as:

k
UZ_ZV(Li)S(Li)- (13)

However, this point estimate removes information, so that for example the differ-
ence between the average ratings and the polarised ratings of Fig.5.a and Fig.5.b is
no longer visible. The point estimates of the reputation scores of Fig.5.a and Fig.5.b
are both 0.5, although the ratings in fact are quite different. A point estimate in
the range [0,1] can be mapped to any range, such as 1-5 stars, a percentage or a
probability.

3.5 Dynamic Community Base Rates

Bootstrapping a reputation system to a stable and conservative state is important. In
the framework described above, the base rate distribatwitl define initial default
reputation for all agents. The base rate can for example be evenly distributed, or
biased towards either a negative or a positive reputation. This must be defined by
those who set up the reputation system in a specific market or community.

Agents will come and go during the lifetime of a market, and it is important to be
able to assigh new members a reasonable base rate reputation. In the simplest case,
this can be the same as the initial default reputation that was given to all agents
during bootstrap.
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However, it is possible to track the average reputation score of the whole com-
munity, and this came used to set the base rate for new agents, either directly or
with a certain additional bias.

Not only new agents, but also existing agents with a standing track record can get
the dynamic base rate. After all, a dynamic community base rate reflects the whole
community, and should therefore be applied to all the members of that community.

The aggregate reputation vector for the whole community at tioa be com-
puted as:

Rmt = Ryt (14)
yi€

This vector then needs to be normalised to a base rate vector as follows:

Definition 2 (Community Base Rate).Let Ry be an aggregate reputation vector
for a whole community, and l&dy ; be the corresponding multinomial probability
reputation vector which can be computed with Eq.(9). The community base rate
as a function of existing reputations at tirne 1 is then simply expressed as the
community score at time

am,(t+1) = SMyt- (15)

The base rate vector of Eq.(15) can be given to every new agent that joins the
community. In addition, the community base rate vector can be used for every agent
every time their reputation score is computed. In this way, the base rate will dynam-
ically reflect the quality of the market at any one time.

If desirable, the base rate for new agents can be biased in either negative or
positive direction in order to make it harder or easier to enter the market.

When base rates are a function of the community reputation, the expressions for
convergence values with constant ratings can no longer be defined with Eq.(8), and
will instead converge towards the average score from all the ratings.

4 Taking Continuous Ratings

This section describes a method for taking continuous ratings as a basis for input to
multinomial and binomial Bayesian reputation systems.

4.1 The Multinomial Case

For a multinomial reputation system withdiscrete levels, the parameters of the
Dirichlet distribution are. Our method is based on a sliding window for determin-
ing the discrete rating as a function of the continuous rating.
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In general, when there akerating levels, the parametefig L1),r (L2),...,r (Lk))
can be computed as a function of the continuous rajiagcording to fuzzy trian-
gular membership functions.

Let each rating level; be a fuzzy subset, and each ratopg assigned a mem-
bership grade(L;,q) taking values if0,1], with r(L;,q) =0 corresponding to non-
membership irL;, 0 < r(L;j,q) < 1 to partial membership ih;, andr(L;,q) =1
to full membership irL;. According to the above analysis, the fuzzy set triangular
membership functions can be expressed in terms of Eq.(16), Eq.(17), and Eq.(18).

Membership function fok :
1-q(k—-1) IF 0<q<
16
f(L1,q) = { (16)

0 ELSE

Membership function fok; where 1< i < k:
i—qk-1) IF fog<a< gy

r(Li,a) =q2—i+qk—1)IF (<|‘(:21>)qu <(|'<:11)) 17)
0 ELSE
Membership function foky :

2-k+q(k-1) IF (=5 <q<1 (8

r(Lx,q) =
0 ELSE

For example with fie rating levels the sliding window function can be illustrated
as in Fig.6.

The continuoug-value determines the position of the sliding window. The rela-
tive overlap between the window and a specific level determinasvhéie for that
level.

As an example, Fig.6 indicates the continuous vajue3/8, which causes the
sliding window to overlap with rating levels, andLs. It can be seen that= 3/8
results in the level rating vector expressed by:

I’(L1> =00

Discrete level ratings (Lz) =05
resulting fromg = 3/8: f(Ls)=05 (19)

| r(La) =00

f(Ls) = 0.0

Theser-ratings can then be fed into the reputation system described in Sec.3.

Visualisation of fuzzy membership functions provide an alternative way of in-
tuitively deriving the discrete level ratings. The fuzzy membership functions in the
case of 5 discrete rating levels are illustrated in Fig.7.
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Fig. 7 Fuzzy triangular membership functions

A discrete rating vector derivefdlom a continuous measure will have either one
or two vector elements with positive value, where the sum is always one. This prop-
erty emerges from the formal expressions of Eqgs.(16), (17) and (18). The same prop-
erty becomes immediately obvious through the visualisation of the fuzzy member-
ship functions in Fig.7.

4.2 The Binomial Case

The binomial case is simply a special case of the multinomial casdriet) be
the parameters of the Beta distribution. lgdbe the continuous rating in the range
[0,1]. Then(ry,r2) can be determined by the fuzzy set membership function

r(aq)=1-q
20
{ ra(d) =9 (20)

For every continuous rating, we can compute its membership value to each rat-
ing level, and then taking this membership value to be the rating of that level. The
Eq.(4)-- Eq.(13) are the same with continuous ratings, and the paraméteal-

lowed to be any number between 0 and 1, but not limited to be 0 and 1.

5 Example

In this example, agents can be rated on continuous measures in the@digend
the reputation system has 5 discrete levels, with base rates evenly distributed. Let an
agent be rated over 10 time periods as expressed in Table 1. The longevity factor is
settoA =0.9.

Computing the rating levels with Eqgs.(16), (17), and (18), we can get the level
ratings expressed in the middle row of Table 1.

Then applying Eq.(9), we can get the corresponding multinomial reputation
scores in the bottom row of Table 1. The same scores are visualized as a function of
the time period in Fig.8.
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Time Period 0 1 2 3 4 5 6 7 8 9 10
Continuous ratings: 0.05 0.05 0.05 0.00 0.10 0.90 0.80 0.80 0.80 0.90

Level ratings ! 1 ! 1 ! ! ! [ ! !

L1 0.8 0.8 0.8 1.0 0.6

Lo 0.2 0.2 0.2 0 0.4

L3

La 04 0.8 0.8 0.8 0.4
Ls 0.6 0.2 0.2 0.2 0.6
Level scores | 1

L1 02 04 04923 05452 06161 05998 04982 04209 03604 03121 02728
Lo 02 02 02 02 0163202033 01728 01496 01315 01170 01052
L3 0.2 01333 01026 00849 00735 00656 00598 00554 00520 00492 00470
La 0.2 0.1333 01026 00849 00735 00656 01197 02162 02916 03519 03540
Ls 0.2 01333 01026 00849 00735 00656 01496 01580 01645 01698 02210

Table 1 Scalar ratings translated into level ratings that in turn generate level scores

B O B2 B @O @ oo @ ol

Scores

Levels

Fig. 8 Evolution of an agent’s reputation scores after the rating sequence of Table 1

It can be seen that the firite periods are characterised by very low continuous
ratings, resulting in the score fbg increasing rapidly. Then in the five last periods,
the continuous rating is relatively high, resulting in increasing scorels;fandLs
and decreasing scores fof, L, andLs.
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6 Conclusion

Bayesian reputation systems normally take discrete raéingsput. This could rep-
resent a limitation to the applicability of such reputation systems when the observa-
tions to be rated are continuous in nature. This paper focuses on transforming con-
tinuous ratings into discrete ratings by using fuzzy set membership function. This
work makes the Bayesian reputation systems more practical and generally appli-
cable. The traditional reputation system principles such as aggregating rating with
aging, convergence value for reputation scores, methods for reputation representa-
tion, and dynamic community base rates are equally applicable both with discrete
and continuous ratings.
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