
An Intensional Functional Model of Trust∗

Kaiyu Wan and Vasu Alagar

Abstract Computers have been in use for many years to build high confidence sys-
tems in safety-critical domains such as aircraft control, space transportation and
exploration, and nuclear power plant management. However, due to the recent rush
in developing ubiquitous and pervasive computing applications and a demand from
across the world to access information from shared sources, the mosaic of comput-
ing ecosystem has undergone a radical change. It is in this context that computing
has to be made trustworthy. To build and manage a trustworthy system it is neces-
sary to blend and harmonize socially acceptable and technically feasible norms of
trust. This in turn requires a generic formal model in which trust categories can be
specified, trusted communication can be enabled, and trustworthy transactions can
be specified and reasoned about. In this paper we introduce a formal intensional
model of trust and suggest how it can be integrated into a trust management system.

1 Introduction

Trust is a broad social concept, which defies a precise definition. We generally un-
derstand what trust is not when the outcome of an event or a transaction or an action
is not something that we expected. In almost all societies trust is related to hon-
esty, truthfulness, reliability, and competence. But none of these attributes can be
precisely stated for use in automatic computing systems. The Oxford Reference

Kaiyu Wan
Department of Computer Science, East China Normal University, e-mail: kywan@cs.ecnu.
edu.cn

V. Alagar
Department of Computer Science and Software Engineering, Concordia University, e-mail:
alagar@cs.concordia.ca

∗ The research is supported by a grant from Natural Sciences and Engineering Research Council,
Canada.



Dictionary (ORD) states that trust is “the firm belief in the reliability or truth or
strength of an entity.” The European Commission Joint Research Center (ECJRC)
[11] defines trust as the “property of a business relationship, such that reliance can
be placed on the business partners and the business transactions developed with
them.” Putting together both definitions and abstracting it we see that trust notion is
a fundamental requirement for reliance. The definitions also suggest that trust is a
relation between (groups of) entities, and the attributes that associates a value to it
are reliability, truth, integrity (strength), (reliance) security. In this paper we refine
this definition and provide a formal of it in order that trustworthy computing systems
can be rigorously developed and trust management systems (TMS) can administer
trust policies uniformly across different applications.

Grandison and Sloman [9] have provided a survey of trust in internet applica-
tions. Trust is thereby classified according to the different contexts in which services
are demanded. Without defining what a context is, they have considered access to a
trustor’s resources, certification of trustees, delegation, and infrastructure trust as
four possible contexts. As a consequence the classification may be regarded only as
ad hoc. In this paper we use context in its full formality, as was first introduced by
Alagar [3], and subsequently refined by Wan [16]. In the formal trust model that
we define context is a parameter to a higher order function that defines trust. We
call the function intensional for reasons explained below. The term “intension” has
a different meaning from the term “intention” (an aim or plan), as explained below.

Intensional logic is a branch of mathematical logic used to precisely describe
context-dependent entities. According to Carnap, the real meaning of a natural lan-
guage expression whose truth-value depends on the context in which it is uttered is
its intension. The extension of that expression is its actual truth-value in the different
possible contexts of utterance. For an instance, the statement “The capital of China
is Beijing” is intensional because its valuation depends on the context (here is the
time) in which it is uttered. If this statement is uttered before 1949, the extensions
of this statement are False (before 1949 the capital was Nanjing). However, if it is
uttered after 1949, the extensions of this statement are True. Thus the real meaning
of an expression is a function from contexts to values, and the value of the intension
at any particular context is obtained by applying context operators to the intension.
Basically, intensional paradigm provides intension on the representation level, and
extensions on the evaluation level. Hence, intensional paradigm allows for a more
declarative way of specifying trust and programming it without loss of accuracy.

McKnight and Chervany [13] have given a typology for classifying trusting be-
havior in domains such as sociology, psychology, political sciences, and manage-
ment. A trusting behavior, when expressed in natural language and semantically
interpreted through Carnap’s intensional logic, becomes an intensional statement.
The six-fold classification of trusting behavior of an entity a, called trustor, on an-
other entity b, called trustee, given by McKnight and Chervany [13] are (1) dis-
position (an entity a is naturally inclined to trust, (2) situation (an entity a trusts
b in a particular scenario, (3) structure (entity a trusts the structure (institution) of
which the entity b is a member), (4) belief (entity a believes that b is trustworthy),
(5) behavior (entity a voluntarily depends on entity b), and (6) intention (entity a is

68          K. Wan et al.



willing to depend on entity b). McKnight and Chervany [13] have also classified the
behavior of trustees in categories. The most relevant reasons for trusting b are com-
petence, benevolence, integrity, or predictability. The natural language statements
corresponding to these trusting behaviors have a natural intensional logic interpre-
tation.

In our formalism, context is multi-dimensional and is much more general and
expressive than the situational notion. The intensional functional definition of trust
has context as a parameter, and has the expressive power to express the six-fold
trusting behavior categories. Hence, trust contexts and trust categories that we define
in this paper are not to be confused with the trusting behavior categories. However,
our trust model can be integrated into the application environments of the domains
considered by McKnight and Chervany [13].

With respect to our formalism itself, the two most relevant related works are the
seminal work of Weeks [19] and Carbone [5]. Weeks first recognized least fixed
point as a way to compute global trust, assuming a complete partial order of the trust
domain. Carbone strengthened the work of Weeks by adding information ordering
to trust value ordering. According to Carbone, trust value ordering is to measure
the degree of trustworthiness, while information ordering is to measure the degree
of uncertainty present in the information content on which trust is based. Informa-
tion ordering enables the refinement of trust values. In [8] the notion of context is
recognized as important for trust management, however no formal treatment of it
has been attempted. Context formalization has found applications in different ap-
plication domains, such as language design, multi-agent systems, and system secu-
rity [3, 18, 17]. The distinct properties of our formalism are the following: (1)Trust
definition is intensional. The benefits of an intensional model are explained earlier;
(2) Trust values are restricted to a domain which is a complete partial order (cpo)
and a lattice and a metric space. This allows formalizing the degree of trust and trust
measure; (3) Trust calculation formulas are automatically developed based on for-
mal context calculus. Thus subjectivity in calculation is eliminated; (4) Global trust
computation is both context dependent and dynamic. Thus, during delegation the
principals should adhere to the specific context in which the cooperation is sought
and the global trusting rules that are relevant to that context; and (5) Homomor-
phism between trust domains (chosen by participants) must exist, otherwise global
trust can not be defined. This property is particularly important for distributed sys-
tems.

2 Formal Trust Model

We start with a set of requirements for trust. Trust is relation between a trustor, the
subject that trusts a target entity, and a trustee, the entity that is trusted. It is possible
to measure the level of trust, called trust value, of a trustor on a trustee in any given
context. Trust values must be comparable. It must be possible to manipulate trust
values across different contexts, and aggregation of contexts. It should be possible

An Intensional Functional Model of Trust          69



to refine trust values, going from a general (specific) to a specific (general) context. It
must be possible to express indirect trust relations and compute indirect trust values
between a trustor and a trustee. It must be possible to ground the theoretical results in
practice. A formal model that fulfills the above requirements must be comprehensive
enough to cover most of the trust categories [13]. This is an important requirement
because in a practical application more than one trust category will arise.

A number of choices exist in choosing a relation model of trust. The model de-
pends on the inclusion/exclusion of the properties reflexive, symmetric, and transi-
tive. In addition, it is also possible to allow or disallow one of the properties one-
to-many, many-to-one and many-to-many. The choice is essentially dictated by the
application domain. We get around this web of choices by choosing an intensional
function definition for assigning trust value. We require the domain of trust values,
hereafter called trust domain, to be a lattice with a minimum element. We turn the
trust domain into a metric space. This will enable us to compare trust values and
compute trust values from trust expressions. We define trust categories, motivate
how contexts may be constructed within a trust category and arrive at extensions to
the intensional trust definition within each category.

2.1 Intensional Function Definition

Trust involves entities (E ), their interactions (I ) and policies (P). An active en-
tity, called a principal (or an agent), can initiate a transaction, negotiate a deal, and
communicate its intentions. A passive entity is a resource which can only be acted
upon by an active entity. Data stores, files, printers, and programs are passive enti-
ties. An interaction is always initiated by an active entity. A human being accessing
the internet, a program that reads data from a data base, and a component request-
ing a service from another component are examples of typical interactions. When
an entity a requests service from another entity b, there is an implicit trust involved
in that a trusts in the ability of b to provide the requested service. The credentials of
the service provider, in this case b, and the contract announced by b that binds the
service are convincing enough for a to trust b. Credentials and contracts, similar to
utterances as explained earlier, are declarative statements. Trust is usually not abso-
lute, it is always relative and contextual. Consequently declarative trust statements
are regarded as intensions. That is, a trust statement (policy) must be evaluated at
different contexts to extract their extensions. Hence, the hypothesis that a policy, al-
though will be stated declaratively, will always be applicable to one or more specific
contexts, is both fair and sound. This is the rationale for formally introducing con-
text (C ) as another modeling element. Context and contextual information provide
the qualitative aspect of trust, and trust domain (D) provides the quantitative aspect
to the model. That is, the information in the context justifies the trust value assigned.
A formal treatment of context appears in [17], and a logic of reasoning with context
for multi-agent systems appears in [16]. We briefly summarize the most relevant
results in section 3.

70          K. Wan et al.



2.1.1 Properties of Trust Domain

We require that the elements of a trust domain, also called trust values, are chosen
as the most appropriate ordinal type to indicate the level (degree) of trust of a on b
in a context c. Trust values can be either simple values, such as numbers or symbols,
or vectors. The numeric values themselves may be either discrete, such as natural
numbers or rational, or continuous such as real values. If symbols are used then we
regard it as an enumerated type, the order being implicit in the enumeration. As an
example, in the enumeration {hold,sell}, the degree of trust in sell recommendation
is higher than the degree of trust in hold recommendation. Real numbers, natural
numbers, and rational numbers are totally ordered sets, and hence degree of trusts
are comparable. In the case of vector values, it is necessary to define an ordering. In
general, it is sufficient to require that the trust values are partially ordered, which is
the weakest relation necessary to compare an element with at least one other element
in the set.

2.1.2 Partial Order

Assume that' is a reflexive partial order defined on D . Consequently trust relation-
ship is transitive, which goes against the opinion expressed in [15]. Since context
was not a factor in previously published trust definitions the transitivity property
promoted a wide open trust delegation policy, which was not always desirable. Be-
cause of the introduction of context, transitivity is constrained to contexts that are
compatible and delegation can be enabled only in such contexts. As an example,
if Alice delegates her trust decisions to Bob in the context of installing a virus
protection software in her computer, and Bob trusts Cathy in the context of Linux
installation, then the installation of virus protection cannot be delegated to Cathy.
We also remark that computing transitivity is part of global trust computation and it
should not change the local trust policies of any entity. With these safeguards, the
partially ordered domain (D ,') is quite safe. We also require (D ,') to have a least
element ⊥, in the sense that ∀d ∈ D , ⊥' d. An ω-chain on (D ,') is a monotone
function ι : ω → D , where ω is the set of natural numbers. That is in the sequence
ι = (ιn)n∈ω , ι1 ' ι2 ' . . . ιn. An element ιu ∈ D such that ιk ' ιu, k = 1, . . . ,n is
called a least upper bound (lub) of ω . In order that (D ,') be a cpo every ω-chain
in it must have a least upper bound. Interpreting ⊥ to mean “undefined trust value”
the function defined below becomes a total function.

Definition 1 The function, τ : E × E ×C → D associates for a,b ∈ E , and c ∈
C a unique element d ∈ D , called the trust that a has on b in context c. That is,
τ(a,b,c) = d. The function τ is context-dependent and expresses the trust intension
in different contexts. So we call τ an intensional function. 2

An Intensional Functional Model of Trust          71



2.2 Further Properties of Trust Domain

By imposing a metric, in addition to a partial order, we can measure the disparity
between two trust levels. Finally, we also define a homomorphism between trust
domains in order that trust value from one domain may be carried into the other trust
domain. In a distributed system, where each site may have a different trust domain,
without a homomorphic mapping it is not possible to calculate and compare trust
globally.

2.2.1 Metric Space

Let (D ,') be a cpo. We define a total monotone function ρ :: D→ω which assigns
a non-negative integer value to each trust value such that for d1,d2 ∈D

• if d1 ' d2 then ρ(d1)≤ ρ(d2), and
• for every ω-chain ι : ω →D , ρ(ι1)≤ ρ(ι2)≤ . . .ρ(ιn).

The function δ : D ×D → ω defined by δ (d1,d2) =| ρ(d1)−ρ(d2) | satisfies the
properties

• δ (d1,d2)≥ 0
• δ (d1,d2) = δ (d2,d1), and
• for d1,d2,d3 ∈D , δ (d1,d3)≤ δ (d1,d2)+δ (d2,d3)

Hence (D ,ρ,δ ) is a metric space. The usefulness of this exercise is clear when we
want to quantify the disparity between d1 = τ(a,b,c) and d2 = τ(a,b,c′), which is
precisely δ (d1,d2). If d1 < d2, then by going from context c to context c′, a’s trust in
b has increased by the amount δ (d1,d2). That is, metrication helps to reason about
trust refinement and trust evolution.

2.2.2 Homomorphism

The trust domain may be chosen differently by different developers for the same
application domain. In a distributed network, each local site may have a different
trust domain. In order that trust values across sites can be compared and global trust
computed it is necessary that the homomorphism f , defined below, is a continuous
function on the ω chains.

f : (D ,',ρ)→ (D ′,'′,ρ ′)

• for d1,d2 ∈D , f (d1 ' d2) = f (d1)'′ f (d2)
• f (⊥) =⊥′,
• f (ρ(d1,d2)) = ρ ′(f (d1), f (d2))

Theorem 1 For every ω-chain ι in (D ,'), ι ′ = f (ι) is a ω-chain of (D ′,'′), and
f (ιu) = ι ′u,

72          K. Wan et al.



Proof: Since ι : ω→D is monotonic and f is continuous the composition f ◦ ι is
monotonic. But, ι ′ : ω →D ′ satisfies the equation ι ′ = f ◦ ι . Hence ι ′ is monotonic.

Theorem 2 Let τ : E ×E ×C → D and τ ′ : E ×E ×C → D ′ be two intensional
functions that give the trust values on the trust domains D and D ′. Then f ◦ τ = τ ′

Proof: The proof follows from the two facts f ◦ρ = ρ ′ and f ◦ ι = ι ′.

2.3 Trust Expressions

By requiring that every subset S ⊂ D has a least upper bound (lub) and a greatest
lower bound (glb) in D we turn the trust structure to a complete lattice. For d1,d2 ∈
D , we write lub(d1,d2) = d1 ∨ d2 and glb(d1,d2) = d1 ∧ d2. In general lub(S ) =∨

d∈S d and is written
∨

S . Similarly, glb(S ) =
∧

d∈S d, and is written
∧

S . We
also define ρ(d1∧d2) = min{ρ(d1),ρ(d2)}, and ρ(d1∨d2) = max{ρ(d1),ρ(d2)}.
In general, ρ(glb(S )) = mind∈S {ρ(d)} and ρ(lub(S )) = maxd∈S {ρ(d)}. A trust
expression over (D ,',ρ) is defined by the syntax τe = d | τe ∨ τe | τe ∧ τe. An ex-
pression τe is evaluated from left to right. In an evaluation we let d∨⊥ = d, and
d∧⊥ = ⊥. Thus every expression uniquely evaluates to a trust value d ∈ D , and
hence a unique ρ(d), although not every expression can be assigned a meaning.
As an example, the expression τ(a1,b,c)∧ τ(a2,b,c) represents the trust level that
both a1 and a2 can agree upon the entity b in context c. However, the expression
τ(a1,b1,c1)∨ τ(a2,b2,c2), where a1 6= a2, b1 6= b2, and c1 6= c2 has a unique value
in D , but the value is hard to interpret in a meaningful way. With this extension we
can write many other trust expressions of the form τe∨ (

∧
S ), τe∧ (

∨
S ).

3 Trust Contexts - a formalization

In this section we discuss the notion of trust contexts (TC), motivate the need to
formalize this notion in a discussion of trust modeling, and their importance in trust
management. We follow the formal definition of context, the syntax for context
representation, and review the basics of context calculus given by Wan in [17].

In [9] trust is defined as “the firm belief in the competence of an entity to act in-
dependently, securely, and reliably within a specified context”. It is observed in [8, 9]
that “the notion of context is important in the SECURE trust model”. In the former,
context is not defined. In the later, trust is regarded as a multi-dimensional quantity
and the different dimensions are called trust contexts. However, no formal treatment
of context is attempted. The definition of context in [17] includes dimensions, and
tags (indexes) along the dimensions. The term “dimension” used by Dimmock ectal;
[8] essentially refers to a knowledge domain, as suggested by the statement “...by
analogy, a person who is trusted to drive a car may not be trusted to fly a plane.” In
the above statement “driving a car” and “flying a plane” are defined as dimensions
by Dimmock [8]. However in the work of Wan [17] “driving a car” and “flying a

An Intensional Functional Model of Trust          73



plane” are regarded as “different worlds of knowledge (information)” and the term
“dimension” is used to systematically break down the structural information content
in each world. For instance, in the world “driving a car” knowledge on the drivers,
cars, and their associations are available. That is, information on the name (N) of
driver, address (A) of the driver, date of issue (DI) of the driving permit, termination
date (DT) of the driving permit, driving status (DS), car type (CT) and restrictions on
the driver (RD) are available. In Wan’s formalization these information categories
are regarded as dimensions. The tag sets and their types for these dimensions are
shown in Table 3.

Dimension Name Tag Set Type
N a set of driver names alpha (string)
A a set of addresses record type (string, string, string)
DI,DT a set of dates record type (int,int,int)
DS a set of discrete values enumerated type

Example:(learner, good, dangerous)
CT a set of car models enumerated type

Example:(mini, compact, sport)
RD a set of restrictions enumerated type

Example: (day-time only, must wear glasses)

Table 1 Dimensions and Tag Sets for “Driving a Car”

We assume that a TMS exists whose major goal is compliance checking. It provides
a systematic, and application-independent framework to managing security policies,
credentials, and trust relationships. When a principal submits a request to perform
an action, the access control manager (ACM) in TMS should dynamically determine
dimensions, construct contexts and provide context-sensitive services that are cor-
rect with respect to the trust policy in that context. A policy usually specifies who is
trusted to do what. In our model we attach a context condition along with a rule, as
explained later.

3.1 Review of Context Formalization

We have motivated in [16] that five dimensions are essential for dynamically con-
structing contexts. These are [1.] perception- who (which entity) provides the ser-
vice or requires the service?, [2.] interaction - what type of service (resource allo-
cation, algorithms for problem solving) is required?, [3.] locality - where to provide
the service?, [4.] timeliness- when to provide the service (what time bounds, or
delay, or duration should be satisfied)?, and [5.] reasoning - why a certain action
is required in providing the service (due to obligation, adaption, or context-aware
requirements)? Example 1 illustrates the construction of contexts and compliance
checking by a TMS.

74          K. Wan et al.



Example 1 Consider the policy Policy1: Either the surgeon a on-duty in a hospital
or any surgeon b whom a trusts can be trusted to perform surgery of patients either
admitted by a or treated by a. This policy is in the “health care” trust category. The
policy refers to physician name, her current status (on-duty or off-duty), patients
admitted by her, and patients under her care. The context for enforcing the policy is
suggested by the above information. The dimensions and their tag sets are are PN (a
finite set of physician names), PS (a finite set of statuses of physicians), WS (a finite
collection of work schedules), PA (a finite set of patients admitted) and PC (a finite
set of patients cared). An example of a context c with these dimensions is represented
in the syntax [PN : Bob,PS : on− duty,WS : 1,PA : Alice,PC : Tom]. This context
describes the setting in which ”physician Bob is on duty on the first day of the week,
admitted Alice and cared for Tom”. To check the compliance of ”Policy1”, the TMS
constructs the current context c1, and retrieves from its database the context c2 in
which the patient was admitted. The physician a1 in context c1 and the physician a2
in context c2 are both trusted to perform the surgery. Assume that the degree of trust
demanded by a1 on another surgeon is at least ε1, and the degree of trust demanded
by a2 on another surgeon is at least ε2. The TMS allows the b1 or b2 as stand-by
surgeon for performing the surgery if ρ(τ(a1,b1,c1))≥ ε1 and ρ(τ(a2,b2,c2))≥ ε2.

What is important is to make clear that “Alice” and “Tom” are patients and not hos-
pital personnel. That is, context definition requires a unique dimension name for
each entity type, because a hospital patient may also be an employee in the hospi-
tal. The set of dimensions and the tag sets for dimensions are usually suggested by
the world knowledge associated with the trust category. In many applications, such
as pervasive computing, contexts must be constructed dynamically in real-time. As
an example, once again consider a hospital environment. Assume every nurse pos-
sesses a hand-held device equipped with sensory and communication capabilities.
As the nurse goes around hospital wards the sensory information gathered by the de-
vice at any instant is transformed into a context. The dimensions for such contexts
may be chosen as CLOC (the ward where the nurse is), NLOC (the next ward to be
visited), TIME (current local time), and DUR (time taken to walk the distance be-
tween the wards). In general, once the dimensions and tags are determined context
is formalized as a typed relation.

Definition 2 Let DIM denote the set of all possible dimensions and TAG denote a
set of totally ordered sets. Let

⋃
TAG be the set of tags for all dimensions in DIM.

The set of all un-typed contexts is
CO = P(DIM×

⋃
TAG)

By letting each set in TAG to assume all possible tag values for some dimension in
DIM we get typed contexts. Let CO? denote the set of non-empty un-typed contexts,
and CT = DIM → TAG be the type of all total surjective functions with DIM as
domain and TAG as range. Let κ ∈ CT. The set

G(κ) = {c | c ∈ CO?∧dom c⊆ dom κ ∧∀(X,x) ∈ c•X ∈ DIM,x ∈ κ(X)}
denotes the set of typed contexts for the given type τ .2

If DIM = {X1, . . . ,Xn} and κ(Xi), i = 1, . . . ,n are respectively the tag sets for Xi,
i = 1, . . . ,n, the syntax for a context is [X1 : x1, . . . ,Xn : xn], where xi ∈ Xi. In the

An Intensional Functional Model of Trust          75



rest of the paper by context we mean a finite non-empty context, and omit explicit
reference to κ unless our discussion demands it. A context in which the dimensions
are distinct is called simple context. It is shown in [17] that a non-simple context
is equivalent to a set of simple contexts. In this paper we encounter only simple
contexts.

operator name symbol meaning precedence
Union t Set Union 3
Intersection u Set Intersection 3
Difference 	 Set Difference 4
Subcontext ⊆ Subset 6
Supcontext ⊇ Superset 6
Override ⊕ Function overwrite 4
Projection ↓ Domain Restriction 1
Hiding ↑ Range Restriction 1
Undirected Range 
 Range of simple contexts with same domain 5
Directed Range ⇀ Range of simple contexts with same domain 5

Table 2 Context Operators and Precedence

3.1.1 Context Calculus

A set of context operators are formally defined by Wan [17]. We review them here,
give examples, and illustrate the evaluation of context expressions. For the sake of
simplicity we assume that tag sets are the set of natural numbers.

Table 2 shows the context operators, their functionalities, and precedences. Ex-
ample 2 illustrates the application of a few context operators.

Example 2 :
Let c1 = [ d : 1, e : 4, f : 3 ], D = { d, e }
c1 ↓ D = [ d : 1, e : 4 ]; c1 ↑ D = [ f : 3 ]
Let c2 = [ e : 3, d : 1 , f : 4], c3 = [ e : 1, d : 3 ]

c2⊕ c1 = [ e : 4, d : 1, f : 3]; c1⊕ c2 = [ e : 3, d : 1, f : 4]
c1	 c2 = [ e : 4, f : 3]; c1u c2 = [ d : 1]
c3 = c1t c2 = [ d : 1, e : 3, e : 4, f : 3, f : 4].
Using the result in [17] c3 can be written as a set of simple contexts:
c3 = {[ d : 1, e : 3, f : 3], [ d : 1, e : 3, f : 4], [ d : 1, e : 4, f : 3], [ d : 1, e : 4, f : 4]}
c2
 c3 = {[ e : 1,d : 1 , f : 4], [ e : 1,d : 2 , f : 4], [ e : 1,d : 3 , f : 4], [ e : 2,d : 1 , f : 4],

[ e : 2,d : 2 , f : 4], [ e : 2,d : 3 , f : 4], [ e : 3,d : 1 , f : 4], [ e : 3,d : 2 , f : 4],
[ e : 3,d : 3 , f : 4]}

c2 ⇀ c3 = {[ d : 1, f : 4], [ d : 2, f : 4], [ d : 3, f : 4]}

76          K. Wan et al.



3.1.2 Context Expression

A context expression is a well-formed expression in which only contexts, context
variables, and context operators occur. A well-formed context expression will eval-
uate to a context. As an example, c3 ↑ D⊕ c1 | c2, where c1 = [x : 3,y : 4,z : 5],
c2 = [y : 5], and c3 = [x : 5,y : 6,w : 5], D = {w} is a well-formed expression. The
steps for evaluating the expression according to the precedence rules shown in Ta-
ble 2 are shown below:

[Step1]. c3 ↑ D = [x : 5,y : 6] [↑ Definition]
[Step2]. c1 | c2 = c1 or c2 [| Definition]
[Step3]. Suppose in Step2, c1 is chosen,
c3 ↑ D⊕ c1 = [x : 3,y : 4,z : 5] [⊕ Definition ]
else if c2 is chosen,
c3 ↑ D⊕ c2 = [x : 5,y : 5] [⊕ Definition]

3.1.3 Trust Context Categories

A trust context category is a set of trust contexts relevant to capture the knowledge
in that category. As an example, the set of contexts {[N : n,DT : t,DS : s] | ct≤ t+6∧
s = learner} belongs to the category “driving a car”. These contexts are relevant to
the action “determine the drivers who were granted learner’s permit within
the last six months (here ct stands for current time)”. A trust category has its own
trust domain which has the structural properties discussed in Section 2.

Every principal will choose its trust categories and submit it to the TMS, who
in conjunction with ACS, has the knowledge and resources to determine the con-
texts for each trust category. For instance, if principal a submits the categories
πa = {πa1 , . . . ,πaka

} to the TMS then for each category πai ∈ πa the TMS will de-
termine a set DIMai = {X1

ai
, . . . ,Xki

ai} of dimensions, and a tag set κ(Xj
ai) for each

dimension Xj
ai ∈ DIMai . Whenever principal a submits a request for action belong-

ing to that category, with the help of the context tool kit, the TMS will construct
contexts that are relevant for the action. In this scheme, the trust categories and con-
texts in those categories of a principal a are known only TMS, ACS, and itself. The
context toolkit is an implementation package of the context calculus. As an example,
using the toolkit the TMS can calculate the set s of simple contexts corresponding
to a non-simple context c. It uses the rule
{s | ∀c′ ∈ s•dim(c′) = dim(c) ∧ (X,x) ∈ c′→ (X,x) ∈ c}

As another example, the TMS can determine the set of contexts such that a given
logical expression is true at every context in that set. To check the compliance with
respect to the policy “A learner should pass road test examination within six
months of the date of expiry of the learner’s permit” the TMS should determine the
contexts where the logical expression (ct≤ t+6∧s = learner) is true. An application
of this policy is warranted when the action “ determine the set L of drivers with

An Intensional Functional Model of Trust          77



a-Dimensions b-Dimensions c-Dimensions
LOC WHERE PLACE

WHEN DATE
WHO NAME USER
WHAT ACTION
WHY PURPOSE

Table 3 Mapping Between Dimensions

learner permit issued within the last six months” is initiated. We call (ct≤ t+6∧s =
learner) a context condition. It is clear that a context condition, in general, may
satisfy a set of contexts. We write ist(α,c) to denote that expression α is true (valid)
in context c. The context condition α for a context c is an assertion on the evidence
relevant to the context c. Example 3 illustrates the usefulness of context conditions.

Example 3 Let Bob trust a driver a if a can be certified to comply with the learner
policy stated above. The degree to which Bob trusts the driving of Alice is at least
as much as his trust on any learner who has complied with learner policy. We can
formally express this trust policy of Bob as

ρ(τ(Bob,Alice,c))≥ minimum{ρ(τ(Bob,a,c))},
where a ∈ L∧ ist(α,c), and α = ct ≤ t +6∧a = learner

After constructing the trust contexts for all categories of a principal the TMS
must resolve conflict among dimension names and construct ontology for “equiva-
lent” dimensions.

• resolve conflicts: A conflict arises when a dimension name is common for two
different categories of a principal and the tag sets of the dimensions are of dif-
ferent types. If these two types are sub types of a super type then the conflict
is resolved by replacing the tag types with the super type. If a super type does
not exist then the conflict is resolved by renaming the dimension in one trust
category.

• ontology: It is possible that some principals have a common trust category, but
the dimension names (with their tag names) chosen by the principals may be
different. The TMS maintains an ontology table in which equivalent dimension
names are listed. An example of the mapping between dimensions chosen by
three principals is shown in Table 3. Informally, dimensions X and Y are equiv-
alent if either they have the same tag set or the types of tag sets can be lifted to
a unique super type. As an example, the dimensions LOC, WHERE, and PLACE
are equivalent under the assumption that they have the “set of city names” as
their tag.

78          K. Wan et al.



4 Trust Calculation

Without loss of generality assume that all trust categories in πa have a common trust
domain, say Da. For a given evidence αi in the context category πai , the trust of a
on b over all contexts in the context category πai that satisfy the evidence αi can be
calculated in more than one way. Let Cai be the set of contexts in the trust category
πai .

• minimum trust: τ l
i (a,b | αi) =

∧
ist(αi,c) ∧ c ∈ Cai

τ(a,b,c)
• maximum trust: τh

i (a,b | αi) =
∨

ist(αi,c) ∧ c ∈ Cai
τ(a,b,c)

• uncertainty: Since trust is not absolute in any context there is an element of
uncertainty associated with the assignment of trust values. The two potential ap-
proaches to deal with uncertainty in trust calculation are based on trust intervals
and trust probabilities.

– trust interval A domain of trust intervals I (Da) is constructed from Da
which is a cpo and a function µ

µ : E ×E ×Cai →I (Da)
that assigns trust values to intervals is defined. This method is followed in [5].
We refine this approach, emphasizing that the interval I (D) must be a sub
interval of the interval [τ l

i (a,b | αi),τh
i (a,b | αi)]

– Probabilistic Model: Trust values are considered as random variables over
the domain Da. With respect to a probabilistic distribution in the trust do-
main Da a probability P(τ(a,b,c) = d) is computed. That is, with probability
P(τ(a,b,c) = d) the degree of trust of a on b is d in context c ∈ Cai . The prin-
cipal a may choose dmax ∈ Da such that dmax = maxd∈Da{P(τ(a,b,c) = d}
is a maximum, and assign it as the trust of a on b in context c. Further, a
can choose a threshold βa, and may decide not to trust b in context c if the
maximum probability is less than βa.

Choosing any one of the above methods to calculate trust, the principal a will have
a trust vector

τ ′(a,b | αa) = 〈τ ′1(a,b | αa1 , . . . ,τ
′
k(a,b | αak〉,

where αa = αa1 ∧αa2 ∧ . . .αak , αai is the evidence for context category πai . The
set {τ ′(a,b | αa) | a ∈ Eb} is the set of trust vectors of principals in E who have
calculated their trust for the participant b. At any instant the collection of all such
vectors is part of the global trust in the system.

4.1 Trust Delegation and Refinement

Assume that α ′ → α , where α and α ′ are context conditions. If ist(α ′,c′), and
ist(α,c), then a trust policy enforced in a context c is quite relevant in context c′

defined by α ′ and should be enforced there. Hence for a principal a and entity b the
trust degree τi(a,b | α ′) is known then we conclude that τi(a,b | α) = τi(a,b | α ′)

An Intensional Functional Model of Trust          79



for trust category πi. In other words, logical implication propagates trust values from
one context to another.
Trust Delegation: We can justify now that trust delegation is a form of trust propa-
gation. Suppose principal a1 has a trust policy “my trust on the entity a3 is the same
as the trust of a2 on a3. Assume that the policy is to be applied by a1 in context
c1, and ist(α1,c1). In context c1, which is local to a1, let τ(a2,a3,c2) = d, and α2
be the justification for computing this trust value. If α2→ α1 the trust propagation
happens, and τ(a1,a3,c1) = d. If α2 9 α1 the trust delegation cannot happen.
Refinement: Refinement refers to calculating a more precise trust value than the
one already available. Informally, the trust of a on b in context c is refined when
either some additional constraints are imposed on the information W(c) or some
additional information becomes available, thus creating a new context c′. Thus the
trust value evolves as well as refined. Refinement need not be monotonic, mean-
ing the addition of new information or the imposition of additional constraints on
existing information may decrease the trust value.

Consider information content refinement by imposing constraints on existing in-
formation. For context c ∈ C , let W(c) denote the world of information referenced
by c. Suppose for contexts c1,c2 ∈ C , the world W(c2) referenced by c2 is a re-
stricted subset of the information in the world W(c1) referenced by c1. The restric-
tion is often imposed by constraints on the entity described in the world W(c1). Then
the information in the world W(c2) is more precise or special than the information
W(c1). This kind of sub-setting can be realized either semantically or syntactically.
In the former case, a logical expression may be used. An example is W(c1) is the set
of physicians and W(c2) is the set of surgeons. In the case of syntactic sub-setting,
more dimensions are added to the set dim(c1) such that the world referenced by
new contexts obtained by the addition of dimensions do not go outside W(c1). For-
mally a context c2 is constructed such that dim(c2) = dim(c1)∪D, where D⊂ DIM
, D∩ dim(c1) = ∅, such that W(c2) ⊂ W(c1) . Thus, the additional dimensions in
the set dim(c2) \ dim(c1) have no extraneous influence on the information along
the dimensions in the set dim(c1), instead it can only constrain it. An example is
the context c2 ⊂ c1, where c2 = [GPS : Newyork,TIME : 10,NS : 12,EW : 3], and
c1 = [GPS : Newyork,TIME : 10], with the interpretation that every event happening
in context c2 can be seen from context c1. Hence, if α is a valid formula in W(c2)
then it is possible to prove in context c1 that α is true in context c2. We define such
a relationship between contexts as visible.

Definition 3 A context c2 ∈ S is said to be visible from context c1 ∈ S, written
c1 � c2, if c1 ⊂ c2 and W(c2)⊂W(c1).2

From Definition 3 it follows that ist(c2,α) ⇒ ist(c1, ist(c2,α)). Consequently, the
current context c1 in which the value τ(a,b,c2) is computed must satisfy the relation
c1� c2. When information is added on to existing information context condition will
change, and consequently contexts will change. For this case we offer a few axioms
for simple situations. We write d′ & d to mean that d′ is the refinement of d.

• arbitrary subset: c1 ⊂ c2⇒ τ(a,b,c2)& τ(a,b,c1)

80          K. Wan et al.



• intersection: τ(a,b,c1)& τ(a,b,c1u c2)
τ(a,b,c2)& τ(a,b,c1u c2)
τ(a,b,c1)∧ τ(a,b,c2)& τ(a,b,c1u c2)

• disjoint union: τ(a,b,c1t c2)& τ(a,b,c1)
τ(a,b,c1t c2)& τ(a,b,c2)
τ(a,b,c1t c2)& τ(a,b,c1)∨ τ(ab,c2)

5 Trust Policy Framework

A trust model must include a formal framework for policy representation and policy
application. A trust policy mentions entities (principals and objects), and suggests
either directly or indirectly a sequence of actions to be done when the rule is fol-
lowed. A Policy may mention a role, in which case it is applied to every entity play-
ing that role. A policy in every trust category is a rule, an intensional statement. An
example trust policy in health care category is a physician can be trusted to access
medical information on the patients under her care. A policy, being a declarative
statement, does not dictate how it should be represented in organizational databases
and how it should be implemented. However we recommend that the policy repre-
sentation include information on where it is applicable.

5.1 Policy Representation

A policy can be represented by a rule H⇐ B, where H is called the head (conse-
quent) of the rule and B is called the body (antecedent) of the rule. In general, the
body of a rule is a conjunction of one or more conditions; no disjunction is allowed
in the body. The head of a rule, expressed declaratively, is an action specification.
We associate a context condition U with each rule to suggest that the rule is appli-
cable in any context that satisfies this condition. By separating the context condition
from the rule we achieve rule generality, and flexibility in the application of the rule.

Example 4 Consider the rule U : ι(x,y,z)== ι(x′,y,z)⇐ ρ(ι(w,x′,z))≥ ρ(ι(w,y,
z)), where the context condition is U ≡ physician(x)∧nurse(y)∧head nurse(w)∧
physician(x′)∧c ∈ C . The rule states that in context c that satisfies the context con-
dition U, physician x trusts nurse y to the same degree that physician x′ trusts y
provided nurse w trusts physician x′ more than the trust she has for nurse y”.

The TMS maintains the policy bases, one for each principal in the system. Let {PBa |
a ∈ E } denote the set of policy bases. The policy bases are secured in the sense that
PBa can be accessed only by the principal a and the ACS within the TMS. For an
efficient processing of transactions, we propose two methods to organize the rules
in each policy base.

An Intensional Functional Model of Trust          81



• partitioning: The set PBa of rules is partitioned so that each subset has poli-
cies associated with a specific trust category. As an example, corresponding to
the trust categories πa of the principal a, the policy base PBa is partitioned into
{PBa1 , . . . ,PBak}.

• Linking Partitions: A rule r :: U : H⇐ B is relevant to the rule r′ :: U′ : H′⇐ B′

if U′→ U. For a rule r ∈ PBai the rules in PBai that are relevant to r are linked.

Following the links and applying the trust propagation rule the global trust can be
computed at any instant. The global state of the TMS at any instant is given by the
elements of the trust model, the organization of the policy base and the global trust
computed from them.

6 Conclusion

The formal trust model proposed in this paper is both new and novel, yet it shares
many properties of other trust models [5]. The basic function that computes trust is
context-specific. This function is made use of in defining trust in trust categories.
The explicit introduction of context in the computation of trust, annotating trust
policies with context conditions, and defining delegation through related contexts
are some of our new results given in this paper. The important benefits in the in-
tensional definition of trust are (1) Context is independent of what it references.
As a consequence, context-based trust definition captures different kinds informa-
tion conveyed by events that happen in a context; (2)Context calculus enables the
construction of new contexts from existing contexts, and the logic of contexts [16]
enables one to reason about the information in the newly constructed context with
respect to the information contents in the contexts from which the new one is con-
structed. As a consequence context-based trust definition is well-suited to handle
trust in dynamic networks, in which contexts and their respective information con-
tents may dynamically change independent of each other; (3) The model becomes
more general and expressive because we incorporate what Grandison and Sloman
[9] and [8] have strongly proposed, but failed to formalize.

The contribution made by us in this paper is a quick summary of what we have
been doing during the last few months. With the full support of context theory and its
logic of reasoning [16] we plan to add more formal arsenal to our trust model. These
include devising rules for reasoning, and transporting our formalism to a practical
stage in which trustworthy systems can be developed. We expect this work to follow
very closely the ongoing work [1, 2].

References

1. Vasu Alagar and Mubarak Mohammad. A Component Model for Trustworthy Real-Time Re-
active Systems Development. In Proceedings of the 4th International Workshop on Formal

82          K. Wan et al.



Aspects of Component Systems (FACS’07), September 19 - 21, 2007. Sophia-Atipolis, France.
2. Vasu Alagar and Mubarak Mohammad. Specification and Verification of Trustworthy

Component-Based Real-Time Reactive Systems. In Proceedings of the Specification and Ver-
ification of Component-Based Systems Workshop (SAVCBS’07), September 03 - 04, 2007,
Dubrovnik, Croatia. (ACM Portal http://portal.acm.org/citation.cfm?id=1292316.1292327
& coll=GUIDE & dl=)

3. V.S. Alagar, J. Paquet, K. Wan. Intensional Programming for Agent Communication. Proceed-
ings of the 2nd International Workshop on Declarative Agent Languages and Technologies
(DALT) 2004, New York, U.S.A., June 2004, LNAI Springer-Verlag, Vol. 3476, Page 239-
255. ISBN: 3-540-26172-9.

4. R. Carnap. Meaning and Necessity. Chicago University Press, 1947. Enlarged Edition 1956.
5. Marco Carbone, Mogens Nielsen, and Vladimiro Sassone. A formal model for trust in dynamic

networks. Research Series RS-03-04, BRICS, Department of Computer Science, University of
Aarhus, January 2003, EU Project SECURE IST-2001-32486 Deliverable 1.1.

6. N. Damianou, N. Dulay, E. Lupu, and M. Solomon. The Ponder Policy Specification Lan-
guage. Proceedings Policy 2001: Workshop on Policies for Distributed Systems and Networks,
Bristol, UK, 29–31, Jan. 2001.

7. J. DeTreville. Binder, a logic-based security language. Proceedings of the 2002 IEEE Sympo-
sium on Security and Privacy, IEEE Computer Society Press, May 2002, 105-113.

8. Nathan Dimmock, András Belokosztolszki, and David Eyers. Using Trust and Risk in Role-
Based Access Control Policies., In Ninth ACM Symposium on Access Control Models and
Technologies (SACMAT), Yorktown Heights, New York, June 2004.

9. Tyrone Grandison and Morris Sloman. A Survey of Trust in Internet Applications. IEEE Com-
munications Surveys, Fourth Quarter 2000, 1-16.

10. Audun Jφsang, Elizabeth Gray, and Michael Kinateder. Analyzing topologies of transitive
trust. In Proceedings of the Workshop of Formal Aspects of Security and Trust (FAST), Septem-
ber 2003.

11. S. Jones. TRUST-EC: Requirements for Trust and Confidence in E-Commerce. European Com-
mission, Joint Research Center, 1999.

12. G. Klyne. www.ninebynine.org/iTrust/Intro.html, 2008.
13. D. Harrison McKnight and Norman L. Chervany. Trust and Distrust Definitions: One Bite at

a Time. In Trust in Cyber Societies - LNAI, 2246:27-54, 2001.
14. Craig Mundie, Peter de Vries, Peter Haynes, and Matt Corwine. Trustworthy Computing -

Microsoft White Paper, Microsoft Corporation, October 2002.
15. D. Povey. Trust Management, 1999, http://security.dstc.edu.au/presentations/trust.
16. KaiYu Wan, Vasu Alagar. A Context Theory for Multi-agent Systems. Revised Draft, January

2008.
17. Kaiyu Wan, Lucx: Lucid Enriched with Context, Ph.d Thesis, Department of Computer Sci-

ence and Software Engineering, Concordia University, Montreal, Canada, January 2006.
18. K. Wan, V.S. Alagar. An Intensional Programming Approach to Multi-agent Coordination in a

Distributed Network of Agents. Proceedings of the 3rd International Workshop on Declarative
Agent Languages and Technologies (DALT) 2005, Utrecht, The Netherlands, July 25, 2005.
Page 148-164, LNCS Springer-Verlag, Vol. 3904, pp. 205-222.

19. Stephen Weeks. Understanding trust management systems. In Proceedings of IEEE Sympo-
sium on Security and Privacy., Oakland, 2001.

An Intensional Functional Model of Trust          83




