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Abstract. Mobile ad hoc and sensor networks often contain a mixture of nodes, some 

of which may be selfish and non-cooperative in providing network services such as 

forwarding packets in order to conserve energy. Existing trust management protocols 

for mobile ad hoc networks (MANETs) advocate isolating selfish nodes as soon as 

they are detected. Further, altruistic behaviors are encouraged with incentive 

mechanisms. In this paper, we propose and analyze a trust management protocol 

based on the demand and pricing theory for managing group communication systems 

where system survivability is highly critical to mission execution. Rather than always 

encouraging altruistic behaviors, we consider the tradeoff between a node’s 

individual welfare (e.g., saving energy for survivability) versus global welfare (e.g., 

providing service availability) and identify the best design condition so that the 

system lifetime is maximized while the mission requirements are satisfied.   

Keywords:  Trust, trust metrics, trust management, mobile ad hoc networks, 

demand and pricing theory, altruism, selfishness. 

1 Introduction 

Most existing trust management protocols in mobile ad hoc networks (MANETs) 

encourage cooperative behaviors while discouraging selfish behaviors of participating 

nodes, so as to achieve a prescribed system goal such as high service availability. A 

common approach is to isolate selfish nodes as soon as they are detected and to reward 

altruistic nodes with incentives to encourage cooperation. However, in MANET 

environments where resources (e.g., bandwidth, memory, computational power, and 

energy) are severely constrained, only encouraging altruistic behaviors may adversely 

shorten the system lifetime. This is because altruistic nodes may die quickly due to energy 

depletion, thereby possibly resulting in loss of connectivity and system services.  

Thomas et al. [18] studied system performance in such a scenario, and noted that there 

is a tradeoff between energy saved by selfish nodes and service availability provided by 

cooperative nodes. However, no analysis of the tradeoff was given. Papadimitriou [13] 

coined the term the price of anarchy to describe the two conflicting goals of individual 

welfare versus global welfare, i.e., the local goal of a selfish node to save its energy versus 

the global goal of an altruistic node to provide high service availability. Similar issues 



arise in routing in MANETs (e.g., a local goal through selfish routing versus a global goal 

for service availability) [15]. The price of anarchy was defined as the performance 

difference between a system run by an all-knowing benign dictator who can make the right 

decisions to optimize system performance, versus a system run by a selfish anarchy. We 

postulate that there should be a tradeoff between system survivability and service 

availability in terms of these two conflicting goals. As Thomas et al. [18] indicated, each 

node can make a decision for its own benefit as well as for global interest by considering 

the dynamics of the network as well as its own conditions (e.g., energy level).  

We propose and analyze a trust management protocol that trades off node altruism for 

system survivability for mission-driven group communication system (GCS) in MANETs 

based on the concept of cognitive networks. In a cognitive network, each node has 

intelligence to adapt to dynamically changing MANET environments through a learning 

process, by adjusting its altruistic and selfish behaviors in response to network dynamics. 

We seek to identify the optimal design settings that maximize system lifetime while 

satisfying performance requirements such as service availability.  

Our trust management protocol adopts demand and pricing (DP) theory originally 

derived from economics [4]; under DP a node decides whether it should behave selfishly 

or altruistically based on the balance between individual welfare (i.e., saving energy) and 

global welfare (i.e., providing services). A node’s decision may depend on its own energy 

level, 1-hop neighbors’ selfishness levels (i.e., to judge whether the system still has 

sufficient resources such as an adequate number of cooperative neighboring nodes), and 

the degree of node importance to mission success (e.g., to judge whether a node’s selfish 

behavior would have a significant detrimental impact on the mission success rate). Social 

scientists have addressed the tradeoff between local/individual utility and global/collective 

interest in the area of collaboration theories using the concept of trust in groups, teams, 

and organizations [7]. However, no prior work addresses this tradeoff in the context of 

trust management in MANETs. A number of prior studies have also taken economic 

perspectives in modeling communication networks [2, 9, 10, 14, 22]. Unlike these prior 

studies, our work concerns trust management and we specifically adopt DP theory.   

Many routing protocols for MANETs have been developed to isolate selfish nodes 

and to encourage collaborations among participating nodes [11, 20, 21, 23, 24]. Wang et al. 

[20] devised an efficient incentive mechanism to encourage cooperative behaviors in 

multipath routing. Zhao [23] investigated the optimal transmission probability and Yan et 

al. [21] developed incentive mechanisms using game theoretic approaches. Miranda et al. 

[11] proposed an algorithm in which routing behaviors are monitored; selfish nodes are 

penalized (their packets are not forwarded) so as to discourage selfish behaviors, and 

nodes making heavy demands for services are also penalized to ensure faire allocation of 

resources. Different from the above work, Zhang et al. [24] considered the positive aspect 

of having selfish nodes in terms of traffic reduction, and established bounds on the 

probability of a node being selfish to optimize system metrics. Our work in this paper is 

different in that we investigate and identify the best balance between individual welfare 

via selfish behaviors versus global interest via altruistic behaviors so as to prolong the 

system lifetime.  

Routing protocols have also been proposed based on the concept of trust (or 

reputation) to isolate selfish nodes [1, 12, 16] using incentive mechanisms that discourage 

selfish behaviors. However, the trust metric used often does not adequately consider 

important properties of trust in a MANET environment, including subjectivity, asymmetry, 

incomplete transitivity, dynamicity, and context-dependency [5]. Our work takes these 

properties into consideration by adopting a composite trust metric that incorporates both 



social trust and QoS (quality-of-service) trust. The QoS and social components capture 

different aspects of trust that are important from the perspective of the user and the end-

goal of the mission.     

The contributions of this work are as follows. First, we propose a novel composite 

trust metric encompassing social trust explaining the aspects of internal, interpersonal, and 

mental aspects of an entity [7] and QoS trust indicating competence for task performance. 

Second, we develop and analyze a trust-based protocol for a mission-driven GCS in 

MANETs where nodes may behave selfishly. We use DP theory to quantify the conflicts 

between individual welfare and global welfare and identify the conditions that best prolong 

the system lifetime for successful mission execution while satisfying performance 

requirements. Third, we develop a mathematical model to describe the behaviors of a GCS 

based on hierarchical stochastic Petri nets (SPN), allowing optimal conditions to be 

identified to answer what-if type of questions in response to changing operational and 

environmental conditions. Lastly, through numerical data, we demonstrate that our trust 

management protocol based on DP theory is capable of maintaining an acceptable trust 

level for successful mission execution while prolonging system lifetime, when compared 

with a traditional all-altruistic system.  

The rest of this paper is organized as follows. Section 2 describes the system model 

including the assumptions, trust metric, and energy model. Section 3 develops a 

performance model to describe the behaviors of a GCS based on hierarchical stochastic 

Petri nets. Further, Section 3 describes DP theory being applied for the formulation of trust 

management. Section 4 presents numerical data obtained from the evaluation of our 

performance model. In particular, we compare the performance of a GCS operating under 

our proposed trust protocol versus a solely altruistic GCS. Finally, Section 5 concludes the 

paper and outlines future work. 

2 System Model 

Due to the unique characteristics of MANETs and unreliable communication in 

wireless networks, trust management for MANETs should encompass the following trust 

concepts. Trust should be dynamic to account for uncertainty. Trust should be context-

dependent, and subjective, and cannot be assumed to be transitive or reciprocal. To address 

these unique trust properties, trust management for MANETs should consider the 

following design features: trust metrics must be customizable, evaluation of trust should be 

fully distributed without reliance on a centralized authority, and trust management should 

cope with dynamics and adverse behaviors in a tactical MANET [6]. 

Cognitive networks are able to reconfigure the network based on past experiences by 

adapting to changing network behaviors to improve scalability (e.g., reducing complexity), 

survivability (e.g., increasing reliability), and QoS (e.g., facilitating cooperation among 

nodes) [18]. We use this concept to indicate a node’s ability to adapt to changing network 

conditions, such as a node’s selfish behavior, node failure or mobility, energy exhaustion 

of a node, or voluntary disconnection for energy savings.  

In the initial network deployment, we assume that there is no predefined trust. 

Without prior interactions, the initial bootstrapping will establish a shallow level of trust 

based only on indirect information (e.g., reputation from historically collected data or 

recommendation by third parties) and authentication by a challenge/response process (e.g., 

public key authentication). Over time, participating nodes will establish a stronger trust 



level with more confidence based on direct or indirect interactions. Our trust management 

protocol allows each node to evaluate the trust levels of other nodes as well as to be 

evaluated by other nodes based on two factors, social trust and QoS trust. Social trust 

includes trust properties for “sociable” purposes (e.g., intimacy) while QoS trust includes 

trust properties for mission execution purposes (e.g., energy level or cooperation) [5].  

Trust decays over time without further updates or interactions between entities. Node 

mobility also hinders continuous interactions with other group members, lowering the 

chances of evaluations of each other in the group. This includes cases such as a node 

moving to other areas causing its disconnection from the current group, leaving a group for 

mission reasons, voluntary disconnection for saving power or involuntary disconnection 

due to physical terrain or low energy. We use the concept of a trust chain [3] to describe 

propagation of trust. For example, when A trusts B, B trusts C, C trusts D, and D trusts E, 

then, A may trust E over a trust chain of length 4. However, the longer the trust chain is, 

the more is the decay in the degree of trust [3].  

Our target system is a mission-driven GCS in tactical military MANETs where a 

symmetric key, called the group key, is used as a secret key for group communications 

between group members [5]. Upon a node’s disconnection from the group, the system 

generates and redistributes a new key so that non-member nodes will not be able to access 

a valid secret group key. Nevertheless, each group member keeps old trust information 

even for non-member nodes so that the information can be reused for future interactions, 

possibly preventing a newcomer attack.   

2.1 Assumptions  

We assume that the GCS is in a MANET environment without any centralized trusted 

authority. Nodes communicate with each node through multiple hops. Nodes have 

different levels of energy, thus reflecting node heterogeneity. Each node periodically 

beacons its id and location information so that node failure is easily detected and 

accordingly rekeying is done immediately upon every membership change. 

We assume that mobile devices are carried by human such as dismounted soldiers. A 

node dynamically adopts selfish or altruistic behavior depending on the remaining energy 

level, difficulty level of the given mission (i.e., a tougher mission requires a higher 

workload), and selfishness level of 1-hop neighbors. That is, a node will behave selfishly 

when it has low energy, the mission assigned to it is not difficult, and/or there is a 

sufficient number of cooperating 1-hop neighbors. We consider a node to be selfish when 

the node drops group communication packets transmitted by other nodes. Even though the 

node is selfish, we assume that it cooperates to perform rekeying operations upon a 

membership change. The energy level of each node is adjusted depending on its status. For 

simplicity, we only consider energy consumption due to packet transmission and reception. 

Thus, if a node becomes selfish, the rate of energy consumption is slowed down.  

We consider a redemption mechanism by which a selfish node can become a normal 

cooperative node again. Specifically, a selfish node reevaluates its status at the end of each 

trust update interval and decides whether it will become altruistic or stay selfish. This is 

described in Section 3.2. A non-member will not consume as much energy as a member 

because of less involvement with group activities. Upon every membership change due to 

group join/leave, a rekeying operation will be performed to generate a new group key 

based on a distributed key agreement protocol such as GDH (Group Diffie-Hellman) [17]. 



We assume that a node’s trust value is evaluated based on direct observations (e.g., 

packet dropping) as well as indirect observations. Indirect observations are 

recommendations obtained from 1-hop neighbors whom the evaluator trusts the most. If 

enough recommenders cannot be found, recommendations from all 1-hop neighbors can be 

used. A node’s trust value may be updated after each status exchange period. A status 

exchange packet includes a node’s own information as well as information of nodes on its 

trust chain for possible use as recommendations on distant nodes to its 1-hop neighbors. 

We assume that existing prevention techniques such as encryption, authentication, or 

rekeying inhibit outsider attacks. We consider the presence of selfish nodes among 

legitimate group members. We model the selfish behaviors of a node by DP theory as 

described in Section 3.2. 

2.2 Trust Metric 

We consider a trust metric that spans two aspects of the trust relationship [5]. First, we 

consider intimacy (or friendliness) for social trust where intimacy is measured by the 

degree that two nodes are 1-hop neighbors. Second, QoS trust accounts for the capability 

of a node to complete a given mission. We consider the energy level and degree of 

unselfishness (or cooperation) to estimate the QoS trust level of a node. A node’s trust 

value changes dynamically to account for trust decay over time due to node mobility or 

failure, as the trust chain becomes longer, as the node’s energy level changes, and as the 

node becomes selfish or cooperative.  

We define a node’s trust level as a continuous real number in the range of [0, 1], with 

1 indicating complete trust, 0.5 ignorance, and 0 complete distrust. The overall trust value 

is calculated based on three components: energy level, unselfishness, and intimacy. As will 

be evident, other components could be added if desired. Based on the trust value calculated 

by 1-hop neighbors, the trust value can be calculated by n-hop neighbors over a trust chain. 

The information used for trust evaluation of a particular node j includes probability of 

being alive, e.g., remaining energy > threshold, (𝑃𝑗
𝑒𝑛𝑒𝑟𝑔𝑦  𝑡 ), probability of being 

unselfish (𝑃𝑗
𝑢𝑛𝑠𝑒𝑙𝑓𝑖𝑠 𝑕 𝑡 ), and probability of being located in a particular area (𝑃𝑗

𝑙𝑜𝑐 =𝑘  (𝑡)) 

where k indicates area id, and t is time. These three values are obtained from SPN subnets 

shown in Fig. 2 and the technical method for obtaining them from the SPN subnets is 

explained in Section 3. We use the term “probability” in a loose sense; one should interpret 

“probability” here as “value associated with a particular aspect” rather than in the 

frequentist or Bayesian interpretation.  

Now we address how the trust value is calculated. The three trust components, namely, 

energy level, unselfishness, and intimacy, capture MNAET dynamics. The trust value 

(𝑇𝑖,𝑗
𝑛−𝑕𝑜𝑝  𝑡 ) of node j as evaluated by node i where n indicates the trust chain length used 

by a node is given by:  

𝑇𝑖,𝑗
𝑛−𝑕𝑜𝑝  𝑡 = 𝑒−𝛾 𝑃𝑖,𝑗

𝑛−𝑕𝑜𝑝 ,𝑢𝑛𝑠𝑒𝑙𝑓𝑖𝑠 𝑕 𝑡 + 𝑃𝑖,𝑗
𝑛−𝑕𝑜𝑝 ,𝑒𝑛𝑒𝑟𝑔𝑦  𝑡 + 𝑃𝑖,𝑗

𝑖𝑛𝑡𝑖𝑚𝑎𝑐𝑦  𝑡  /3 (1)  

The n-hop trust component X, where X represents unselfishness or energy, is 

calculated based on the trust values obtained from the trust chain with lengths 1 to n-1 and 

is given by: 



𝑃𝑖,𝑗
𝑛−𝑕𝑜𝑝 ,𝑋 𝑡 =   𝛽 𝑃𝑖,𝑗

 𝑚−1 −𝑕𝑜𝑝 ,𝑋 𝑡 + (1 − 𝛽) 𝑃𝑖,𝑗
𝑚−𝑕𝑜𝑝 ,𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡 −𝑋 𝑡  

𝑛

𝑚=2

 
(2)  

𝑤𝑕𝑒𝑟𝑒   𝑃𝑖,𝑗
𝑚−𝑕𝑜𝑝 ,𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡 −𝑋 𝑡 =

 (𝑃𝑖,𝑘
 𝑚−1 −𝑕𝑜𝑝 ,   𝑋 𝑡  𝑃𝑘,𝑗

 𝑚−1 −𝑕𝑜𝑝 ,   𝑋 𝑡 )𝑘𝜖𝑆𝑖

𝑘𝑟𝑒𝑐𝑜𝑚
 

(3)  

Here β is used as a weight for the node’s “self-information” and (1- β) is a weight for 

“other-information.” The self-information (𝑃𝑖,𝑗
 𝑚−1 −𝑕𝑜𝑝,𝑋 𝑡 ) can be obtained recursively 

by using Equation 2. In Equation 3, Si is the set of 1-hop neighbors of node i, excluding 

node j, that forward recommendation of node j and  𝑆𝑖 = 𝑘𝑟𝑒𝑐𝑜𝑚  the number of 

recommender nodes that have the highest trust values among all 1-hop neighbors on the 

trust chain of the evaluator. Notice that when calculating the trust value of node j via node 

k’s recommendation, node i’s trust value on node k is used as a weight; this causes trust to 

decay as the trust chain increases.  

Since the n-hop trust values are computed based on the basis of (n-1)-hop trust values 

as shown in Equations 2 and 3, the 1-hop trust values are the basis of all trust values and 

are computed by: 

𝑃𝑖,𝑗
1−𝑕𝑜𝑝 ,𝑋 𝑡 =  𝛽 𝑃𝑖,𝑗

𝑑𝑖𝑟𝑒𝑐𝑡 −𝑋 𝑡 + (1 − 𝛽) 𝑃𝑖,𝑗
1−𝑕𝑜𝑝 ,𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡 −𝑋 𝑡   (4)  

𝑃𝑖,𝑗
1−𝑕𝑜𝑝 ,𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡 −𝑋 𝑡 =

  𝑃𝑖,𝑘
1−𝑕𝑜𝑝 ,   𝑋 𝑡 − ∆𝑡  𝑃𝑘,𝑗

1−𝑕𝑜𝑝 ,   𝑋 𝑡 − ∆𝑡  𝑘𝜖𝑆𝑖

𝑘𝑟𝑒𝑐𝑜𝑚
 

(5)  

𝑃𝑖,𝑗
1−𝑕𝑜𝑝 ,𝑢𝑛𝑠𝑒𝑙𝑓𝑖𝑠 𝑕 0 = 0.5, 𝑃𝑖,𝑗

1−𝑕𝑜𝑝 ,𝑒𝑛𝑒𝑟𝑔𝑦  0 = 0.5 (6)  

The direct information for the trust component X of node j evaluated by node i 

(𝑃𝑖,𝑗
𝑑𝑖𝑟𝑒𝑐𝑡 −𝑋 𝑡 ) is obtained, by dividing node j’s trust component by node i’s trust 

component, 𝑚𝑖𝑛 𝑃𝑗
𝑋 𝑡 𝑃𝑖

𝑋 𝑡  , 1 ; it is thus a subjective relative evaluation. Note that 

𝑃𝑖
𝑋 𝑡  for all i where X indicates a trust component obtained from our SPN model as 

explained in Section 3.3. We assume that the local trust component value of a node at time 

t = 0 are set to ignorance (i.e., ignorance value 0.5 in the trust range of [0, 1]) during the 

network bootstrapping period, as shown in Equation 6. 

In Equation 1, 𝑒−𝛾  represents a function of 𝑃𝑖,𝑗
𝑛−𝑕𝑜𝑝  𝑡 , the probability that nodes i 

and j are within n hops. 𝑃𝑖,𝑗
𝑛−𝑕𝑜𝑝  𝑡  is computed as: 

𝑃𝑖,𝑗
𝑛−𝑕𝑜𝑝  𝑡 =  𝑞𝑖,𝑗

𝑘−𝑕𝑜𝑝

𝑛

𝑘=1

(𝑡)  𝑤𝑕𝑒𝑟𝑒   𝑞𝑖,𝑗
𝑘−𝑕𝑜𝑝

(𝑡) =   𝑃𝑖
𝑙𝑜𝑐 =𝑙 𝑡  𝑃𝑗

𝑙𝑜𝑐 =𝑚 𝑡   

(𝑙,𝑚)𝜖𝑆𝑘

 
(7)  

Here 𝑃𝑗
𝑙𝑜𝑐=𝑚 𝑡  is the probability that node j is in location m at time t, and 𝑆𝑘  is a set 

covering all (l, m) pairs with the distance between l and m being k hops. Assuming that 

nodes move independently, we can verify that 𝑃𝑖,𝑗
𝑛−𝑕𝑜𝑝  𝑡  is the probability that nodes (i, j) 

are within n hops of each other at time t. 

In 𝑒−𝛾 , we define  by: 



𝛾 =
1

𝑎 ∗ 𝑃𝑖,𝑗
𝑛−𝑕𝑜𝑝  𝑡 

 
(8)  

where 𝑎  is a positive constant. The decay factor 𝑒−𝛾  increases monotonically with 

𝑃𝑖,𝑗
𝑛−𝑕𝑜𝑝  𝑡 , implying that the trust evaluation is higher if it is more likely that the nodes are 

closer. The value of the constant 𝑎 (𝑎 < 1 versus 𝑎 > 1) dictates whether the decay 

function is convex or concave increasing in 𝑃𝑖,𝑗
𝑛−𝑕𝑜𝑝  𝑡 . The value of the constant a affects 

the propagation of trust; guidelines for choosing this parameter will be discussed 

elsewhere. Note that we use Equations 2-6 to compute trust component values of 

unselfishness and energy. 

𝑃𝑖,𝑗
𝑖𝑛𝑡𝑖𝑚𝑎𝑐𝑦  𝑡  , the third component of Equation 1, can be obtained without the help of 

other nodes’ recommendations since each node can detect and keep track of information 

on who has been with them as 1-hop neighbors through the beacon messages disseminated 

by each node periodically. 𝑃𝑖,𝑗
𝑖𝑛𝑡𝑖𝑚𝑎𝑐𝑦  𝑡 , the degree that nodes i and j are 1-hop neighbors, 

is computed by: 

𝑃𝑖,𝑗
𝑖𝑛𝑡𝑖𝑚𝑎𝑐𝑦  𝑡 = 𝑃𝑖,𝑗

1−𝑕𝑜𝑝
(𝑡)/𝑃𝑖

𝑚𝑎𝑥 −𝑖𝑛𝑡𝑖𝑚𝑎𝑐𝑦
(𝑡) (9)  

𝑤𝑕𝑒𝑟𝑒 𝑃𝑖
𝑚𝑎𝑥 −𝑖𝑛𝑡𝑖𝑚𝑎𝑐𝑦  𝑡 = 𝑚𝑎𝑥 𝑃𝑖,1

1−𝑕𝑜𝑝
, … , 𝑃𝑖,𝑛

1−𝑕𝑜𝑝
  (10)  

In Equation 9, the normalization by 𝑃𝑖
𝑚𝑎𝑥 −𝑖𝑛𝑡𝑖𝑚𝑎𝑐𝑦

(𝑡) provides relative weights to 

intimacy, now ranging from 0 to 1. Note that 𝑃𝑖,𝑗
𝑖𝑛𝑡𝑖𝑚𝑎𝑐𝑦  0  can be calculated based on the 

location information preloaded in the initial network deployment. 

We also derive the objective trust values of each node in order to compare it against 

the trust value calculated by each node, called subjective trust. The objective trust is 

calculated without considering any network dynamics such as node mobility, trust decay 

over time, and trust decay as the trust chain becomes longer. The objective trust of node i 

is calculated by: 

𝑇𝑖
𝑜𝑏𝑗  𝑡 =  𝑃𝑖

𝑢𝑛𝑠𝑒𝑙𝑓𝑖𝑠 𝑕 𝑡 + 𝑃𝑖
𝑖𝑛𝑡𝑖𝑚𝑎𝑐𝑦  𝑡 + 𝑃𝑖

𝑒𝑛𝑒𝑟𝑔𝑦  𝑡  /3 (11)  

𝑃𝑖
𝑖𝑛𝑡𝑖𝑚𝑎𝑐𝑦  𝑡 =

  𝑃𝑖,𝑗
1−𝑕𝑜𝑝

(𝑡)𝑗∈𝑆 𝑁  

𝑃𝑎𝑣𝑔−𝑜𝑏𝑗 −𝑖𝑛𝑡𝑖𝑚𝑎𝑐𝑦  𝑡 
 

(12)  

Here 𝑃𝑖
𝑢𝑛𝑠𝑒𝑙𝑓𝑖𝑠 𝑕 𝑡 , 𝑃𝑖

𝑖𝑛𝑡𝑖𝑚𝑎𝑐𝑦  𝑡 , and 𝑃𝑖
𝑒𝑛𝑒𝑟𝑔𝑦  𝑡  are the three components of trust 

derived from the SPN subnets explained in Section 3. Ideally, the objective trust value 

𝑇𝑖
𝑜𝑏𝑗  𝑡 , of node j, would be known to all other nodes. In practice, node i estimates the 

trust value via the subjective trust value 𝑇𝑖,𝑗
𝑛−𝑕𝑜𝑝  𝑡  as discussed earlier in Equation 1. As 

discussed by Josang et al. [8], it is desirable that the subjective trust value is below the 

objective trust value; this ensures that agents are not exposed to unnecessary risk, but 

clearly there will be missed reward. We will consider objective intimacy based on the 

average intimacy degree on node i evaluated by all other nodes divided by the average 

intimacy probability (i.e., the average probability that two nodes will be located as 1-hop 

neighbors in the operational area). See Section 3 for a specific numeric example. We can 

then evaluate how accurately subjective trust values are calculated by varying the length of 

the trust chain through Equation 1, and comparing them with the objective trust shown in 



Equation 11. Note that the objective trust is not known in real situations, and so it is 

predicted and used to conservatively evaluate the validity of the proposed scheme. 

In Equation 1, we derive a in order for a trust-based system lifetime based on subjective 

trust to be at least equal to or less than one based on objective trust. Here by the system 

lifetime, we mean the the accumulated ime period over which the system trust values are 

above a certain system drop dead trust level, say 𝑇𝑣𝑎𝑙𝑢𝑒 , as used in Section 4. 

2.3 Energy Model 

We associate the energy level of a node with its state: selfish or group member. 

Depending on its remaining energy, a node acts differently. The degree of energy 

consumption is also affected by the node’s state. Thus, these parameters are interwoven 

and affect a node’s lifetime significantly. 

A GCS in MANETs must handle events such as beaconing, group communication, 

rekeying, and status exchange. In particular, after a status exchange event, trust evaluation 

of 1-hop neighboring nodes as well as of distant nodes is performed. Each node may 

transmit its own status (e.g., information providing the trust values) as well as status of 

other nodes (i.e., trust values) on its trust chain. Recall that we use recommendations from 

1-hop neighbors for trust evaluation and each status message is disseminated periodically. 

Due to space constraints, we omit the detail of the energy consumption model and refer the 

reader to [5]. 

3 Performance Model 

This section describes how our analytical model is developed using SPN and how 

trust values are obtained from the SPN models.  

3.1 Hierarchical Modeling using SPNs  

 

Fig. 1. Hierarchical modeling using SPN subnets. 
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We develop a mathematical model based on SPN to analyze a GCS with nodes 

switching between selfish and altruistic behaviors based on the theory and identify design 

conditions under which the selfish versus altruistic behaviors can be balanced. With 

system lifetime and mission success probability as our reliability metric, we show that our 

trust management protocol operating under identified design conditions outperforms one 

that only encourages altruistic behaviors. We use SPN due to its efficient representation of 

a large number of states where the underlying models are Markov or semi-Markov models. 

We develop a hierarchical modeling technique to avoid state explosion problems and to 

improve solution efficiency for realizing and describing a large scale GCS. 

We use an SPN subnet to describe each node’s lifetime. The square-shaped 

operational area consists of m×m sub-grid areas with the width and height equal to wireless 

radio range (R). Initially the location of each node is randomly distributed over the 

operational area based on the uniform distribution. A node randomly moves to one of four 

locations in four directions (i.e., north, west, south, and east) in accordance with its speed. 

The speed of each node 𝑆𝑖𝑛𝑖𝑡  is chosen uniformly over [0, vmax) m/s where vmax is the 

maximum possible speed, and Sinit is then fixed during the node’s lifetime. The boundary 

grid areas are wrapped around (i.e., a torus is assumed) to avoid end-effects. The SPN 

subnet for node i computes the probability that node i is in a particular grid area j at time t. 

This information along with the information of other nodes’ location at time t provides the 

information about a node’s n-hop neighbors at time t, which we will use to compute the 

trust metric (see Section 2.2). Since node movements are assumed to be independent, the 

probability that two nodes are in a particular location at time t, is given by the product of 

the two individual probabilities. The SPN subnet also describes a node’s lifetime and can 

be used to obtain each node’s information (amount of energy, unselfishness, and intimacy) 

to derive the trust relationship with other nodes in the system. This process is done by 

running the SPN subnet N times for the N nodes in the network.  

In the first round of iteration, since there is no information available about 1-hop 

neighbors, it is assumed that each area has an equal number of nodes and all nodes are 

unselfish. In the second round of iteration, based on the information collected (e.g., 

number of unselfish or selfish 1-hop neighbors) from the first round, each node knows 

how many nodes are 1-hop neighbors that can directly communicate with it, and whether 

or not they are members of the GCS or selfish. A node also knows how many n-hop 

neighbors it has at time t. It then adjusts its perceived status of 1-hop neighbors at time t 

with the output generated from the jth round of iteration as input to the (j+1)th round of 

iteration. This process continues until a specified convergence condition is met. The Mean 

Percentage Difference (MPD) is used to measure the difference between critical design 

parameter values, including a node’s energy level, the selfish probability, and the unselfish 

probability of a node at time t in two consecutive iterations. The iteration stops when the 

MPD is below a threshold 1 percent (%) for all nodes in the system. The calculation of the 

MPD of parameter X for node i is given by: 

𝑀𝑃𝐷𝑖
𝑋 =  

 𝐷𝑖
𝑋 𝑡 𝑚𝑎𝑥

𝑡

𝑁𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙
    𝑤𝑕𝑒𝑟𝑒  𝐷𝑖

𝑋(𝑡) =
 𝑋𝑖

𝑗+1  𝑡 − 𝑋𝑖
𝑗  

(𝑡) 

𝑋𝑖
𝑗
(𝑡)

 

(13)  

where 𝑋𝑖
𝑗  

(𝑡) indicates the value of parameter X of node i at time t in the jth round of 

iterations, max is the maximum time measured, and 𝑁𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙  the number of time points. 

We compute MPD for each node’s probabilities of being alive, selfish, and unselfish. The 

node SPN subnet after convergence yields the trust probabilities for three trust components 



(i.e., unselfishness, energy, and intimacy). The trust metric is then calculated as explained 

in Section 2.2. 

 

Fig. 2. SPN subnet for describing the status of a node. 

Fig. 2 shows the SPN subnet. The subnet describes a node’s mobility behavior, join 

and leave events (i.e., GCS membership status), energy consumption, and selfish behaviors 

with a redemption mechanism provided. The transition T_LOCATION is triggered when a 

node moves to a randomly selected area in one of four different directions from its current 

location with the rate calculated as 𝑆𝑖𝑛𝑖𝑡 𝑅  based on an initial speed (Sinit) and wireless 

radio range (R). We assume that inter-arrival times of a node’s join and leave requests are 

exponentially distributed with rates λ and μ respectively. Place energy represents the 

current energy level of a node. 

An initial energy level is assigned according to node heterogeneity information. In our 

analytical model, we randomly generate a number 𝐸𝑖𝑛𝑖𝑡  in the range of [𝐸𝑚𝑖𝑛 , 𝐸𝑚𝑎𝑥 ] 
based on the uniform distribution. A token is taken out when transition T_ENERGY fires. 

The transition rate of T_ENERGY is adjusted on the fly based on a node’s state; it is lower 

when a node becomes selfish to save energy or when a node changes from a member to a 

non-member, following the energy consumption model in [5]. We assume that T seconds 

will be taken to consume one energy token when a member node has no selfish 1-hop 

neighbors. We use this energy consumption model for adjusting the time taken to consume 

one token in place energy based on a node’s status. Therefore, depending on the node’s 

status, its energy consumption behavior is dynamically changed.  

Place SN represents whether a node is selfish or not. If a node becomes selfish, a 

token goes to SN by triggering T_SELFISH. When a node becomes altruistic again, 

transition T_REDEMP is triggered. A node switches between selfish and altruistic 

following the demand and pricing theory described in Section 3.2 below. The SPN model 

in Fig. 2 yields the trust components 𝑃𝑗
𝑋 𝑡  where X = energy, unselfishness, and location 

(to derive intimacy), from which the n-hop trust components and the trust metric can be 

computed via Equations 1-10. 

3.2 Demand and Pricing Model  

The basic formula to represent the relationship between demand and pricing in a 

market is given by [4, 2]: 

𝜆𝑖 = 𝛼𝑖 𝑣𝑖 
−𝜀𝑖   𝑤𝑕𝑒𝑟𝑒  𝜀𝑖 > 1, 𝛼𝑖 > 0 

(14)  

where 𝜆𝑖  is the demand arrival rate and 𝑣𝑖  is the pricing of service i while 𝛼𝑖  and 𝜀𝑖  are 

constants correlating 𝜆𝑖   and 𝑣𝑖 . Service demand is affected by pricing changes where 

the elasticity constant 𝜀𝑖  is a key determinant. A market is said to be elastic if 𝜀𝑖 > 1, as 

assumed here. In such a case lowering the price leads to increase in demand. The elasticity 

𝜀𝑖  can be obtained from statistical data describing past market conditions.  

energy 

T_ENERGY 

member 

T_JOIN T_LEAVE 

 SN 

T_SELFISH T_REDEMP 

location 

T_LOCATION 



We adopt DP theory to decide whether a node should behave selfishly or altruistically 

based on both individual benefit (i.e., saving energy) and global interest (i.e., serving 

tasks). We use transition T_SELFISH in our SPN model (described in Section 3) to model 

a node’s changing behavior from altruistic to selfish. Note that remaining energy of a node, 

mission difficulty, and degree of unselfishness of 1-hop neighbors are used for the place of 

“price” to apply DP theory in Equation 14. The transition rate to transition T_SELFISH is 

modeled by: 

𝑟𝑎𝑡𝑒 𝑇_𝑆𝐸𝐿𝐹𝐼𝑆𝐻 =
𝑓 𝐸𝑟𝑒𝑚𝑎𝑖𝑛  𝑓 𝑀𝑑𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦  𝑓 𝑆𝑑𝑒𝑔𝑟𝑒𝑒  

𝑇𝑔𝑐
     

(15)  

where 𝑓 𝑥 = 𝛼𝑥−𝜀 , 𝐸𝑟𝑒𝑚𝑎𝑖𝑛  is the level of current energy (indicated as 

𝑚𝑎𝑟𝑘 𝑒𝑛𝑒𝑟𝑔𝑦  in SPN model of Section 3), 𝑀𝑑𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦  is the difficulty level of a given 

mission where a higher value indicates a tougher mission, and 𝑆𝑑𝑒𝑔𝑟𝑒𝑒  is the degree of 

selfishness where a higher number refers to more selfishness. We define 𝑆𝑑𝑒𝑔𝑟𝑒𝑒  as the 

ratio of selfish nodes to unselfish nodes among 1-hop neighbors (refer to [5] for the 

calculation of the number of selfish/unselfish 1-hop neighboring nodes). 𝑇𝑔𝑐  is the 

interval for disseminating a group communication packet where a node’s selfishness can 

be observed. In the context of DP theory, residual energy, mission difficulty and 

neighborhood selfishness are the prices, and the transition rate from altruistic to selfish is 

the demand. Equation 15 implies the following: 

 𝑓 𝐸𝑟𝑒𝑚𝑎𝑖𝑛  : If a node has a higher level of energy, it is less likely to be selfish. 

 𝑓 𝑀𝑑𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦  : If a node is assigned a tougher mission, it is less likely to be selfish.  

 𝑓 𝑆𝑑𝑒𝑔𝑟𝑒𝑒  : If a node observes high selfishness among its 1-hop neighbors, it is less 

likely to be selfish.  

Similarly, we use a transition T_REDEMP in the SPN model (shown in Fig. 2 of 

Section 3.1) to model the redemption of a node, changing its behavior from selfish to 

altruistic. The rate to transition T_REDEMP is modeled as: 

𝑟𝑎𝑡𝑒 𝑇_𝑅𝐸𝐷𝐸𝑀𝑃 =
𝑓 𝐸𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑  𝑓 𝑀𝑒𝑎𝑠𝑖𝑛𝑒𝑠𝑠  𝑓 𝐻𝑑𝑒𝑔𝑟𝑒𝑒  

𝑇𝑠𝑡𝑎𝑡𝑢𝑠
     

(16)  

where𝑓 𝑥 = 𝛼𝑥−𝜀 , 𝐸𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑  is the level of consumed energy (𝐸𝑖𝑛𝑖𝑡 − 𝐸𝑟𝑒𝑚𝑎𝑖𝑛 ) where 

𝐸𝑟𝑒𝑚𝑎𝑖𝑛  refers to the remaining energy, 𝑀𝑒𝑎𝑠𝑖𝑛𝑒𝑠𝑠  is the easiness level of a given mission 

where a higher number indicates an easier mission (e.g., 𝑀𝑚𝑎𝑥 −𝑑𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡 𝑦 −𝑀𝑑𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦  ), 

and 𝐻𝑑𝑒𝑔𝑟𝑒𝑒  is the degree of unselfishness where a higher number means more 

unselfishness among 1-hop neighbors. We define 𝐻𝑑𝑒𝑔𝑟𝑒𝑒 = 1/𝑆𝑑𝑒𝑔𝑟𝑒𝑒  as the ratio of 

unselfishness to selfishness (refer to [5] for the calculation of the number of 

selfish/unselfish 1-hop neighboring nodes). A node is given a chance to be redeemed (from 

selfish to altruistic) in every reevaluation period 𝑇𝑠𝑡𝑎𝑡𝑢𝑠  corresponding to the status 

exchange interval for trust evaluation. Equation 16 implies the following: 

 𝑓 𝐸𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑  : If a node has consumed more energy, it is less likely to redeem itself. 

This means that if a node has low energy, it may want to further save its energy by 

staying selfish. 

 𝑓 𝑀𝑒𝑎𝑠𝑖𝑛𝑒𝑠𝑠  : If a node is assigned an easier mission, it is less likely to redeem itself. 



 𝑓 𝐻𝑑𝑒𝑔𝑟𝑒𝑒  : If a node observes high unselfishness among its 1-hop neighbors, it 

is less likely to redeem itself and may continue to stay selfish in order to save its 

energy.  
3.3 Calculation of Trust Components 

The trust value of node j by node i is calculated based on the information on nodes 

collected from the SPN subnet upon convergence. We calculate the trust probabilities for 

the three components (i.e., 𝑃𝑗
𝑋(𝑡)) of trust based on a reward assignment technique 

described below. Specifically, the average value, 𝑋 𝑡 ,   of a physical property at time t, is 

the state probability weighted sum of the values at various states, i.e.,  

𝑋 𝑡 =   𝑟𝑖 ∗ 𝑃𝑖(𝑡) 

𝑖∈𝑆

 
(17)  

where S is a set of states that meet particular conditions, 𝑃𝑖(𝑡) is the probability that the 

system is in state i at time t, and 𝑟𝑖  is the reward or value assigned to the physical 

property in state i. The reward assignment technique allows us to compute a node’s trust 

component values, say 𝑃𝑗
𝑋  where X can be unselfishness and energy, and location 

information 𝑃𝑗
𝑙𝑜𝑐 =𝑚  to derive intimacy trust component values at time t. We use the same 

reward assignment technique to obtain 𝑃𝑗 ,𝑢𝑛𝑠𝑒𝑙𝑓𝑖𝑠 𝑕
𝑙𝑜𝑐 =𝑘 (𝑡) and 𝑃𝑗 ,𝑠𝑒𝑙𝑓𝑖𝑠 𝑕

𝑙𝑜𝑐 =𝑘 (𝑡), the probability 

that node i is located in area k as being selfish or unselfish.  

Table 1. Reward functions. 

Component Conditions Satisfied in S 

𝑷𝒆𝒏𝒆𝒓𝒈𝒚 𝒕  𝑚𝑎𝑟𝑘 𝑒𝑛𝑒𝑟𝑔𝑦 > 0 

𝑷𝒖𝒏𝒔𝒆𝒍𝒇𝒊𝒔𝒉 𝒕  (𝑚𝑎𝑟𝑘 𝑚𝑒𝑚𝑏𝑒𝑟 > 0) & (𝑚𝑎𝑟𝑘 𝑆𝑁 == 0) & (𝑚𝑎𝑟𝑘 𝑒𝑛𝑒𝑟𝑔𝑦 > 0) 

𝑷𝒍𝒐𝒄=𝒌(𝒕)  𝑚𝑎𝑟𝑘 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 == 𝑘  &  𝑚𝑎𝑟𝑘 𝑚𝑒𝑚𝑏𝑒𝑟 > 0 & (𝑚𝑎𝑟𝑘 𝑒𝑛𝑒𝑟𝑔𝑦 > 0) 

𝑷𝒖𝒏𝒔𝒆𝒍𝒇𝒊𝒔𝒉
𝒍𝒐𝒄=𝒌 (𝒕) (𝑚𝑎𝑟𝑘 𝑚𝑒𝑚𝑏𝑒𝑟 > 0) & (𝑚𝑎𝑟𝑘 𝑆𝑁 == 0) &  𝑚𝑎𝑟𝑘 𝑒𝑛𝑒𝑟𝑔𝑦 >

0  & (𝑚𝑎𝑟𝑘 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 == 𝑘) 

𝑷𝒔𝒆𝒍𝒇𝒊𝒔𝒉
𝒍𝒐𝒄=𝒌 (𝒕) (𝑚𝑎𝑟𝑘 𝑚𝑒𝑚𝑏𝑒𝑟 > 0) & (𝑚𝑎𝑟𝑘 𝑆𝑁 > 0) &  𝑚𝑎𝑟𝑘 𝑒𝑛𝑒𝑟𝑔𝑦 > 0  

& (𝑚𝑎𝑟𝑘 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 == 𝑘) 

Table 1 specifies the conditions to be satisfied for states in set S in calculating 

𝑃𝒆𝒏𝒆𝒓𝒈𝒚 𝑡 , 𝑃𝑢𝑛𝑠𝑒𝑙𝑓𝑖𝑠 𝑕 𝑡 ,  𝑃𝑙𝑜𝑐=𝑘 𝑡 ,  𝑃𝑢𝑛𝑠𝑒𝑙𝑓𝑖𝑠 𝑕
𝑙𝑜𝑐 =𝑘  𝑡 , and 𝑃𝑠𝑒𝑙𝑓𝑖𝑠 𝑕

𝑙𝑜𝑐 =𝑘 (𝑡). When the specified 

conditions are satisfied, a reward of a 1 is assigned. Based on 𝑃𝑗
𝑙𝑜𝑐 =𝑘(𝑡) so obtained, 

various k-hop trust probabilities can be computed. For example, the trust value for the 

intimacy component when i and j are 1-hop apart, 𝑃𝑖,𝑗
 𝑖𝑛𝑡𝑖𝑚𝑎𝑐𝑦

, can also be obtained as 

described in Section 2.2. 

4 Numerical Results and Analysis 

This section shows the results obtained through the evaluation of our hierarchical SPN 

model. Table 2 summarizes the parameters and their default values used in this case study.  

 



Table 2. Default parameter values used. 

Param Value Param Value Param Value 

krecom 3 N 150 α, ε 0.01, 2 

R 250 m Tstatus 60*10 s 𝐸𝑖𝑛𝑖𝑡  [6, 12] hrs 

λ 1/(60*60) Tbeacon 60*2 s 𝑇𝑔𝑐
𝑀1 60*10 s 

µ 1/(60*60*4) T 60*60 s 𝑇𝑔𝑐
𝑀2 60*5 s 

β 0.8: 0.2 𝑆𝑖𝑛𝑖𝑡  (0, 2) m/s 𝑇𝑔𝑐
𝑀3 60 s 

As shown in Table 2, we set the elasticity constant ε to 2. To maintain a sufficient 

number of active nodes in the network, the ratio of node join and leave is set to 4:1. The 

energy level assigned to each node has an average value of 9 hours, representing a 

reasonable average battery life for mobile devices. 

 

 

Fig. 3. System trust value versus time, for various trust chain lengths. 

 

Fig. 3 shows the average trust values of all nodes evaluated by all nodes (hereafter 

called “system trust”) over time parameterized by the length of the trust chain (labeled as 

TC) under M1. We notice that the maximum trust values are obtained with TC = 3. The 

effect of using different lengths of TC on trust levels is already examined in our prior work 

[5]. Note that objective trust predicted via Equation 11 is always larger than the subjective 

trust computed via Equations 1-10. Thus units are not exposed to unnecessary risk (as 

noted by Josang et al. [8]); but this also implies that there is some missed reward. 
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Fig. 4. System trust value over time under DP and ALT, and for various missions with TC = 3. 

Fig. 4 depicts the maximum system trust values identified by TC = 3. We compare the 

demand and pricing based system (labeled as DP) with the solely altruistic system (labeled 

as ALT) when different missions are given (labeled as M1, M2, and M3, where M3 

requires the highest workload in this case study). As expected, the system assigned M3 has 

the lowest trust values while the system assigned M1 performs the best, showing the 

highest trust values. Further, DP significantly performs better than ALT for the same 

mission M1 or M2 and its effect is more pronounced as time progresses. Our composite 

trust metric takes into account both the energy level as well as the degree of unselfishness 

(or cooperation). As a result, the use of DP yields higher trust values. Under M3, the 

mission difficulty is increased; hence, nodes do not behave selfishly in the beginning. Thus, 

we note that DP performs only slightly better than ALT in the beginning. Because of the 

increased workload, energy consumption is larger, and the system lifetime is 

correspondingly shorter under M3 when compared with M1 and M2. 

Table 3. Percentage of cooperative nodes versus system lifetime when Tvalue > 0.5. 

 (M1, DP) (M1, ALT) (M2, DP) (M2, ALT) (M3, DP) (M3, ALT) 

% of cooperative nodes  

when Tvalue > 0.5 

> 27% > 65% > 35% > 54% > 25% > 78% 

Lifetime when Tvalue > 0.5   26400 s 17400 s 14400 s 9600 s 3200 s 1800 s 

Selfish behaviors can increase system lifetime by saving energy; on the other hand, if 

too many nodes are selfish, there will be not an adequate number of cooperative nodes, 

and the mission will fail. Next we examine the maximum degree of selfishness that can be 

allowed in order to improve successful mission completion. Suppose the mission can be 

executed successfully as long as there is at least one cooperative node in an area and a 

node maintains its trust level at least above the ignorance level, 0.5. Table 3 shows the 

percentage of cooperative nodes when the system drop dead trust value (Tvalue) is at least 
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above 0.5 under DP and ALT for various types of missions. Table 3 also shows the system 

lifetime, the total time when Tvalue is above 0.5. ALT has a larger number of cooperative 

nodes; but unlike DP, it does not take into account energy, and thus it is unable to maintain 

a high trust level. We also see that as the mission difficulty decreases, the system is able to 

prolong its lifetime under DP, maintaining at least the minimum required number of 

cooperative nodes. 

5 Conclusions  

In this paper, we developed and analyzed a trust management protocol for a mission-

driven GCS in MANETs; we used demand and pricing theory to model selfish and 

altruistic behaviors to balance individual welfare (i.e., saving energy) versus global 

welfare (i.e., serving tasks and completing the mission). Our trust management protocol 

based on DP theory allows each node to dynamically decide if it should stay selfish or 

altruistic in response to changing environmental conditions so that the overall system trust 

level can be maximized. We developed a probability model based on SPN to describe the 

behavior of a large scale GCS operating under the proposed trust management protocol. 

The results show that our trust management protocol outperforms one that only encourages 

altruistic behaviors, especially when the mission assigned to the GCS demands light to 

medium workloads; under these cases our protocol can best explore the tradeoff between 

energy saved due to selfishness versus quick energy drainage due to altruism. 

As future work, we plan to (1) examine the sensitivity of the results obtained with 

respect to α and ε which are two important parameters in the demand and pricing theory 

underlying our trust management protocol; (2) develop a more sophisticated mission 

model considering the effect of mission attributes such as risk, deadline, and workload 

requirements; (3) analyze the impact of imperfect detection of node failures and attacks; 

and (4) consider group-based mobility models. 
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