
Shinren: Non-monotonic Trust Management for
Distributed Systems⋆

Changyu Dong, Naranker Dulay

Department of Computing
Imperial College London

180 Queen’s Gate, London, SW7 2AZ, UK
{changyu.dong,n.dulay}@imperial.ac.uk

Abstract. The open and dynamic nature of modern distributed systems and per-
vasive environments presents significant challenges to security management. One
solution may be trust management which utilises the notion of trust in order to
specify and interpret security policies and make decisionson security-related ac-
tions. Most logic-based trust management systems assume monotonicity where
additional information can only result in the increasing oftrust. The monotonic
assumption oversimplifies the real world by not consideringnegative information,
thus it cannot handle many real world scenarios. In this paper we present Shin-
ren1, a novel non-monotonic trust management system based on bilattice theory
and the any-world assumption. Shinren takes into account negative information
and supports reasoning with incomplete information, uncertainty and inconsis-
tency. Information from multiple sources such as credentials, recommendations,
reputation and local knowledge can be used and combined in order to establish
trust. Shinren also supports prioritisation which is important in decision making
and resolving modality conflicts that are caused by non-monotonicity.

1 Introduction

The advances in communications and computing research havebrought distributed
systems and pervasive environments to new prominence. Applications are now dis-
tributed across the boundaries of networks, organisations, even countries and deployed
on smaller mobile devices. The increasing scope of distributed applications also im-
plies that applications must deal with “strangers” from other organisations and places.
This leads to new challenges. How does the security system determine whether or not
a request should be allowed if the request comes from an unknown user? The system
must be able to decide without pre-knowledge of the user in order to authorise/deny the
access. In other words, the system must determine whether and by how much does it
trust a user. Trust management [1] was introduced in response to the challenges posed
by modern distributed systems and pervasive environments.

In real-life, trust is normallynon-monotonic. Consider the following:

⋆ This research was supported by the UK’s EPSRC research grantEP/C537181/1 (Caregrid) and
EU FP7 research grant 213339 (ALLOW).

1 Shinren: the pronunciation of trust in Chinese

“You are the CEO of a bank and looking for someone to manage a multi-billion
pounds investment fund. A CV arrives on your computer. You quickly read through it:
worked for the UK’s oldest investment bank (interesting), had more than ten years ex-
perience as a derivatives trader (good), was the Chief Trader and General Manager of
operations in futures markets on the Singapore Monetary Exchange (great), made £10
million a year which accounted for 10% of former employer’s annual income (excel-
lent). You almost make up your mind. Then you see the candidate’s name: Nick Leeson2.
Everything is turned upside down. You trash the email.”

Fig. 1. Non-monotonic trust for CV

If we draw a diagram of this trust-information relation, it might look like Figure 1.
From the diagram we can see that when new information comes in, trust can decrease,
as well as increase, sometimes drastically. In other words,trust is non-monotonic. The
non-monotonicity of trust is a natural consequence of the existence of both goodness
and badness in the world. Trust, as defined by Mayer and Davis [2], is “the willing-
ness of a party to be vulnerable to the actions of another party”. To trust someone, the
trustor needs to judge how competent, how honest, how dependable the trustee is, but
more importantly, how incompetent, how dishonest and how undependable the trustee
is. Positive information tells us how much we may gain from a trust relationship, while
negative information tells us how much we may lose from it. Ignoring negative infor-
mation may result in misplaced trust which may in turn cause serious damage to the
trustor.

Although trust is non-monotonic, mainstream logic-based trust management sys-
tems [1, 3–7] are monotonic. The reason is that complete knowledge is hard to achieve
in large distributed systems and also that those systems arebased on classical logic
which cannot cope with this situation. Classical logic is monotonic which means a con-
clusion will never be retracted with new information, i.e. if Γ |= φ thenΓ ∪ γ |= φ.
To model trust with classical logic, a monotonic assumptionis introduced to solve the
problem and simplify the design by not using negative information about the world.
Monotonic systems do not have problems with incomplete information because all
missing information is positive and every decision that they make can only be more
“correct” with more information. Accepting the monotonic assumption means accept-

2 Nicholas Leeson, the infamous rogue trader who caused the collapse of Barings Bank.

ing the world is always positive (however if there were no negative things in the world,
do we still need trust management systems?). Monotonic trust management systems
have many advantages, but the monotonic assumption is too limiting for many scenar-
ios.

The gap between real world requirements and the current design of trust manage-
ment systems motivates our work. A more realistic solution is needed for managing trust
in distributed systems. In this paper, we describe Shinren,a novel non-monotonic trust
management system based on bilattice theory and the any-world assumption. Shinren
can make reasonable decisions even with incomplete information. Moreover, it can also
utilise unreliable information which makes it more suitable for open distributed sys-
tems where reliable information is often hard to come by. Shinren does not just simply
make use of the existing theories, it also supports prioritisation, which is achieved by
a non-trivial extension of the original theories. Prioritisation is important in resolving
conflicts and providing support for decision making.

This paper is organised as follows: We first summarise and compare existing non-
monotonic trust management systems with Shinren in section2. Then we discuss the
motivation of this work in section 3. In section 4 we introduce bilattice theory and
the any-world assumption. In section 5, we describe Shinren, its policy language and
present an example to show the details of policy evaluation in Shinren. In section 6 we
show a prototype implementation. Section 7 concludes the paper.

2 Non-monotonic Trust Management Systems

Shinren is not the first logic-based non-monotonic trust management system. Rule-
Controlled Environment For Evaluation of Rules and Everything Else (REFEREE)
[8], the Trust Establishment System (TES) from IBM [9] and RT⊖ [10] are also non-
monotonic.

The main problem of existing logic-based non-monotonic trust management sys-
tems is semantics. A well-defined formal semantics is a critical part of any policy lan-
guage. However, REFEREE and TES do not have formally defined semantics. RT⊖ is
based on the well-founded semantics which is a non-monotonic semantics proposed
originally for logic programming with negation [11]. The problem with using well-
founded semantics in trust management is that it is based on the closed world assump-
tion (CWA) and the uniformity of CWA may lead to counter-intuitive results. For ex-
ample, here is a simple trust policytrust(a) : –¬bad(a). Under the well-founded se-
mantics, whenbad(a) is missing or not provable, it is falsified and thus makestrust(a)
true. However, this decision may seem too casual, especially when it is related to secu-
rity. In Shinren, policy makers can useunknown as the default value forbad(a) while
still usefalse as the default value for other positive atoms.

Existing non-monotonic trust management systems are also less expressive than
Shinren. For example, RT⊖ can only express policies using credentials. Among them,
REFEREE is the most expressive one. It is capable of expressing policies utilising ev-
idence from different sources, but it is incapable of distinguish decisions based on in-
formation of different quality. REFEREE is based on 3-valued logic, therefore there is
no difference between a decision based on a statement from anauthority and a decision

based on rumour. The users of REFEREE may be given an unreliable trust decision
without warning. In Shinren, a trust decision comes with a value which tells the user
not only how true the decision is, but also how reliable it is.

Many systems attempt to assign real values to trust and develop sophisticated math-
ematical models to calculate trust values [12–14]. The values are usually based on past
experience. Although they are also called trust managementsystems, we view them
as a totally different approach from the trust management systems presented above
which rely mostly on logical reasoning and view trust decisions as logical consequences
of certain facts and theories. Quantitative trust management systems are usually non-
monotonic and can provide valuable information. However, the accuracy of the trust
values largely depends on the amount of data input and may take a long time to get
enough data. To differentiate, we call them reputation systems and Shinren can include
such systems as subsystems.

3 Why Non-monotonic? Why Shinren?

So why do we need non-monotonic trust management systems? This is because (1) in
the real world trust is non-monotonic and therefore a trust management system should
be able to capture this; (2) monotonic assumption is not necessary in trust management,
it is introduced merely because systems reasoning with classical logic cannot cope with
the non-monotonicity in trust. The assumption does not solve the problem, it just makes
systems ignore the problem. There are at least two bad consequences of monotonic
assumption: first, a trust management system which can be proved correct under the
monotonic assumption may not be correct in the real world because the assumption does
not hold in general; second, it makes trust management systems incapable of handling
certain real world scenarios.

Under the monotonic assumption, monotonic trust management systems do not con-
sider negative information. Syntactically, this is achieved by not allowing negations in
the policies. Negation-free policies work fine in some cases, however they reflect a
limited view of the world and are inappropriate in many cases. For example, negation-
free policies are quite inconvenient in handlingexceptions. In the world modelled by
negation-free policies, it is quite hard to express, “trustall the police officers except
the bad ones” because without negations, we would be allowedto say “trust police
officers” but not “do not trust the bad police officers”. In the extreme case, we must
specify for each individual good police officer a trust policy in order to exclude the
bad ones. Lacking the ability for specifying exceptions canbe dangerous particularly
in trust management systems where delegations are used. No exceptions means that de-
cisions have to be fully delegated to a delegatee, and the system must fully accept the
delegatee’s opinions. No exceptions also means that the system cannot accept part of
the delegatee’s decision while declining other parts. In other words, the system loses
control after delegation. Another case is that negation-free policies cannot handlemu-
tual exclusion. Coke is tasty, orange juice is tasty too. But the mixture of the two does
not taste so pleasant. There are many examples that are mutually exclusive. However,
with negation-free policies, there is no way to express “A isgood, B is good, but A+B

is not good”. In terms of security policies, separation of duties and conflict of interests
are the most significant examples of this type of policy.

One may argue that in the real world, people try to hide their negative aspects.
Therefore, even if policies are allowed to use negative information, if the system cannot
find it, the non-monotonic feature is useless. It is true thatthe information we can collect
is always limited. But consider the following:

In monotonic trust management systems: trust :– good

In Shinren: distrust :– bad

trust :– good

What is the difference? When the system cannot findbad, i.e. the negative information,
Shinren can behave exactly as the monotonic ones. However, because it is not possible
to use negative information in monotonic trust management systems, their decisions
will still be trust even ifbad is presented! In contrast, Shinren’s decision will no longer
be trust because the distrust policy is applied. Although not guaranteed, Shinren aims
to limit any damage with its best effort approach rather thansilently ignoring it.

By using bilattices, Shinren suffers less from a dilemma which all trust management
systems must face: on the one hand, in order to make a correct trust decision, a large
amount of information is needed; on the other hand, in order to make the decision
correct, most of the information available cannot be used because it is not reliable.
Shinren can reason with unreliable information even with contradictory information.
Monotonic trust management systems cannot. This ability isespecially important in
acquiring negative information.

Prioritisation is not present in any trust management systems. The philosophy is
that sometimes trust is not just a Yes/No decision, but also achoice. You might want to
follow one rule even if there are multiple rules you can follow, you might trust some-
one even if there are several persons you can trust. Prioritisation allows policy makers
to specify their preferences and thus make complex policiespossible. And also, in the
presence of modality conflicts, prioritisation seems to be the only way to resolve them.
Although there are overheads in defining and managing policies when using prioritisa-
tion, the overheads are minimised in Shiren because policy makers only assign priorities
to local policies and only trust (distrust) policies are prioritised.

4 Preliminaries

4.1 Bilattices

Bilattice theory [15] was introduced by Ginsberg in the 1980s, and has been widely
used in non-monotonic reasoning, knowledge representation and artificial intelligence.
Bilattice is a non-empty, possibly infinite set of values with two partial orders, each one
giving the set the structure of a lattice. A lattice〈L,�〉 is a non empty setL along with a
partial order� where any pair of elementsl1, l2 ∈ L has a least upper bound (join) and
a greatest lower bound (meet) in terms of�. We writel1 ≺ l2 if l1 � l2 andl1 6= l2.

A bilattice, denoted by〈B,�t,�k〉 whereB is a non-empty set and�t,�k are two
partial orders called the truth-order and the knowledge-order respectively.�t is an or-
dering on the “degree of truth”.b1 �t b2 meansb2 represents at least as much truth as
b1 (and possibly more). Meet and join under�t are denoted by∧ and∨ and correspond
to the classical conjunction and disjunction.�k is an ordering on the “degree of knowl-
edge”. Meet and join under�k are denoted by⊗ and⊕. b1 ⊗ b2 corresponds to the
maximal informationb1 andb2 can agree on, whileb1 ⊕ b2 combines the information
represented byb1 andb2.

The class of bilattice that we consider in this paper is restricted tointerlacedbilat-
tices. Interlaced bilattices are bilattices which satisfythe following: (1) if b1 �t b2 then
b1 ⊗ b3 �t b2 ⊗ b3 andb1 ⊕ b3 �t b2 ⊕ b3; (2) if b1 �k b2 thenb1 ∧ b3 �k b2 ∧ b3 and
b1∨b3 �k b2∨b3. Thus in an interlaced bilattice an operation associated with one of the
lattice orderings is required to be monotonic with respect to the other lattice ordering.
This relates the two orderings. An alternative way of connecting the two orderings is via
negation which reverses the truth ordering and is monotonicregarding the knowledge
ordering.

Such bilattices can be constructed in a natural way by combining two lattices. Given
two lattices〈L1,�1〉 and〈L2,�2〉, we can construct an interlaced bilattice as〈L1 ×
L2,�t,�k〉, where(x1, y1) �t (x2, y2) if x1 �1 x2 and y2 �2 y1, (x1, y1) �k

(x2, y2) if x1 �1 x2 andy1 �2 y2. Negation can be defined as¬(x, y) = (y, x) if
L1 = L2. As we will see later, the bilattice used in our system is constructed in this
way. We will expand on this later.

4.2 Any-world Assumption

Non-monotonic logics allow a conclusion to be drawn on incomplete information. One
way of doing such reasoning is to complete the missing part byassumptions. Taking
into account assumptions means assigning truth values, implicitly or explicitly, to the
unknown facts. The assumptions are usually based on the estimated states of the facts.
One of the most common assumptions is theClosed World Assumption(CWA). It as-
sumes the default truth states of atoms to befalse, therefore any atoms that cannot
be proved to betrue are taken asfalse. Another well-known assumption is theOpen
World Assumption(OWA). OWA is a more cautious assumption in the sense that it
assumes the default truth states of atoms to beunknown. Therefore, any atoms that
cannot be proved to betrue are taken asunknown. However it also gives us less use-
ful conclusions. Using only one of these assumptions to represent the world uniformly
is usually not appropriate.

TheAny-World Assumption(AWA) [16] unifies and extends the CWA and OWA by
taking truth values from an arbitrary bilattice truth spaceand allow the default value
of an atom to be any one of them. If in the assumptions, all the atoms are assigned to
false, then it becomes CWA which says everything that cannot be inferred is false. If in
the assumptions, all the atoms are assigned tounknown, then it becomes OWA which
says everything cannot be inferred is unknown. The advantages are obvious: the truth,
incompleteness and uncertainty can be represented in a finergranularity according to
the experience and background information, therefore the assumptions we make carry
more knowledge than before which in turn leads to more informed conclusions. The

Fig. 2. The bilattice NINE

assumptions can be non-uniform which means the default truth values can vary for
different atoms. This allows us to form more realistic assumptions.

5 Shinren

5.1 Bilattice NINE

As introduced in Section 4.1, a standard way of constructingan interlaced bilattice is by
combining two lattices. The bilattice we employ,NINE , is also built in this standard
way.NINE is obtained by combining two identical latticesL1 = L2 = 〈{0, 1

2
, 1},≤〉

where≤ is “less than or equal”. The structure ofNINE is shown in Figure 2. The
truth values are represented as tuples(x, y) wherex, y ∈ {0, 1

2
, 1}. The two orderings,

�t,�k are defined as:
(x1, y1) �t (x2, y2) if x1 ≤ x2 andy2 ≤ y1

(x1, y1) �k (x2, y2) if x1 ≤ x2 andy1 ≤ y2

Given a statement with a truth value of the form(x, y), the intuitive meaning of
the truth value is thatx represents how much the statement is true (or you believe it is
true), andy represents how much the statement is false (or you believe itis false). For
example,(1, 0), i.e. reliably true, is given to a statement supported by very strong and
reliable evidence. The possibility of the statement is actually false can be neglected.

From the above it is easy to understand the two orderings. Forexample, a state-
ment which is reliably true contains more truth (or is more likely to be true) than a
statement which is not so reliably true, i.e.(1

2
, 0) �t (1, 0). On the other hand, a re-

liably true statement gives us more information than a not soreliably true statement,
i.e. (1

2
, 0) �k (1, 0). It is possible to extend the bilattice to a finer model of reliability

or uncertainty. For example, using a lattice with the value domain{0, 1

3
, 2

3
, 1}, we can

create a bilattice with 16 truth values that can represent more reliability levels. How-
ever, we do not do so for two reasons: first, enlarging the bilattice also increases the
computational complexity. With enough expressiveness, wewould like to avoid unnec-
essary cost; second, things like reliability and uncertainty cannot typically be measured
precisely. There are no metrics and instruments we can use tostandardise the measure-
ment. A finer scale does not help in solving this problem, evenworse, it may bring a
false sense of precision. For these reasons, we stay with this basic form and extend it
when it is necessary and possible.

Let us also explain the rationale behind this multi-valued truth space. Classical
logic, which is the basis of many trust management systems, is bivalent, i.e. the only
possible truth values aretrue andfalse. It gives rise to “black and white thinking”
where every proposition must be ascribed to “absolutely true” or “absolutely false”.
However, in the real world, many would agree with the statement “the only certainty is
nothing is certain”3. Because classical logic lacks the ability of coping with the uncer-
tainty in truth, mainstream trust management systems restrict the information that can
be taken into account to “credentials”. A credential is a statement signed by an issuer
containing certain information about the credential holder and is believed to be highly
reliable. The problems with credentials are two-fold: first, credentials are not able to
carry every bit of information about the holder. We may find that signed information is
just a very small fraction of all the information we can get. Second, in practice we do
not encode negative information about the holder in credentials. The reason is simple:
no one bothers to ask for a credential which is useless or has anegative effect to him.
Again, we usually recognise a rogue merchant not from a “rogue merchant” credential
signed by a government agency, but from various other sources like reviews in internet
forums. If we want a more complete view of the trustee, using only credentials is not
sufficient. We need to consider more information, possibly even that from the sources
which are not so reliable. The multi-valued truth space gives Shinren the ability to rep-
resent and differentiate information with different qualities. And makes it possible for
Shinren to utilise unreliable information.

The meet and join operators in terms of both orderings and thenegation operator
are then defined as follows:

(x1, y1) ∨ (x2, y2) = (max(x1, x2), min(y1, y2))
(x1, y1) ∧ (x2, y2) = (min(x1, x2), max(y1, y2))
(x1, y1)⊕ (x2, y2) = (max(x1, x2), max(y1, y2))
(x1, y1)⊗ (x2, y2) = (min(x1, x2), min(y1, y2))

¬(x, y) = (y, x)
We will explain these with some examples. Given a statementp which is reliably

true andq that is not so reliably true, the truth value of their conjunction is p ∧ q =
(1, 0)∧ (1

2
, 0) = (min(1, 1

2
), max(0, 0)) = (1

2
, 0), i.e. not so reliably true. This is easy

to understand. Letp be “Alice is a student” andq be “Alice is a research assistant”, then
the statement “Alice is both a student and a research assistant” cannot be very reliable
because we are not quite sure about the fact that she is a research assistant. Consider
another example: in the court of a murder case, the prosecutor submits a CCTV record
as evidence showing that the suspect was at the crime scene when the murder was

3 Pliny the Elder, Roman scholar (23-79 AD).

happening, while the counsel of the suspect has a witness, who is a friend of the suspect,
to certify that the suspect was in a pub 50 km away from the scene at the same time. It
turns out the conclusion of whether the suspect was at the scene after we combine these
two pieces of evidence is:(1, 0)⊕ (0, 1

2
) = (max(1, 0), max(0, 1

2
) = (1, 1

2
). That is,

although doubtful, we would believe the suspect is at the scene. The reason is that the
video record is more reliable evidence.

5.2 Shinren Policy Language

The syntax of Shinren is based on the logic programming language Datalog [17], with
certain extensions. As in Datalog, we do not have function symbols. The restriction is
necessary to ensure finiteness of models and termination of inference. A rule, or policy,
is of the form:

A :– ϕ1, ..., ϕn.

whereA is an atom and eachϕi is a literal, a consensus formula or a gullibility formula.
“ : –” is taken as “←” and “,” is taken as “∧”. The atomA on the left-hand side of the
rule is called itsheadand the conjunctionϕ1, ..., ϕn on the right-hand side is called
its body. Certain types of rules may also have a priority label〈lab〉 attached before the
rules (will explain later). Anassertionis a special type of rule defined as:

A :– b.

whereA is a ground atom andb is a truth value. An assertion can be understood asA

has a truth valueb. A fact setis a finite set of assertions. Anassumption setis also a
finite set of assertions. The difference is that the fact set contains the real truth values
for the atoms while the assumption set contains the assumptions, i.e. assertions about
the default values of the atoms. The assumptions are used only when no facts about the
atoms can be found in the fact set or be inferred. We do not needto explicitly represent
assumptions of the formA : – (0, 0). If no assumption about an atom can be found in
the assumption set, the default value is(0, 0). A programis the union of a finite set of
rules, a fact set and an assumption set.

By using the Shinren trust policy language, policy makers can define both trust
policies and distrust policies, i.e. rules whose heads aretrust or distrust predicates.
They can also label the policies withpriority levels. The priority levels express how
preferable a policy is. The priority levels in Shinren language are defined as a finite set
of non-negative integers{0, 1, ..., n}. 0 is reserved for default assignment rules. The
higher the number is, the higher the priority is. For each priority level, policy makers
also define two thresholds in terms of�t or�k or both, one for distrust policies and one
for trust policies. The thresholds are used to filter poor answers. Answers that satisfy the
threshold are calledadmissible answers. Note that only trust or distrust policies need
labels, the other policies are not prioritised. When the system is asked to evaluate trust,
it starts from policies with the highest priority. At the same level, distrust policies are
evaluated before trust policies. In other words, distrust policies have a higher priority
than trust policies at the same priority level. If an admissible answer can be found, then
the evaluation ends. Otherwise it continues to evaluate thetrust policies at the same
level. If there are still no admissible answers, the system continues with the policies at
the next level. When an admissible answer is found with truthvalueb, an answer for
its counterpart is asserted with a truth value¬b. For example, if the evaluation ends

with an admissible answerdistrust(a) = (1

2
, 0), we also havetrust(a) = (0, 1

2
). If

after evaluating all the policies at higher priority levels, an admissible answer is still not
found, the default value is applied. The default value assignment rules may be omitted,
in this case the default value is(0, 0).

The prioritisation mechanism can be used to resolve modality conflicts introduced
by trust and distrust policies. Trust and distrust are semantically opposite and it is pos-
sible in some situations that both are true based on the policies. Therefore we need to
handle the possible conflicts. With priority levels, the conflicts can be resolved by “in-
terlacing” distrust and trust policies and the decisions are governed by the policies with
the highest priority levels which give admissible answers.The priority levels can also
be used to order trust decisions. For example, if we have decided both Alice and Bob
can be reliably trusted, we may prefer Alice if the decision about her came from a trust
policy with a higher priority level, i.e. a more preferable policy. The truth values and
priority levels can give hints to the decision maker. If the decision is not reliable or from
a less preferable policy, it may indicate that the decision is not favourable and may be
risky. The decision maker can activate some compensative controls based on the truth
value and priority levels.

In order to achieve prioritisation, we require the program to be locally stratified, i.e.
there are no cyclical dependencies between ground atoms. This syntactical restriction
is needed to guarantee the policies can be evaluated correctly.

Due to space limit, the formal semantics of Shiren is omittedhere but is available in
the full version [18]. In next section, we will show the policy language by an example.
Another example can be found in the appendix.

5.3 Example 1: Electronic Marketplace

Alice is a big fan of Internet shopping and she often visits a website called tBay which is
an electronic marketplace like e-bay. Although she has bought a lot of items with very
low prices, she also had several unpleasant experiences. Soshe wants to be cautious
before she bids on anything from the website. She decides that she will only bid on
items from sellers who live in the UK, have been registered noless than 6 months and
have at least 80% positive feedback. She will also ask her friend Bob about his opinion
and will not consider a seller if Bob does not like him. However, she knows tBay has
a special procedure for items with bid prices lower than£20: in case of dispute, tBay
will fully refund the buyer. Since she is not going to lose money, Alice is willing to bid
in such situations regardless of her other constraints above. But Alice also has a more
important principle: she will never trade with someone who has cheated her. She has a
blacklist of such sellers. Alice’s policies are:

〈3〉 distrust(X, bid, Item) :– inBlackList(X).

〈2〉 trust(X, bid, Item) :– soldBy(X, Item), itemPrice(Item,Price), P rice ≤ 20.

〈1〉 distrust(X, bid, Item) :– ¬recommendation(bob,X, bid, Item).

〈1〉 trust(X, bid, Item) :– seller(tBay,X, Location, RegisterPeriod),

Location = uk, RegisterPeriod ≥ 6, soldBy(X, Item),

reputation(X,goodSeller, tBay, Y), Y ≥ 0.8.

Alice’s policies have 3 priority levels. At the highest level is the policy which should
not be overridden by any other policies. At the second level is a trust policy that allows
her to interact with any seller when there is no risk. The lowest level has two policies
for general cases. In the policies,seller(tBay, X, Location, RegisterPeriod) repre-
sents a seller credential signed by tBay.soldBy(X, Item), itemPrice(Item, Price)
andinBlackList(X) are local knowledge predicates supplying useful information. For
each priority level, Alice defines thresholds for admissible answers to be(0, 0) ≺t,
which means only answers somehow true (reliably true, not soreliably true, doubtfully
true) will be admissible.

Along with the policies, Alice also has a set of assumptions:

soldBy(X, Item) :– (0, 1).

itemPrice(Item,Price) :– (0, 1).

inBlackList(X) :– (0, 1).

Recall that(0, 1) means “reliably false”. Alice’s assumptions are: if she cannot find
any information that says an item is sold by sellerX , then this item is not sold byX ;
if she cannot find any information that says an item is sold fora certain price, then it
is not sold for this price; if she cannot find a seller in her blacklist, then he is not in
her blacklist. These are easy to understand. All the other predicates are left with default
values of(0, 0), i.e. unknown. Different default values may make a big difference. For
example, if Alice assumesrecommendation(bob, X, bid, Item) to be false, i.e. add
recommendation(bob, X, bid, Item) : – (0, 1) to her assumption set, then she cannot
bid anything with a price higher than£20 when she cannot contact Bob. In such cases,
since she cannot get recommendations from Bob, the default value will be used and the
policy

distrust(X, bid, Item) :–¬recommendation(bob, X, bid, Item).

will always give results of “distrust” with truth value(1, 0).
More complicated policies are also possible. For example, if Alice has another pol-

icy which says she will bid if at least two of her friends recommend the seller. This can
be written as:

trust(X, bid, Item) :– friend(F1), friend(F2),

recommendation(F1,X, bid, Item) ⊗ recommendation(F2, X, bid, Item).

Alice collects the following facts when she tries to find a cheap iPod on tBay:

soldBy(carol, ipod) :– (1, 0).

seller(tBay, carol, uk, 12) :– (1, 0).

reputation(carol, goodSeller, tBay, 0.9) :– (
1

2
, 0).

itemPrice(ipod, 80) :– (1, 0).

Although not signed, Alice considers the information aboutwho is the seller and the
price of the item as reliable. However, the reputation is not. Alice knows at least ten
ways which sellers can boost their reputation quickly.

When evaluating the policies, only the assumptions:

recommendation(bob, carol, bid, ipod) :– (0, 0)

inBlackList(carol) :– (0, 1)

are used. This is because Alice does not have any relevant information. The other
assumptions are not used because Alice has collected the facts and therefore does not
need to assume anything.

Let us also explain how the trust (distrust) policies are evaluated. Shinren starts from
priority level 3. For the distrust policy at this level, the body is inBlackList(carol)
with truth value(0, 1) in the interpretation. Thereforedistrust(carol, bid, ipod) is
evaluated to be(0, 1), according to this policy. Because(0, 0) 6≺t (0, 1), this answer
is not admissible and is discarded. The policy with priority2 does not have an admis-
sible answer either. GivenitemPrice(ipod, 80) = (1, 0), the constraintPrice ≤ 20 is
not satisfied because the price is£80. This constraint is linked toitemPrice(ipod, 80),
so its truth value is¬(1, 0) = (0, 1). Overall,trust(carol, bid, ipod) is evaluated to
(0, 1) according to this policy. The answer is also discarded. Because Alice cannot get
a recommendation from Bob, the default value is used and the distrust policy at pri-
ority level 1 is evaluated to(0, 0). The answer is also not admissible. The last policy
is evaluated to(1

2
, 0) and therefore is admissible. Because it is a trust policy, weadd

trust(carol, bid, ipod) = (1

2
, 0) and alsodistrust(carol, bid, ipod) = (0, 1

2
) to the

model. Alice now knows that although Carol can be trusted, she might still be cheated.

6 Implementation

We have implemented a prototype of Shinren. As shown in Figure 3, Shiren consists of
five major modules. Among the five modules, the credential module, the recommenda-
tion module, the reputation module and the state module are responsible for retrieving
and interpreting information from different sources, and the policy interpreter module
is responsible for making decisions according to the policies and the information gath-
ered.

The Shinren prototype is implemented in Java 1.5. The policyinterpreter evaluates
queries in a bottom-up fashion as in many other datalog-based systems. Policies are
loaded into the policy interpreter as plain text files. The rules are stratified when they
are loaded by analysing the predicate dependency relationships. To answer a query,
the interpreter first initialises an interpretation which is an instance of the Assertion-
Set class. The interpreter queries the other four modules inorder to gather facts, i.e.
ground instances of the predicates with truth values, whichare needed for policy evalu-
ation. The facts are stored in tables related to the predicates in the interpretation. After
the interpreter obtains all facts, it constructs the Herbrand universe by collecting all
the constants from the query, rules and facts. The interpreter then puts into the initial
interpretation assumptions for all the other ground atoms which are in the Herbrand
base. It then starts evaluating policies iteratively from the lowest strata. Each rule in the
stata is grounded with regard to the Herbrand base and then the interpreter applies the
immediate consequence operator to each ground instance. The immediate consequence

Fig. 3. Shinren Trust Engine

operator retrieves the truth values for the ground atoms in the rule body from the current
interpretation and passes them through the evaluation treeof the rule to obtain the truth
value of the ground head atom. The ground atom along with the truth value is a newly
generated fact and the table for the head predicate in the interpretation is updated. If
an entry with the same ground tuple is already in the table, the truth value of the old
entry is ORed with the truth value of the new entry; otherwisethe new entry is inserted
into the table. Trust (distrust) policies in the same strataare evaluated sequentially by
priority level until an admissible answer, i.e. an answer that satisfies the threshold de-
fined for this level, is found. The evaluation of the strata ends when the interpretation
does not change anymore. Then the interpreter evaluates therules in the next strata. The
evaluation of the query ends after the interpreter evaluates all the strata containing the
rules with the queried atoms as heads.

7 Conclusion and Future work

In this paper, we have presented Shinren, a novel non-monotonic trust management
system based on bilattices and the any-world assumption. The syntax of the Shinren
policy language is based on Datalog with certain extensionssuch as negation, con-
straints and prioritisation. Shinren can utilise unreliable even contradictory information
and supports prioritisation which resolves conflicts and provides decision support. We
demonstrated the power of Shinren by two comprehensive examples and outlined its
implementation. The semantics of Shiren extends the Kripke-Kleene semantics over
bilattices and is given in [18].

One aspect that we would like to investigate further is prioritisation. The current
prioritisation mechanism in Shinren is at the meta-level. It works but is not convenient in
practice because it is external to the bilattice. However, prioritisation can also be viewed
as another ordering. We would like to extend our bilattice, so that a third ordering could
be integrated into the theory. This would make prioritisation a built-in feature.

The any-world assumption uses the concept of non-uniform assumption. However,
its assumptions are static. We are interested in researching dynamic assumptions which
would mean that changes in knowledge could lead to the changeof the assumptions.
Dynamic assumptions would enable a trust management systemto generate more ac-
curate conclusions according to the context. Previous works in belief revision [19] and
dynamic prioritisation [20] are possible stepping stones in this direction.

References

1. Blaze, M., Feigenbaum, J., Lacy, J.: Decentralized trustmanagement. In: IEEE Symposium
on Security and Privacy, IEEE Computer Society (1996) 164–173

2. Mayer, R.C., Davis, J.H., Schoorman, D.F.: An integrative model of organizational trust.
The Academy of Management Review20(3) (1995) 709–734

3. Blaze, M., Feigenbaum, J., Ioannidis, J., Keromytis, A.D.: The keynote trust-management
system, version 2. RFC 2704 (1999)

4. Jim, T.: Sd3: A trust management system with certified evaluation. In: SP ’01: Proceedings of
the 2001 IEEE Symposium on Security and Privacy, Washington, DC, USA, IEEE Computer
Society (2001) 106–115

5. Li, N., Mitchell, J.C., Winsborough, W.H.: Design of a role-based trust-management frame-
work. In: IEEE Symposium on Security and Privacy. (2002) 114–130

6. Hess, A., Seamons, K.E.: An access control model for dynamic client-side content. In:
SACMAT ’03: Proceedings of the eighth ACM symposium on Access control models and
technologies, New York, NY, USA, ACM Press (2003) 207–216

7. Carbone, M., Nielsen, M., Sassone, V.: A formal model for trust in dynamic networks. In:
SEFM. (2003) 54–61

8. Chu, Y.H., Feigenbaum, J., LaMacchia, B.A., Resnick, P.,Strauss, M.: Referee: Trust man-
agement for web applications. Computer Networks29(8-13) (1997) 953–964

9. Herzberg, A., Mass, Y., Mihaeli, J., Naor, D., Ravid, Y.: Access control meets public key
infrastructure, or: Assigning roles to strangers. In: IEEESymposium on Security and Privacy.
(2000) 2–14

10. Czenko, M., Tran, H., Doumen, J., Etalle, S., Hartel, P.,den Hartog, J.: Nonmonotonic trust
management for P2P applications. Electronic Notes in Theoretical Computer Science157(3)
(2006) 113–130

11. Gelder, A.V., Ross, K.A., Schlipf, J.S.: Unfounded setsand well-founded semantics for
general logic programs. In: PODS, ACM (1988) 221–230

12. Marsh, S.P.: Formalising Trust as a Computational Concept. PhD thesis, University of
Stirling (1994)

13. Jøsang, A.: A logic for uncertain probabilities. International Journal of Uncertainty, Fuzzi-
ness and Knowledge-Based Systems9(3) (2001) 279–212

14. Yu, B., Singh, M.P.: Detecting deception in reputation management. In: AAMAS, ACM
(2003) 73–80

15. Ginsberg, M.L.: Multivalued logics: a uniform approachto reasoning in artificial intelli-
gence. Computational Intelligence4 (1988) 265–316

16. Loyer, Y., Straccia, U.: Any-world assumptions in logicprogramming. Theor. Comput. Sci.
342(2-3) (2005) 351–381

17. Ceri, S., Gottlob, G., Tanca, L.: What you always wanted to know about datalog (and never
dared to ask). IEEE Trans. Knowl. Data Eng.1(1) (1989) 146–166

18. Dong, C., Dulay, N.: Shinren: Non-monotonic trust management for distributed systems.
Technical Report DTR10-5, Department of Computing, Imperial College London (March
2010)

19. Alchourrón, C.E., Gärdenfors, P., Makinson, D.: On the logic of theory change: Partial meet
contraction and revision functions. J. Symb. Log.50(2) (1985) 510–530

20. Brewka, G.: Reasoning about priorities in default logic. In: AAAI. (1994) 940–945

A Example 2: Healthcare in the Community

Dr Taylor runs a medical clinic in a small town. An unconscious patient is brought
to the clinic. From the driver’s licence, Dr Taylor learns that the patient is called Mr
Johnson. Mr Johnson is a tourist and stayed in a local hotel before he was brought here.
The owner of the hotel, who brought Mr Johnson in, tells Dr Taylor that the patient
experienced breathing difficulties during breakfast and then passed out a few minutes
later. Dr Taylor examines the patient’s trachea and hears the lung sound. He decides to
intubate the patient in order to let air pass freely to and from the lungs. The patient’s
temperature is normal and the results of a blood test show no signs of infection. Blood
pressure and heart rate are also normal. Dr Taylor decides tocheck the patient’s medical
history in order to see whether the symptoms were caused by drugs or allergies. From
his computer, Dr Taylor sends a request to the Smith GP practice, found in documents
in Mr Johnson’s wallet.

The electronic medical record system of the Smith GP practice uses the Shinren
trust management system to control who can access patients’medical histories. The
policies which regulate the access to a patient’s medical history are shown blow:

〈3〉 distrust(X, read,med history, Y) :– ¬doctor(bma,X).

〈3〉 trust(X, read,med history, Y) :–consent(Y, X, read,med history)

〈3〉 trust(X, read,med history, Y) :– agent(Y,Z), consent(Z, X, read,med history)

〈2〉 trust(X, read,med history, Y) :–answer(X,DOB, ADDRESS),

personal info(Y, DOB2, ADDRESS2), DOB = DOB2,

ADDRESS = ADDRESS2.

〈1〉 trust(X, read,med history, Y) :– collocated(X, Y).

Patients’ medical histories are sensitive and should only be revealed to doctors who
are treating the patients. The distrust policy at level 3 says thatX is not allowed to
read patientY ’s medical history ifX does not have a doctor credential signed by the
BMA (British Medical Association). The second trust policyat the same level saysX is
trusted to read patientY ’s medical history ifY gives his consent. However, in real-life,
it is not always possible to get the patient’s consent, e.g. in the case that the patient is in
coma. Then a third party consent from the patient’s agent, usually the next of kin, also
has the same effect. In emergency situations where no consent can be obtained, it is
necessary to verify that the doctor is indeed treating the patient before letting the doctor
access the information without consent. For example, the verification might be done by
letting the doctor provide the patient’s personal information and comparing it with the
data stored, or using a location service to verify that the doctor is co-located with the
patient. Accesses without consent are logged and audited.

Dr Taylor provides his doctor credential and also supplies information about Mr
Johnson’s birthday and address correctly. The access is granted and logged. Alas the

medical history does not provide too much useful information. At the same time, Mr
Johnson’s condition becomes worse. He starts to have seizures and EEG (electroen-
cephalogram) shows abnormal brain activities.

Dr Taylor suspects that the problem may be in Mr Johnson’s brain. However, he is
not a neurologist and needs someone to help in diagnosing thepatient. Dr Taylor starts
looking for help. He searches the NHS database using Shinrenwith the policies shown
below:

〈2〉 trust(X,specialist, neurology) :–consultant(Hos, X, neurology),

hospital(NHS,Hos),member(aon,X, Level), Level >= 2.

〈1〉 trust(X,specialist, neurology) :–consultant(Hos, X, neurology),

hospital(NHS,Hos),member(aon,X, 1), member(aon, Y, Level), Level >= 2,

recommendation(Y,X, specialist, neurology).

The first policy says that Dr Taylor will trustX as a specialist in neurology ifX has a
consultant credential signed by an NHS hospital which states thatX is a consultant in
neurology.X must also be a member of the Association of Neurologists withlevel no
lower than senior member. The second policy says almost the same except that if the
level ofX in the Association of Neurologists is not high enough, he needs a recommen-
dation from a senior member or higher.

Dr Taylor finds 20 doctors who fit his requirements. Among them, he selects Dr
Ford, a senior member of the Association of Neurologists whoworks for Victoria Hos-
pital. Dr Ford is also willing to offer assistance. Dr Taylorsets up a video conference
with Dr Ford. After hearing the observations and checking the examination results, Dr
Ford suggests that the problem could be caused by a clot in thepatient’s brain. How-
ever, a brain tumour also fits the symptoms. The diagnosis canbe confirmed by an
MRI (Magnetic Resonance Imaging) scan or a brain biopsy. However, the clinic does
not have the equipment and the patient’s condition is not suitable for transportation. Dr
Ford then suggests that in this situation, Dr Taylor should immediately treat the patient
with tPA (tissue Plasminogen Activator), a medicine which helps resolving blood clots,
because a long delay could cost the patient’s life. If the patient’s condition gets bet-
ter, then the diagnosis of a blood clot can be confirmed, otherwise it suggests a brain
tumour.

Dr Ford’s plan could be quite dangerous. So Dr Taylor wants tohear a second opin-
ion. To ensure the opinion is independent and fair, Dr Tayloradds another policy before
he searches for the second specialist. The policy rules out all the specialists working in
the same hospital as Dr Ford.

〈2〉 distrust(X,specialist, neurology) :– consultant(victoria, X, neurology).

This time Dr Taylor finds Dr Grant, a senior member of the Association of Neurologists
who works for the Albert Hospital. Dr Grant confirms that there is no better solution
in this situation. Dr Taylor starts to treat the patient withtPA, and watches him closely.
24 hours later, the patient wakes up. After the patient’s condition is stabilised, he is
transferred to the nearest major hospital for further diagnosis and treatment.

