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Abstract. We present representations and algorithms for the implemen-
tation of RTC , a role-based trust management language, and announce
an open-source implementation available to the public. We also design
and perform large-scale performance tests on policies closely modeled
after possible applications of RT in the real world. These tests aim to
determine the viability of RT as an authorization solution for large and
potentially complex policies in a decentralized environment; the results
of the tests are analyzed to identify what policy characteristics most
strongly affect the performance of RT and develop strategies to achieve
the rapid response times required in real-world authorization systems.

1 Introduction

The term “trust management” (TM) has been used in a variety of ways over the
years. Today it is often taken to refer to semi-automated techniques for estimat-
ing the likely trustworthiness of individuals, organizations, and software agents.
This paper focuses instead on the classical notion of TM introduced by Blaze,
Feigenbaum and Lacy [1], which focuses on placing into the hands of individuals
and organizations security management decisions that are appropriate to their
expertise and to their exposure as stakeholders. This has the effect of decen-
tralizing authority, which serves to place decisions in the hands of experts and
interested parties.

Several TM systems have received a great deal of attention in the litera-
ture [1–8]. The aim of the current work is not to advance the underlying theory
of TM, but rather to analyze the adequacy of one rich TM system as an au-
thorization framework in highly decentralized and distributed environments. We
have developed a Java-based system implementing RTC , a modern TM system.
RTC uses a variant of the classical notion of role in which roles are owned by
principals that have control over how the membership of their roles are defined.
These roles can be used to express any property or characteristic of principals
that role membership is intended by the role owner to assert. In particular, the
roles can take parameters, such as the members date of birth or the path to a
subdirectory to which the member has authorized access.

In RTC , extensive use of delegation of authority is used, so that, for instance,
experts on one characteristic of principals are not expected to be experts on all



characteristics. For instance, a university might own roles that capture the char-
acteristic of being enrolled as a student, while an accrediting board might own
roles that capture the characteristic of being an accredited university. Someone
wishing to define a role of their own such that the role’s members are students
at an accredited university might delegate to the accrediting board authority to
define which principals are universities and to those universities, authority to
define which principals are students.

RTC is a member of the RT family of languages [6, 9, 10]. These languages
introduce authority management abstractions that are given precise semantics
via translation to the well understood subset of first-order predicate calculus,
Datalog. RTC in particular is translated into Datalog with constraint systems
that admit efficient evaluation [11]. Constraints are logical formulas that serve
to specify valuations over variables appearing as parameters in RTC roles. For
instance, constraints would be helpful in our university student example if the
aim is to define a role whose members graduated in the last 10 years.

The current paper introduces techniques for the implementation of RTC ,
including constraint representation and sketch an algorithm that performs the
most interesting operation on them, namely conjunction. We have validated these
techniques by building a distributed implementation, which is available to the
public under the open source BSD license; all code and related documentation is
available for public use at http://sourceforge.net/projects/rtcredential.
This represents the first of the two present contributions.

The second contribution is a comprehensive investigation of the performance
of our implementation. We investigate scenarios in which large numbers of cre-
dentials must be retrieved from widely distributed repositories, as well as assess
the considerable improvements that can be obtained when credential caching is
exploited. We do this in a variety of scenarios that we believe are representative
of environments in which RTC would be most helpful. The thesis we aim to
support is that TM languages such as RTC represent an important component
in security solutions in the ever-widening need for decentralized authorization
policy management.

The remainder of the paper is organized as follows: Section 2 gives a brief
summary of RTC [9,12]. Section 3 describes the RT Credential Toolkit. Section 4
presents and analyzes performance results for RTC on large, real world scenarios
and analyzes the results, and Section 5 concludes.

2 Brief Overview of RTC

A main feature of RTC is its ability to use parameterized roles with con-
straints [12]. Parameters allow us to convey information about principals that
could not be easily represented by role membership alone, such as values in a
large domain. This in turn enables policy to define authorization with much finer
granularity than when constraints are not supported. For instance, in the univer-
sity student example, constraints easily capture the requirement that graduation
must have occurred within the last 10 years. Without constraints, each of the



10 years has to be treated as a separate case. In general, constraints greatly
facilitate giving concise definitions of roles that involve parameters that range
over large sets of possible values.

The aim of an RTC [9,12] policy is to assign principals (also called entities)
to roles. A principal may be a user, an organization, a virtual organization (VO),
or a software or hardware agent. A role takes the form A.r(x1, ⋅ ⋅ ⋅ , xk) in which
A is an principal, r(x1, ⋅ ⋅ ⋅ , xk) is called a rolename, and x1, ⋅ ⋅ ⋅ , xk are sorted3

variables. We call r a role identifier, and intuitively it resembles a predicate over
the owner, role member, and x1, ⋅ ⋅ ⋅ , xk. We use capital roman letters A, B,
D to range over principals and r, possibly with subscripts, to range over role
identifiers.

A policy in RTC is given by a set of statements, which are described just
below. We index variables xji occurring in a statement so that j indicates the
role the variable occurs in and i indicates the parameter position with that role.
We denote vectors of variables by using bold face, so xj denotes the vector of
variables appearing as parameters to the jth role in the statement. All variables
occurring in a given statement are distinct from one another.

A valuation is a mapping from variables to values in the carrier appropriate
to their sort. In the treatment given here, primitive constraints are predicates
applied to variables that are given an intended interpretation over the specified
carriers. For instance, if two distinct variables xji and xkℓ are intended to assume

the same value, a primitive constraint xji = xkℓ is used to express this. Different
constraint systems include different carriers and different primitive constraints
(interpreted predicates). A constraint is a conjunction of primitive constraints,
possibly with existential quantifiers. A constraint is satisfiable if there exists a
valuation that makes each primitive constraint true. A constraint is said to be
over any set of variables that includes the variables that occur free in it.

There are four types of policy statements in RTC , each of which includes a
constraint, denoted by  (x), in which x is the list of variables occurring in the
remainder of the statement:

– Type-1: A.r(x0)←− B; (x0)

This statement defines B to be a member of A’s role r(x0) under all valua-
tions that satisfy  (x0).

– Type-2: A.r1(x0)←− B.r2(x1); (x0,x1)

This statement defines A.r1(x0) to include all members of B.r2(x1)

– Type-3: A.r(x0)←− A.r1(x1).r2(x2); (x0,x1,x2)

The body of this statement is referred to as a linked role. Under each val-
uation that satisfies  (x0,x1,x2), the statement says that for each B in
A.r1(x1), B.r2(x2) is a subset of A.r(x0).

– Type-4: A.r(x0)←− B.r2(x1) ∩ C.r3(x2); (x0,x1,x2)

3 Sorts resemble a very simple notion of variable types; each variable is assigned to
exactly one sort, which defines the set of values over which it can range. This set is
called the carrier of the sort.



The body of this statement is referred to as an intersection. Under each val-
uation that satisfies  (x0,x1,x2), the statement defines A.r(x0) to include
principals that are members of both roles, B.r2(x1) and C.r3(x2).

Each of these statements is said to define A.r(x0). A is called the owner of
the role and the issuer of these statements, and has sole authority to define such
statements in the policy. The body of a statement consists of the right-hand-side,
to the right of the arrow. We abuse the terminology by saying that a constraint
over the variables that occur in a statement (resp., role) is a constraint over that
statement (role).

Semantics and Supported Constraint Domains. Extending work by Li
et al. [10], Li and Mitchell [6] define the semantics of RTC by translating pol-
icy statements into clauses in Datalog with constraints [11]. In this context,
queries about role membership are given a standard semantics based on logical
entailment. Li and Mitchell [11] identify some classes of constraint domains that
efficiently support all the operations that are necessary for evaluating queries
under Datalog with constraints. Our implementation techniques and the imple-
mentation itself support several such constraint domains. In them, all primitive
constraints involve only a single variable, with the single exception of equality.
(An equality x = y is satisfied by a valuation only if that valuation assigns both
variables the same value.) Other primitive constraints we consider require vari-
able values to belong either to a set identified through enumeration, a numerical
range, which may be unbounded on one or both ends, or to bear a hierarchical
relation to a node in a tree.

In RTC , a query asks about role membership. There are three kinds of
queries. An all-members query is given by a constrained role, which takes the
form A.r(x); (x). A principal solution to an all-members query is the set of
all principal/constraint pairs, ⟨D,'(x)⟩, such that the Datalog translation logi-
cally entails that D is in A.r(x) under all valuations that satisfy '(x), '(x) is
satisfiable, and '(x) ⇒  (x). An all-roles query is given by a principal D and
determines a set of constrained roles A.r(x); (x) that the Datalog semantics
makes D a member of under all valuations satisfying  (x); these constrained
roles are referred to as role solutions. A membership-decision query, given a con-
strained role A.r(x); (x) and a principal D, determines the set of constraints
�(x) under which D is a member of A.r(x) for all valuations of x satisfying �(x)
and such that such that �(x)⇒  (x) [12].

2.1 The Credential Chain Discovery Algorithm

Our query evaluation engine implements the algorithm introduced by Mao et
al. [12], which in turn is based on the algorithm for RT0 introduced by Li et
al. [9]. (RT0 has no role parameters or constraints.) We now briefly summarize
that algorithm.

Queries are answered by creating a portion of a directed graph called a
credential graph. Each node in the graph represents either a role or a princi-
pal. The graph contains several types of edges, which correspond to statements



in the RTC policy. For instance, when the policy contains a statement of the
form A.r(x0) ←− B.r2(x1); 2(x0,x1), the credential graph contains an impli-
cation edge from the node representing B.r2(x1); (x1) to the node representing
A.r(x0); 1(x0), in which the constraints  (x1) and  1(x0) depend on the man-
ner (direction) in which the (partial) credential graph is constructed. To deal
with Type 3 and 4 credentials (and other special cases), other types of edges
are created which perform actions in concordance with their type; for exam-
ple, an intersection edge requires principals to be members of both roles in the
intersection before it may become a member of the role to which the edge leads.

Search Algorithms. The all-members query is answered through a backward
search algorithm, which constructs the credential graph by creating a node rep-
resenting the constrained role given by the query and expanding the constructed
graph by traversing edges in a backward direction. Constructing and traversing
edges requires the algorithm to access (possibly remote) repositories to retrieve
the credentials that define those edges. Backward searches create only role nodes;
principals are mentioned only in solutions and do not receive their own node.
The forward search algorithm answers the all-roles query. It begins by creating a
principal node, and expanding the graph by traversing edges in a forward direc-
tion. To handle linked roles in the forward search, principal nodes must also be
used in addition to role nodes. Although the membership-decision query may be
answered by either forward or backward search, a third algorithm referred to as
the bidirectional search may also be used. A bidirectional search involves both a
backward search on the query role and a forward search on the query principal
simultaneously; these terminate as soon as the query principal is shown to be a
member of the query role under the given constraint.

When a query is evaluated, the graph may be reused for any other queries
thereafter (maintaining the graph through multiple queries is referred to as graph
caching in later portions of this paper).

3 RT Credential Toolkit

The RT Credential Toolkit was designed to supply most of the components
necessary for an authorization solution. The toolkit is composed of three main
components: the credential authoring tool, the query engine, and the credential
repository. Each of these components are detailed below.

3.1 Implementation Design Decisions

Representation of Constraints. The representation must support several op-
erations: construction of internal representation from the representation given
in credentials; conjunction of constraints; existential quantifier elimination; sub-
sumption of one constraint by another; and duplication of representation. As
mentioned above, the only primitive constraints we support that involve more
than one variable are equalities, which leads to their having special treatment:
all variables that are constrained to be equal refer to a single object representing
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the constraint on values they can assume. Due to the simplicity of the constraint
domains we consider, any consistent conjunction of non-equality primitive con-
straints can be reduced to a single primitive constraint. This enables a simple
representation, illustrated in Figure 1. The representation of a constraint over
a statement (or a role) has an entry for each role in the statement. Each role
entry has an entry for each parameter of that role and each of these parameter
entries is associated with an object representing a primitive constraint, which
may be shared with other parameter entries. The special primitive-constraint ob-
ject (PCO), unconstrained, indicates that all values of the corresponding carrier
satisfy the constraint.

Among the operations that must be supported, providing an algorithm to
implement conjunction is the least straightforward. We outline the conjunction
algorithm in the next section.

Conjunction Algorithm. Our algorithm implementing conjunction needs to han-
dle only the case in which one conjunct,  1, is over some statement, and the
other,  2, is over a single role from that statement. The result,  3, must be
constructed without modifying  1 or  2. The algorithm begins by duplicating
 1. To maintain equality constraints from  1, the duplication procedure uses a
table that associates PCOs in  1 with PCOs in the duplicate. (Note that this
association is between objects, not the primitive constraints they represent.)
Processing each role parameter in turn, when the PCO for that parameter in  1

does not yet have an associated object in the duplicate, a new copy of that PCO
is created and entered into the table as well as into the duplicate’s parameter
entry. When the table already contains an associated object in the duplicate, a
reference to that PCO is entered in the duplicate’s parameter entry. Thus, the
sharing of PCOs in the duplicate is made to correspond precisely to that in  1.

Next, we modify the duplicate, generating the result  3, by conjoining the
PCOs in  2 with the corresponding PCOs in (the data structure that will be-
come)  3. Recall that  2 is a constraint over some role in the statement that
(the duplicate of)  1 is over. The procedure considers each parameter of that
role in turn, constructing a new PCO that represents the conjunction of those
in  2 and in the duplicate. This new PCO then replaces the old one in the du-
plicate. To preserve the equality constraints in the duplicate coming from  1



while introducing the equality constraints from  2, an association table is used
to associate PCOs in  2 with PCOs in  3.

When processing a parameter, the table is used as follows. Let us call the
PCO in the parameter’s  2 entry pco2 and that in the parameter’s  3 entry
pco3. When the table does not contain an association for pco2, the (simplified)
conjunction of pco3 and pco2 is computed, entered into the table in association
with pco2, and is used to replace pco3 in the constraint being constructed ( 3).
(Note that when conjunctions are unsatisfiable, this is detected and handled at a
higher level in the algorithm as this leads to greater efficiency.) When the table
does contain an associated PCO, call it pco′3, we check to see whether pco′3 and
pco3 are one and the same object. If so, no further action is required. Otherwise,
the (simplified) conjunction of pco2, pco′3, and pco3 is computed, entered into the
table in association with pco2, and used to replace pco3 in the constraint being
constructed ( 3).

Repository Locations and Credential Typing. An acknowledged limitation
of the currently available system is that it does not support credential typing
of the type described by Li et al. [9]. This type discipline enables credentials to
be stored with either their issuers or their subjects in a manner that ensures
credential chains, if they exist, can be found. However, as a means of supporting
distributed sets of credentials, each credential optionally contains the location
of one or more credential repositories where other credentials relevant to the
issuer, defined role, and body of that credential may be found. The engine is
able to use this information during proof construction to find other credentials
as needed. Extending the current system to support full credential typing is a
possible future activity.

3.2 Components of the Toolkit

Credential Authoring Tool. The credential authoring tool enables users to
create RT credentials easily by using a special-purpose graphical user interface.
Technical activities such as public key creation, credential signing, and distribut-
ing credential to repositories are easy to perform.

Credentials are stored in an XML format with elements for the defined role,
body, the credential validity period, and relevant credential repositories; the cre-
dentials are cryptographically signed by the issuer of the credential. To support
the use of RT within an organization, public keys, role names, credentials, and
repository locations may be imported along with their metadata from a local or
online repositories. This allows one to start with a working set of useful objects,
such as public keys for company employees or commonly used role names. The
metadata associated with each object allows them to be referred to by short
local names instead of their globally unique identifiers and also provides a way
to attach and display easy to read descriptions of each object.

The ability to import and search existing credentials allows one to view a
policy set that the user may wish to modify or extend; this feature may also
help to present a simple or small portion of the overall policy set to organiza-
tional members who need to write only a limited set of new policy statements.



Additionally, test queries may be run from the authoring tool to ensure that new
policies have the desired effect.

Engine. The engine is responsible for evaluating RT credentials to answer
queries. Forward, backward, and bidirectional searches are supported. The en-
gine has both Java API and command line interfaces which may be used to pose
queries and read results. The engine automatically fetches relevant credentials
from the appropriate repositories for processing.

Credential Repository. The credential repository is a relatively simple appli-
cation which hosts, indexes, and serves credentials to engines. Credentials may
be added to a repository remotely or locally. The repository also maintains infor-
mation about what credentials have been served to an engine during the current
connection to avoid sending credentials multiple times.

4 Performance Evaluation

Although other RT query evaluation programs have been developed, there has
been little investigation into the costs of an RT system which is usable by the
public, stores credentials in a distributed manner, or deals with policies ap-
proaching the size and complexity expected in real world scenarios.

The costs of using RT in terms of latency, throughput, network usage, and
computational power required need to be assessed. It also must be determined
whether RT is efficient under certain usage scenarios but performs poorly under
others and what factors primarily determine this difference. If performance is
poor, new strategies may be necessary to maintain the low latency required for
a useful authorization system.

4.1 Policy Benchmarks

Large scale authorization policies used in practice are difficult to obtain. Instead,
we base our analysis on automatically generated policies designed to have char-
acteristics likely to arise in realistic scenarios. To this end, we have constructed
a policy generator that uses pseudo-random methods to generate policies based
on a collection of parameters that can be tuned to yield policies likely to be rep-
resentative of policies that would be used in a variety of scenarios. We begin by
describing the policy generator and its parameters. We then describe scenarios
that seem appropriate candidates for application of RTC .

Policy Set Generator. The policy set generator creates all of the credentials
necessary to define a rough hierarchy of roles based on a set of input parameters
described below. At a high level, the generator creates the policy set for the
hierarchy one level at a time, beginning at the base, and takes the following
steps to do so:

1. The generator begins by defining the base roles. The base roles are the roles
at the bottom level of the hierarchy which directly include the main body of
principals and are generally defined by Type-1 policies only.



2. A new level of roles are created above the previous level. The set of policies
created in step 3 will define these new roles and will include roles from the
previous level in the body. The number of roles defined at each level must
be at least one fewer than the level below it.

3. For each of the roles in the previous level, we will create a statement whose
type is randomly selected based on the given parameters. If we select Type-2,
the role itself is used as the body of the new statement. If we select Type-4,
the role appears in an intersection in the body of the statement along with
another role randomly chosen from the set of already defined roles. If we
select Type-1, we create two policies: a Type-1 with a randomly selected
principal as the body and a Type-2 with the role as the body. For Type-3,
we do the following:
(a) Create a linked role of the form A.r1.r2 where A is a randomly selected

principal and r2 is the role name from the role we are currently working
with. This linked role will appear in the body of the new statement.

(b) Create (i − 1) Type-1 policies of the form A.r1 ←− B where B is a
randomly selected principal and i is the parameter described below.

(c) Create one Type-1 statement of the form A.r1 ←− D where D is the
principal from the role we are currently working with.

For each statement statement written, we advance use the next available role
from the new level as the defined role. When we reach the end of the list of
new roles, we start again from the beginning.

4. Repeat from step 2 until we arrive at a level with only one defined role.

Parameters for the Policy Set Generator.

1. Number of principals, n: the number of principals that are eligible to be
members of the base roles. Principles defining roles within the tree are also
randomly drawn from this range.

2. Number of base roles, r: the number of base roles for the hierarchy.
3. Principal inclusion percentage, p: the probability that any given principal is

a member of any given base role. This results in an approximately normal
distribution of the number of principals in any base role with mean np and
variance np(1− p).

4. Level-to-level reduction percentage, l: the reduction in the number of roles
defined from one level to the level above it. This governs how quickly the
hierarchy narrows, controlling the number of levels and correspondingly the
maximum height of any credential chain.

5. Chain die-off percentage, d: the percentage of roles at each level which will
not appear in the body of any credentials defining the next level of roles.
This controls the variability of chain height; a value of 0.0 will result in
all chains reaching the maximum height while a value of 0.5 will result in
approximately half of the remaining chains ending at each level.

6. Type-1 percentage within the hierarchy, t1: the percentage of credentials
defining roles within the hierarchy that are Type-1. Note that this percentage
does not include Type-1 credentials that define the base roles. This parameter



can be used to account for management or other special principals who may
be included directly in a mid to high level role.

7. Type-3 percentage within the hierarchy, t3: the percentage of credentials
defining roles within the hierarchy that have linked roles as their body.

8. Number of principals in the intermediate role of every linked role, i: when-
ever a linked role is created, this many principals are randomly picked from
existing roles in the hierarchy and are added to the intermediate role of the
linked role. There is no guarantee that one of these principals will define a
role whose role name matches the second role name from the linked role.

9. Type-4 percentage within the hierarchy, t4: the percentage of credentials
defining roles within the hierarchy that have intersections as their body.

All credentials within the hierarchy that are not Types 1, 3, or 4 are Type-2.

Scenarios. The following scenarios are possible real world examples which might
require policies that RT is well suited for describing. These policies may rely
heavily on delegation of authority, which is relatively flexible and straightforward
in RT . Credentials storage is likely to be distributed in two of the scenarios,
which RT is designed for, while the other two may have more centralized storage.

Parameters and constraints were not used in these scenarios due to the com-
plexity involved their generation. However, our benchmarks show that the per-
formance impact of using parameters throughout a set of policies similar to the
government department scenario described below is minimal, generally resulting
in less than a 10% increase in time to complete a query, including the retrieval
of credentials from remote repositories.

Grid Scenario. Several virtual organizations (VOs) collaborate to create a grid
infrastructure. Each VO has a separate internal policy. A small set of policy
statements is created to govern access to the various grid tools by VO members;
these policies reference one or two top level roles from each VO. Additionally,
some principals are members of more than one VO.

Policy sets for five VOs of different sizes were generated, with n ranging from
100 to 500, r ranging from 10 to 20, l ranging from .25 to .4, p ranging from
.35 to .25, i ranging from 3 to 5, t1 equal to .1, t3 equal to .05, t4 equal to .15,
and d equal to .1. The sets of principals used for the different VOs were nearly
disjoint, with an overlap of 20 or fewer principals.

The parameters which vary depending on the size of the VO follow these
expectations: first, while the average group size will increase, the overall number
of groups will not increase as quickly. Second, as the size of an organization
grows, specialization is likely to occur, causing the average number of roles a
single principal is a member of to grow more slowly than the total number of
roles available. Third, the hierarchy is likely to increase in width more quickly
than height.

Credentials representing grid authorization roles were written by hand. These
defined a single top level role and three roles below it, each of which included
roles from the top and middle of the hierarchies for three of the five VOs.



Government Department Scenario. A large government department creates a
policy that roughly resembles a single hierarchy with many management roles.
Credential storage is mostly centralized.

The following parameters were used: n = 10000, p = .1, r = 100, l = .5,
t1 = .2, t3 = .1, i = 10, t4 = .15, and d = .1. These represent a more complex
policy, with a greater number of linked roles and intersections. The maximum
chain height was seven.

E-Bookstore. An electronic bookstore wishes to offer discounts to students of
all small accredited universities nearby. Each university maintains its own sim-
ple policy which groups students by department and describes membership for
several of the larger extra-curricular roles.

Policy sets for 13 universities were generated, each with the following param-
eters: n = 5000, p = .1, r = 10, l = .6, t1 = 0, t3 = .02, i = 3, t4 = .1, and d = .1.
These create very simple policies with a maximum chain height of three. The
top level role for each university was Universityi.student(), where 1 ≤ i ≤ 13.
The following credentials were created by hand for the E-bookstore:

1. E-Bookstore.discount() ←− AccredBoard.university().student()
2. AccredBoard.university() ←− Universityi

Social Network. A new social network is created. Every principal defines a set
of friends, and each principal can see their extended network, which includes
friends of friends, and their 2nd extended network, which includes friends of
extended friends.

Policy sets for 10000 principals were created. Each principal randomly added
principals to their friends() role from a range of 1000 principals, with each
principal having a 10% chance of inclusion in the role. The range of principals
that friends were selected from was occasionally shifted to give the effect that
principals nearby are likely to share many friends, while principals far apart
share few or no friends. Each principal, P , also created the following credentials:

1. P.extendedFriends() ←− P.friends().friends()
2. P.secondExtendedFriends() ←− P.extendedFriends().friends()

Repository Distribution. The repositories were spread between the Univer-
sity of Texas at Austin the University of Texas at San Antonio. The bandwidth
available to the repositories was great enough to not be a significant limiting
factor during performance testing.

For the grid and E-bookstore scenarios, all credentials for each VO or uni-
versity were stored in a single repository, with all repositories being used. This
simulates what one is likely to find in real world scenarios where credentials are
likely to be stored centrally per organization, but the organizations themselves
are likely to be distributed.

For the government department and social networking scenario, all creden-
tials were split evenly between two repositories near the engine. For these sce-
narios, we felt that centralized storage of the credentials was more likely in
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real world examples. Users of such facilities seem unlikely to avail themselves of
repositories not operated by the sites in questions.

4.2 Results

The credential repositories were run on machines of varying hardware, including
a 2.13GHz Core2 with 2GB of RAM, a 4-core 2.66GHz Xeon with 16GB of RAM,
an 8-core 2.0GHz Xeon with 8GB of RAM, and 8-core 3.0GHz Xeon with 32GB
of RAM that was also used for the engine.

All results shown below are for searches with no portion of the graph cached
unless stated otherwise. With a fully cached graph (meaning all nodes have been
processed), the time to execute any query, regardless of query type or which roles
and principals the query was performed on, was less than 10ms.

Grid Scenario. As seen in Fig. 2, the total time required to evaluate a query
by using backward search in the Grid Scenario was linearly proportional to the
number of credentials processed. Because of the hierarchical nature of the policies
used in this scenario, the number of credentials processed increased exponentially
with respect to the maximum chain height of the query role. The average time
required per credential processed was 4.25ms. The time required to perform a
forward search was also approximately linearly proportional to the number of
credentials processed, but the average time required per credential processed was
much higher, at 250ms.

Like the backward and forward search, bidirectional search exhibited a linear
increase in time proportional to the number of credentials processed. The number
of credentials processed with respect to the length of the chain between the
query role and principal was far fewer than backward search: anywhere from .2
to .06 the number of credentials processed during a backward search of the same
height. The average time required per credential processed was in between that
of backward and forward search, at 88ms.

Backward search in the grid scenario generated a maximum of 400 KB/s
of download traffic and 200 KB/s of upload traffic for the engine, while for-
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Fig. 3. Average processing time per credential among the three query types.

ward search generated only 45 KB/s down and 80 KB/s up. Bidirectional search
generated 80 KB/s of download traffic and 80 KB/s up.

CPU utilization on the engine remained at or above 90% during backward
search. During forward search it was much lower: usually less than 10%; CPU
utilization during forward search also had a downward trend as a search pro-
gressed. Although bidirectional searches initially showed greater CPU utilization
than forward searches, they progressed more slowly as the search continued and
CPU utilization became only slightly better than that of forward search.

Government Department Scenario. As seen in Fig. 2, backward search per-
formance in the Government Department Scenario was similar to that of the
Grid Scenario, but with a slightly lower time required per credential processed
at 4ms. CPU utilization and network traffic was similar to that of the Grid Sce-
nario. Bidirectional searches took an extremely long time to complete. In the
case that the query principal was not a member of the query role, a single search
took about 90 minutes and processed about 90000 credentials, averaging about
60ms per credential processed.

E-Bookstore Scenario. Backward searches in the E-Bookstore scenario com-
pleted in 9 seconds on average when performed on University.student() roles
with an average of 3ms required per credential processed; when the query role
was E-Bookstore.discount(), the time required per credential increased to 6ms.
Forward and search performed more poorly than in the grid and government
department scenarios, requiring 275ms per credential processed. Bidirectional
search was slightly better than the government dept. scenario, at 50ms per cre-
dential processed.

Social Networking Scenario. For backward search, queries on friend(), ex-
tendedFriend(), and secondExtendedFriend() queries took .5, 28, and 490 sec-
onds on average, and average time per credential processed was was 5.6, 3.5,
and 2.8ms, respectively. CPU and network utilization remained extremely high,
similar to the other scenarios.

Forward search performed extremely slowly, with low CPU utilization and
network usage. The completion time for a single query was roughly two hours.
After extended periods of time, the forward search slowed to a rate of three
credentials processed per second.



Bidirectional search performed moderately in the case that the query prin-
cipal was a member of the query role; for friend() and extendedFriend() roles,
queries completed in about 10 seconds, while secondExtendedFriends() queries
completed in about 20. When the query principal was not a member of the query
role, bidirectional searches initially had moderate CPU utilization and network
traffic before degenerating into performance slightly better than forward search.

4.3 Analysis

As the results from the performance tests show, the difference in response times
for queries with and without graph caching is staggering. At the scale of these
tests, it is clear that caching all or most of the credential graph makes an enor-
mous difference to the expected query response time. When the graph is fully
cached, query response times are consistently extremely low. We suggest tech-
niques for maintaining such a cache in the next section.

The amount of time required to complete a query increased nearly linearly
with respect to the number of credentials processed for all three types of queries
across all scenarios. The average processing time per credential did decrease
slowly for backward search as the number of credentials grew, while the average
time per credential increased slowly for forward and bidirectional searches.

Backward search performed very similarly regardless of the scenario. Its per-
formance appears to be almost entirely CPU bound, although network traffic
could become a limiting factor in some cases. The primary factor which affected
backward search performance was the number of roles overall; the percentage of
Type-3 and Type-4 credentials also impacted performance to a lesser degree.

The differences in performance between forward and backward search were
unexpected and quite large. There are two primary differences which may ac-
count for the disparity:

First, backward searches create only role nodes, while forward searches create
both principal nodes and role nodes. In these scenarios, the number of principals
greatly exceeds the number of roles. The large increase in the number of nodes
requires much more memory and substantially increases the rate of cache misses,
which results in the extremely low CPU utilization seen during forward searches.

Second, backward searches need to perform extra work only to deal with
linked roles and intersections when a Type-3 or Type-4 credential is encountered
while processing a role node. By contrast, to handle linked roles a forward search
must create new nodes and perform several actions for each node processed.

For these reasons, forward search is unable to effectively utilize the CPU or
generate network traffic; memory access time is the limiting factor.

Because bidirectional search runs both a forward and a backward search, it
suffers from the same performance problems as forward search. Although the
number of credentials processed are often low when the query is a success, the
average time per credential processed is still high. Therefore, it cannot be de-
pended upon as a means of graph creation.

The average processing time per credential grows faster with the number of
credentials in the forward search than in the backward search. This is because



Type-1 credentials tend to constitute above 90% of the number of credentials in
a policy, processing a greater number credentials in a forward search generally
results in the creation of many additional principal nodes, and consequently,
poorer performance. On the other hand, an increase in the number of credentials
processed in a backward search results in the creation of relatively few role nodes
whose performance impact does not outweigh the loss of performance overhead
during earlier portions of graph construction.

4.4 Optimizations

Because the performance of an RT system is largely dependent on fully caching
the graph, optimizations should concentrate on caching the graph quickly and
efficiently. Due to the performance differences between forward, backward, and
bidirectional search, the quickest way to build a complete graph is through
backward searches on all roles that are used for authorization purposes. By
avoiding forward and bidirectional searches entirely, performance is significantly
enhanced. However, for this strategy to work, all credentials chains must be
backward-traversable [9]. This requirement is not particularly onerous, but may
be difficult to maintain in loosely organized, widely distributed scenarios. With-
out this guarantee, designing an efficient caching strategy is more complex.

Additionally, because backward search is primarily CPU bound, converting
the currently single-threaded engine to a multi-threaded model is expected to
improve performance significantly.

Multiple Engines. Because revocation and expiration become frequent for
large policies, their effect on query response times must be minimized. Cur-
rently, when a credential expires or is revoked, our only available strategy is to
rebuild the entire graph without that credential. An engine that is busy con-
stantly rebuilding the graph will have no way to respond to queries in a timely
manner. Although one possible solution to this problem is to devise a way to
alter the graph so that the work required to handle credential invalidation is
lessened, the frequency of these events and the expected time to deal with them
still prevents the engine from responding to queries quickly.

An alternative strategy runs multiple engines simultaneously. One engine is
dedicated to answering all queries with the latest complete version of the graph.
For each credential invalidation, a separate engine constructs a new version of
the graph in the background; when the new graph is complete, that engine
assumes the role of servicing queries while the engine it replaces waits to build
a new version of the graph after the next credential invalidation. The number of
engines running concurrently could grow to accommodate increased workloads.

5 Conclusion

In this paper, we announced the availability of an open source implementation of
RTC and used it to test and analyze the performance of RTC systems in a large,
distributed environment. The results of these tests show that low response times



for role membership queries may only be achieved through thorough caching of
the graph. Furthermore, the characteristics of the backward search algorithm
make it a much better candidate for graph creation than either forward or bidi-
rectional search due to more efficient memory usage. Utilizing this knowledge, we
have proposed strategies for cached-graph management that will allow RTC to
achieve the query evaluation-response times necessary to make it a viable autho-
rization solution in distributed environments that benefit from easy delegation
of authority.
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