
Trust Management Framework for attenuation of

Application Layer DDoS Attack in Cloud Computing

Dipen Contractor and Dhiren Patel

Department of Computer Engineering, NIT Surat

India 395007

contractor.dipen@yahoo.co.in

dhiren29p@gmail.com

Abstract. There is a new breed of denial-of-service attacks intended to misuse

resources and drive up the cost of cloud computing. Although the impact is less

widespread than a traditional Network layer DDoS. Crashing a server is not al-

ways easy in the cloud because additional resources can be made available as

needed to support sharp spikes in demand. However those resources are not free

and an attack could make it economically prohibitive to keep the attacked cloud

or its services running.

In this paper, we propose a Trust Management Framework as a partial solu-

tion to this problem. It is a lightweight mitigation mechanism that uses trust to

differentiate legitimate users from attackers. The trust is evaluated on the basis

of clients’ visiting history, and used to schedule the service to their requests to

access cloud. It uses a new feature called a license (composed of three parame-

ters; client ID, IP address of the client, and computed Trust), for user identifica-

tion (even beyond NATs) and store the trust information at clients. The license

is cryptographically secured against forgery or replay attacks.

Keywords: DDoS attack, Cloud Computing, Trust Management,

1 Introduction

DoS/DDoS attacks are not new and are not directly related to the use of cloud compu-

ting. The issue with these attacks and cloud computing is an increase in an organiza-

tion’s risk at the network level due to some increased use of resources external to your

organization’s network. For example, there continue to be rumors of DDoS attacks on

AWS, making the services unavailable for hours to AWS users [14].

However, when using IaaS [9], the risk of a DDoS attack is not only external but

there is also the risk of an internal DDoS attack. That internal (non-routable) network

is a shared resource, used by customers for access to their non-public instances (e.g.,

Amazon Machine Images or AMIs[15]) as well as by the provider for management of

its network and resources (such as physical servers). If I become a rogue customer,

there would be nothing to prevent me from using my customer access to this internal

network to find and attack other customers, or the IaaS provider’s infrastructure. Pro-

mailto:contractor.dipen@yahoo.co.in
mailto:%20dhiren29p@gmail.com

vider would probably not have any detective controls in place to even notify it of such

an attack.

Application layer DDoS attack [7] is a DDoS attack that sends out requests follow-

ing the communication protocol and thus these requests are indistinguishable from

legitimate requests in the network layer. Most application layer protocols, for exam-

ple, HTTP1.0/1.1, FTP and SOAP [10], are built on TCP and they communicate with

users using sessions which consist of one or many requests (and hence the requester

does not use spoofed IP addresses). An application layer DDoS attack may be of one

or a combination of the following types [7, 8]: (1) session flooding attack sends ses-

sion connection requests at a rate higher than legitimate users; (2) request flooding

attack sends sessions that contain more requests than normal sessions and (3) asym-

metric attack sends sessions with more high-workload requests.

In this paper, we focus on how to mitigate the session flooding attack in cloud. In

this paper, we propose a lightweight mechanism, named Trust Management Frame-

work that uses trust management to mitigate session flooding DDoS attack. For every

established connection it records four aspects of trust to the user: short-term trust,

long-term trust, negative trust and misusing trust which are used to compute an over-

all trust that helps in determining whether to accept a client’s next connection request.

These values are stored as part of a license at clients and when a client revisits the

cloud; he attaches his license to the session connection request. Based on the license

computes the client’s overall trust, updates his license, and decides whether to accept

his request. The license is designed such that the framework can easily identify the

client and verify his associated trusts, but license forgery or replay is computationally

infeasible. We can also extend Trust Management Framework to collaborative trust

management in Hybrid Cloud [2].

The organization of this paper is as follows. In Section 2, we describe the legiti-

mate user model and attacker model. In Section 3 we propose our design considera-

tions. Then defense mechanism in Section 4 and in Section 5, we concluded

2 Basic User Models

Before proposing the mitigation mechanism, behaviors of both normal and abnor-

mal users should be investigated and described carefully. In this section, we build the

legitimate user model. Firstly, we would like to make two assumptions.

Assumption 1 Under session flooding attacks, the bottleneck is the maximal num-

ber of simultaneous session connections, called as MaxConnector. It depends not only

on the bandwidth of the server, but also on other resources of the server, e.g. CPU,

memory, maximal database connections.

Assumption 2 Without attacks, the total number of session connections of the serv-

er should be much smaller than MaxConnector, e.g., smaller than 20% of MaxCon-

nector, as a cloud controller [3] would set the threshold much higher to tolerate the

potential burst of requests.

2.1 Legitimate User Model

In contrast to attackers, legitimate users are people who request services for their

benefit from the content of the services. Therefore, the interarrival time of requests

from a legitimate user would form a certain density distribution density(t) [5]. With

this insight, we build the user model in the following way:

1. Use traces of Internet accesses to build an initial model density0(t), where t is a

inter-arrival time and density(t) is the probability a legitimate user will revisit the

service after t seconds. Many traces has been done by researchers, e.g. F. Douglis et

al. [5] traced web users to investigate caching technique in World Wide Web, and M.

Arlitt et al. [1] presents a workload characterization study for Internet Web servers.

 2. Rebuild user model densityi+1(t) with the newly collected inter-arrival times of

all legitimate users after Framework runs d days under model densityi(t), where d is

randomly chosen from [dmin , dmax]. It means that densityi+1(t) is tightly derived

from densityi(t) and hence is difficult to be

fooled by attackers.

As a practical legitimate user model, it

should satisfy the following properties: firstly, it

should converge fast to the users’ accesses in-

terval distribution; secondly, it should be dy-

namic as the distribution may change from time

to time; and most importantly, it should be

lightweight to be easily implemented and moni-

tored in the defense mechanism.

2.2 Attacker Model

 The goal of an attacker is to keep the num-

ber of simultaneous session connections to

cloud’s resources as large as possible to stop

new connection requests from legitimate users

being accepted. So, an attacker may consider

using the following strategies. Fig 1.Basic Flow chart

He controls a lot of zombie machines or can misuse P2P network as an attack plat-

form

1. Send session connection requests at a fixed rate, without considering the response

or the service ability of victim.

2. Send session connection requests at a random rate, without considering the re-

sponse or the service ability of victim.

3. Send session connection requests at a random rate and consider the response or the

service ability of victim by adjusting request rate according to the proportion of ac-

cepted session connection requests by the cloud provider [3]. Note that this behavior

is different from legitimate behavior, since the random range and random model are

different.

4. First send session connection requests at a rate similar to legitimate users to gain

trust from server, then start attacking with one of the above attacking strategies.

3 Design Considerations

We have considered the following properties in designing our mitigation mechanism:

(1) it should be deployed at the server for incentive and performance reasons [6].

(2) It should be lightweight, to reduce the processing delay and to avoid being a new

target of attacks.

(3) It should be easy to deploy and independent to the details of servers. The defense

mechanism need not know what services the server runs or what configuration it uses.

(4) It should be adaptive to the server’s resource consumption and differentiate be-

tween concurrent requests.

 Here we define several components of it before defining trust.

Definition 1: Short-term trust Ts, estimating the recent behavior of a client. It is used

to identify those clients who send session connection requests at a high rate when the

server is under session flooding attacks.

Definition 2: Long-term trust Tl , estimating the long-term behavior of a client. It is

used to distinguish clients with normal visiting history and those with abnormal visit-

ing history.

Definition 3: Negative trust Tn, cumulating the distrust to a client. Distrust means

each time the client’s overall trust falls below the initial value T0. It is used to penalize

a client if he is less trustworthy than a new client.

Definition 4: Misusing trust Tm, cumulating the suspicious behavior of a client who

misuses its cumulated reputation.

Definition 5: Trust T, representing the overall trustworthiness of a client, which takes

into account all of his short-term trust, long-term trust, negative trust and misusing

trust.

Definition6: Blacklist, a list of clients whose trust value is below some minimum

level.

Definition7: Whitelist, a list of clients whose trust value is above some threshold

value.

When a client’s trust T drops below defined minimum, that client moves into the

blacklist with an expiration time. That client is then banned from accessing the ser-

vices until his blacklist record expires. When session connection request reaches trust

management framework (as shown in fig-2), it checks whether the client is blacklist-

ed; if not, it computes the new trust T and use trust-based scheduling to schedule the

connection request.

When trusted client starts behaving as an attacker, the number of sessions requested

by that client differs. Such client can be moved from whitelist to blacklist.

4 Trust Management Framework Architecture

This architecture is not a monolithic solution that can be easily deployed to gain ca-

pabilities immediately. Our proposed architecture as depicted in Fig-2 is a collection

of technology components, processes, and standard practices for cloud computing.

Standard enterprise access architecture encompasses several layers of technology,

services, and processes. Broadly categorized as follows:

1. User management Activities for the effective governance and management of iden-

tity life cycles [11]

2. Authentication management Activities for the effective governance and manage-

ment of the process for determining that an entity is who or what it claims to be.

3. Authorization management Activities for the effective governance and manage-

ment of the process for determining entitlement rights that decide what resources an

entity is permitted to access in accordance with the organization’s policies

4. Access management Enforcement of policies for access control in response to a

request from an entity (user, services) wanting to access and IT resource within the

organization

5. Data management and provisioning of identity and data for authorization to IT

resources via automated or manual processes

6. Monitoring, auditing, and reporting compliance by users regarding access to re-

sources within the organization based on the defined policies. Authenticate user rec-

ords are stored parentally in cloud for future user through Legitimate User Model.

Fig.2. Fundamental proposed model and with its components

4.1 License Management

The identification information and trust states can be stored at clients and verified

by the server. We call the information stored at clients as license. It contains the fol-

lowing: 64-bit identifier ID, IP address of client IP, the overall trust T to the client,

negative trust Tn, missus trust Tm, last access time LT, average access interval AT, the

total number of accesses AN, and a keyed hash H of the concatenation of all the

above, with a 128-bit server password SP as the key. SP is private to the server. We

identify a client by his public IP and the server assigned identifier. If IP address alone

is used, clients behind NATs cannot be distinguished, because they share the same

public IP address.

A license serves two functions for user identification and trust computation. The

identification information, such as ID and IP, must be stored at the client license. The

state variables for trust computation can be stored at the client or at the server. Each

has its advantages and drawbacks. Keeping licenses at a server largely prevents at-

tackers from tempering them, but it is a single point of data failure.

4.2 Adaptive Trust Computing

The computation of trust employs T, Tn, Tm, LT, AT and AN in license, current

time now, and usedRate (i.e., the percentage of connected sessions over MaxConnect-

or) of the server. Based on Assumption 2 in Section 3 usedRate is much lower than 1.

As we explained, a server should give priority to protect the connectivity of good

users during session flooding attacks, instead of identifying all the attack requests.

Since a higher trust value means a request is more likely to be accepted, it is desired

to satisfy: Tlegitimate user > Tnew client > Tattacker

We give the formula of short-term trust as follows:

 (

 ()

) (1)

Where alpha is a weight factor deciding the influence of usedRate. It is a positive real

number with default value 1 and can be modified by servers as needed. When alpha ≈

0, the short-term trust mainly relies on the interval of the latest two accesses of the

client.

Similarly long-term behavior of a client. The formula of long-term trust is:

 (

 () ()

) (2)

Using the short-term trust and long-term trust computed above and the misusing

trust provided in license, we can then compute trust as follows:

 (

 ()

) (3)

Where β ∈ [0, 1] with default value 0.5, it decides the weight of short-term trust and

long term trust in the overall trust computation. For a client accessing the server for

the First time, its initial value of the overall trust is 0.1, and its initial value of nega-

tive trust and misusing trust are both 0, i.e. T0 = 0:1, Tn0 = Tm0 = 0.

4.3 Trust-based Scheduler

When a session connection request is made, this framework firstly validates the li-

cense of that client. If passed, it will compute the client's new overall trust, negative

trust and misusing trust and then update this information into the license. Afterwards,

the scheduler in Framework decides whether to redirect it to the server based on the

trust values. It schedules session connection requests once every time slot. If the total

number of the on-going sessions and the sessions waiting to be connected is not larger

than the MaxConnector of the server, the scheduler will redirect all requests to the

server. Otherwise, suppose there are N session connection requests waiting to be con-

nected and the percentage of requests should be dropped is µ.

Fig.3. Flow of Operations

We propose the following scheduling policies to drop suspicious requests:

 Foot-n: sort all requests in current time slot by the clients' trusts in the decreasing

order. For clients that have the same overall trust, sort them by their misusing trusts in

the increasing order. We then drop the last n =   N requests.

5 Conclusion & Future Work

Defending against application DDoS attacks is a pressing problem of the Inter-

net. Motivated by the fact that it is more important for the cloud service pro-

vider to accommodate good users when there is a scarcity of resources. Our pro-

posed mechanism Trust Management Framework will mitigate session flooding

attack using trust evaluated from user’s history. We will try to compare this to

with other defense mechanism. Trust Management Framework is lightweight, in-

dependent to the service details, adaptive to the Cloud’s resource consumption

and extendable to allow collaboration among different clouds.

References

1. M.F.Arlitt, C.L.Williamson.: Web Server Workload Characterization: The Search for In-

variants In: Proceedings of the ACM SIGMETRICS '96 Conference, pp. 126-137, Penn-

sylvania (1996)

2. Peter Mell., Timothy Grance.: The NIST Definition of Cloud Computing (Draft). NIST

Special Publication 800-145, pp. 6-10 (2011)

3. Nurmi, D., Wolski, R., Grzegorczyk.C., Obertelli. G., Soman. S., Youseff. L.: The Euca-

lyptus Open-Source Cloud-Computing System. Cluster computing and grid 9th IEEE ACM

Proceedings, pp. 124-131, IEEE Press (2009)

4. F. Cornelli, E. Damiani, S. Vimercati, S. Paraboschi, P. Samarati.: Choosing reputable ser-

vents in a p2p network. In: Proceedings of the 11th international conference, pp. 65-69

(2002)

5. F. Douglis, A. Feldmannz., B. Krishnamurthy.: Rate of change and other metrics: a live

study of the World Wide Web. In: Proceedings of USENIX Symposium on Internetwork-

ing Technologies and Systems, pp. 1-13 (1997)

6. M. Natu, J. Mirkovic.: Fine-Grained Capabilities for Flooding DDoS Defense Using Client

Reputations. In: Proceedings of LSAD’07, pp. 105-112, Japan (2007)

7. S. Ranjan, R. Swaminathan, M. Uysal, E. Knightly.: DDoS-Resilient Scheduling to Coun-

ter Application Layer Attacks under Imperfect Detection. In: Proceedings of

INFOCOM’06, pp.1-13 (2006)

8. J. Yu, Z. Li, H. Chen, X. Chen.: A Detection and Offense Mechanism to Defend Against

Application Layer DDoS Attacks. In: Proceedings of ICNS’07, pp. 54-56 (2007)

9. Khajeh-Hosseini. A., Greenwood D., Sommerville I.: Cloud Migration: A Case Study of

Migrating an Enterprise IT System to IaaS. In: Proceedings IEEE Cloud computing 3rd

conference, pp.55-65, IEEE Press (2010).

10. Francisco Curbera., Matthew Duftler., Rania Khalaf, William Nagy, Nirmal Mukhi, San-

jiva Weerawarana.: Unraveling the Web Services Web: An Introduction to SOAP, WSDL,

and UDDI. IEEE Internet Computing, vol. 6, no. 2, pp. 86-93, IEEE Press (2002)

11. Anu Gopalakrishnan.: Cloud Computing Identity Management. SETLabs Briefings, Vol7

No7, pp.45-55 (2009)

12. Yi Xie, Shun-Zheng Yu.: A Novel Model for Detecting Application Layer DDoS Attacks

Computer and Computational Sciences. IMSCCS '06 First International Multi-

Symposiums (2006)

13. Kevin J Houle., George M Weaver., Neil Long., Rob Thomas.: Trends in Denial of Service

Attack Technology CERT, Issue Oct. (2008)

14. Article: Rumor Amazon Hit With Denial-of-Service Attack, Again. posted June 6, 2008,

http://www.appscout.com/2008/06/rumor_amazon_hit_with_denial

of.php

15. Amazon machine images, http://en.wikipedia.org/wiki/Amazon_Ma-

chine_Image

http://www.appscout.com/2008/06/rumor_amazon_hit_with_denialof.php
http://www.appscout.com/2008/06/rumor_amazon_hit_with_denialof.php
http://en.wikipedia.org/wiki/Amazon_Ma-%20chine_Image
http://en.wikipedia.org/wiki/Amazon_Ma-%20chine_Image

