
Finding Trusted Publish/Subscribe Trees

Stephen Naicken, Ian Wakeman, and Dan Chalmers

Department of Informatics,
University of Sussex,

Brighton,
UK

Initial.Lastname@sussex.ac.uk

Abstract Publish/Subscribe systems assume that clients and brokers
abide by the matching and forwarding protocols. Such an assumption
implies implicit trust between all components of the system and has
led to security issues being largely ignored. As publish/subscribe is in-
creasingly used in applications where implicit trust can not be assumed,
an approach is required to mitigate misbehaviour. We propose the con-
struction and reconfiguration of the event forwarding topology, the pub-
lish/subscribe tree (PST), with respect to the trust requirements of the
clients. The principal contribution of this paper is a trust metric for
PSTs, which aggregates each client’s trust evaluation of a PST to give a
socially acceptable trust evaluation and allows for the ordering of PSTs.
Additionally, we define the PST trust maximisation problem with over-
head budget, which is solved by the PST that maximises trust within
an overhead budget for a given advertisement. A tabu search based al-
gorithm for this problem is presented and is shown to scale to large
problem instances and give good approximations of the optimal solu-
tions.

1 Introduction

Publish/Subscribe systems assume that brokers are implicitly trusted to cor-
rectly implement the matching and routing functions that are essential for the
delivery of events from publishers to subscribers. Trust between clients (publish-
ers and subscribers) and brokers is ensured by the presence of trusted adminis-
trative entities responsible for the event notification service (ENS) – the network
of brokers responsible for propagation of events from publishers to subscribers
– and external contracts between clients and administrative entities. Typically,
publish/subscribe is used in application contexts where these mechanisms exist,
for example news distribution services that are restricted to fee paying customers,
but increasingly publish/subscribe is being utilised for applications where admin-
istrative entities and external contracts may not be present. In publish/subscribe
based inter-networking, the scale and dynamicity of the network prohibit the use
of external contracts, while mobile ad-hoc network publish/subscribe has the ad-
ditional issue of the absence of an ENS under the aegis of trusted entities. These

applications are vulnerable to misbehaviour that can disrupt communications,
as mechanisms to ensure trust are absent.

Motivated by research on the use of trust and reputation systems to safe-
guard Peer-to-Peer networks, this paper proposes a mechanism by which the
publish subscribe tree (PST) that is used to distribute events from publishers
and subscribers can be constructed and reconfigured to maximise the clients’
trust of the PST. A trust metric for PSTs is defined that aggregates each and
every client’s trust evaluation of a PST in an equitable manner. Following from
Rawls’ difference principle, given a set of PSTs, the metric deems the most trus-
ted PST to be the one that maximises the lowest trust opinion held by any client.
The PST trust metric is used to define the PST Trust Maximisation problem
with overhead budgets, which is solved by the PST that maximises trust within
a prescribed overhead budget. An exhaustive search and tabu search algorithm
to solve this problem are presented and evaluated. By maintaining, a PST that
maximises trust given the clients’ trust opinions, the PST is less vulnerable to
misbehaviour and consequently service disruption. Brokers that are deemed by
clients to be untrustworthy will be not be included in the initial PST construc-
tion or will be likely ejected upon PST reconfiguration.

The remainder of this paper is structured as follows. In section 2, the PST
is defined and a PST overhead metric is presented. Section 3 details the trust
metric for PSTs. The aggregation is underpinned by Rawls’ difference principle
to ensure that the aggregation is equitable to all clients. The definition of the
PST trust maximisation problem with overhead budget (MTPSTO) is given in
section 4. In section 5, an algorithm using the tabu search metaheuristic to solve
the MTPSTO problem is presented. Finally, section 6 describes the evaluation
of the tabu search algorithm with particular emphasis on the comparison of the
results with those of an exhaustive search algorithm.

2 Publish/Subscribe Trees

2.1 Definition of Publish/Subscribe Trees

In publish/subscribe systems, publishers issue advertisements to the ENS that
express their intent to publish events consisting of particular content (e.g. Java
tutorial books for sale that are less than ten pounds). Subscribers submit sub-
scriptions (e.g. Java tutorial books for sale) that express their interest to receive
specific events to the ENS. Should a subscription match an advertisement owned
by a given publisher, the ENS must ensure that matching events issued by this
publisher are delivered to the interested subscriber.

As the ENS is a network of interconnected brokers, a forwarding topology
is required that allows for the dissemination of events from publishers to sub-
scribers. The topology is typically an acyclic graph, so it can be modelled as a
tree. Definition 1 defines this tree as a publish/subscribe tree (PST). It exists in
the context of an advertisement. For each advertisement, there is a PST that is
rooted at publisher of the advertisement and spans a subset of brokers and all
interested subscribers.

PSTs can also be used to model ad-hoc network publish/subscribe where
there is no ENS and both brokers and subscribers may be responsible for the
matching and forwarding of events. In this context, the set of internal nodes of
a PST can include subscribers.

Definition 1 (Publish Subscribe Tree (PST)). Given an undirected con-
nected connectivity graph G = (V,E), a publisher p such that p ∈ V , an ad-
vertisement Ap held by publisher p, a set of subscribers SAp = {s | sfs(Ap) =
true ∧ s ∈ V \ {p}} where sfs is the subscription function of s, and a set of
routers RAp = V \ (SAp ∩ {p}) is the set of candidate router nodes. A PST TAp
for the advertisement Ap is a tree routed at p that spans all subscribers in SAp
and a subset of Rap nodes where all r ∈ Rap can not be a terminal node of the
PST and for all s ∈ Sap , s may be either a branch node or a terminal node of
the PST.

2.2 Publish/Subscribe Overheads

PST construction with respect to overhead costs was first considered by Huang
and Garcia-Molina in the context of publish/subscribe in wireless ad-hoc net-
works [8]. They define three types of subscription: inherent subscription; effective
subscription; proxied subscription. The inherent subscription si of a subscriber
i is given by its subscription function sfi. The effective subscription Si of a sub-
scriber i is given by the disjunction of its inherent subscription si and its proxied
subscription s

′

i, Si = si∨s
′

i. The proxied subscription s
′

i of a subscriber i is given

by s
′

i =
⋃
j=1,...,n Sj for each child 1, . . . , n of i. The overhead metric is defined

with respect to these subscription types in definition 2.

Definition 2 (Publish/Subscribe Tree Overhead). The overhead of a PST
T , CT (E) is OT (E) =

∑
iOTi(E) where E is the set of events to be published

and OTi(E) is the overhead of receiving, processing and forwarding the events
in E at node i of T . The overhead OTi at a node i, is given by OTi(E) =
(r + f) · ΦE(¬si ∧ s

′

i) + f · ΦE(si ∧ s
′

i) where si is the subscription function at

node i, s
′

i is the proxied subscription of i, and ΦE(α) gives the number of events
from the set E that match the subscription function α.

3 Theory

The aim of this section is to show how PSTs can be compared in terms of the
trust imbued in the tree by different participants. A generalised trust metric that
combines trust values of the nodes on a path, and allows for discrimination of the
trust of two disparate paths, is given. Subsequently, the relationships between
the participants in a PST are identified, leading to a natural formulation of the
problem as an analysis of the trust within and between different paths for a given
individual participant. Having defined a means for participants to order their
preferences for different PSTs, the problem of how to aggregate these orderings
is addressed by the use of social choice theory, albeit with a caveat about the
comparability of trust functions.

3.1 Definition of Trust

Trust is “the firm belief in the competence of an entity to act dependably, se-
curely and reliably within a specified context” [7]. The competence of a trustee is
dependent upon a variety of trust sources with their importance to trust evalu-
ation dependent upon the trustor. Vector-based trust models have been proposed
that aggregate a vector of trust sources to give a single trust opinion of an entity
[19]. A generalisation of this model is defined as follows and is used in this work.

Definition 3. (Trust Vector) A trust vector is a d-dimensional real-valued
vector Ληi,j = [ληi,j1 , λ

η
i,j2

, . . . , ληi,jd] such that for each ληi,jn is a real value, each
representing a different property of trust, such as reputation, within some context
η. Ληi,j is the trust vector representing i’s trust opinion of j within some context
η.

Definition 4. (Individual Trust Function) For each individual i ∈ N , i has
a trust function τi : Rd → R which is a mapping of trust vectors to trust values.
Given a pair of individuals i and j, a trust vector Ληi,j, τi(Λ

η
i,j) is a real value

representing i’s trust in j within the context η.

3.2 Trustworthiness of Paths

Using previous work on semiring-based trust models [23], we define our trust al-
gebra as the set S, with two binary operators, ⊕ and ⊗. S contains the individual
entities, with the level of trust. The ⊗ operator combines the entities into a path
and returns the level of trust of that path, whilst the ⊕ operator compares paths
and picks out the path with the maximum trust. We assume that ⊕ is commut-
ative, and that ⊗ is distributive over ⊕, and further that there is a partial order
over the operators such that a ≤ a′ ∧ b ≤ b′ ⇒ a⊕ b ≤ a′ ⊕ b′ ∧ a⊗ b ≤ a′ ⊗ b′.

Mathematically inclined readers may note that we have defined an ordered
semiring. An example of such an algebra is the trusted path definitions adopted
by Marti and Garcia-Molina in [12], an instantiation of which is given in defini-
tion 5. We will be using this instantiation, but results remain valid for any other
valid instantiation.

Definition 5. (Trusted Path Semiring) The trusted path semiring is a semir-
ing, (S,⊕,⊗) where S = [0, 1] and ⊕ and ⊗ are defined as:

for all s1, s2 ∈ S, s1 ⊕ s2 = max(s1, s2)
for all s1, s2 ∈ S, s1 ⊗ s2 = s1s2

Example 1. (Example Use of Trusted Path Semiring) Let σ1 be a simple
path, σ1 = (v1, v2), (v2, v3), . . . , (vn−1, vn), where v1 and vn+1 are the start and
end vertex of the path, respectively. The trust v1 has in σ1 is given by τ(v1, v2)⊗
τ(v1, v3)⊗...⊗τ(v1, vn+1) where τ : V×V → S and gives the trust that one vertex
has in another, represented by values from the set S of the semiring.Additionally,
given p alternative simple paths from v0 to vn+1, the most trusted one is given
by τσ1

⊕ τσ2
⊕ ...⊕ τσp = max(τσ1

, τσ2
, ..., τσp).

3.3 Individual Trust Evaluation Functions for PSTs

Using the individual trust function (def. 4) and the trusted path semiring (def. 5),
the clients’ trustworthiness of a PST can be defined. The relationships between
publishers, internal subscribers and terminal subscribers are identified and eval-
uated using the aforementioned methods to give individual trust functions for
these types of clients. The definitions below define how the trustworthiness of
a PST is evaluated by the publisher, the internal subscribers and the terminal
subscribers.

Publisher PST Trust Evaluation Function The publisher has a contract
to send events to each subscriber in the PST and has no preference over these
subscribers. To ensure delivery of these events, the trust function should max-
imise the trustworthiness of each path to the subscribers. The publisher trust
function aggregates the trust of each path to each subscriber in the PST. Where
the publisher is adjacent to a subscriber, the trust value of the path is 1, as all
notifications are sent directly to the subscriber.

Definition 6. (Publisher PST Trust) Let T = (V,E) be a PST, where V =
S ∪ R ∪ {p} for a publisher p, set of subscribers S and set of routers R, and
let α be some aggregation function, α : R|S| −→ R. For each s ∈ S, there is
a path σp,s = {p, . . . , s}, a vertex sequence with initial vertex p, final vertex s
and if |σp,s| > 2, it has intermediate vertices {v1, v2, . . . , v|σp,s|−2}, and whose
trustworthiness is given by:

τp(σp,s) = τp(Λ
η
p,v1)⊗ τp(Ληp,v2)⊗ · · · ⊗ τp(Ληp,v|σ|−1

) (1)

The trust of T for p is a function of the trust of the paths to each subscriber
and is given by:

τp(T) = α(τp(σp,s1), τp(σp,s2), . . . , τp(σp,s|S|)) (2)

Terminal Subscriber PST Evaluation Function Terminal subscribers re-
ceive events forwarded on the path from the publisher. Their trust in the PST is
determined exclusively by the trust of this path. If the subscriber is adjacent to
the publisher, its trust value of the path is 1, as it trusts the publisher to receive
its events.

Definition 7. (Terminal Subscriber PST Trust) Let T = (V,E) be a PST,
where V = S ∪R ∪ {p} for a publisher p, set of subscribers S and set of routers
R. For each subscriber s ∈ S such that s is a terminal of T and σs,p = {s, . . . , p}
is a path in T with initial vertex s to terminal vertex p and if |σs,p| > 2 with
intermediate vertices {v1, v2, . . . , v|σs,p|−2}, then the the trust of s in T is given
by:

τs(T) = τs(Λ
η
s,v1)⊗ τs(Ληs,v2)⊗ · · · ⊗ τs(Ληs,v|σs,p|−1

) (3)

Internal Subscriber PST Evaluation Function An internal subscriber re-
ceives events on the path from the publisher and forwards them to subscribers
in the sub-tree of which it is the root. The node holds both the roles of terminal
subscriber and publisher, so its trust function is a function of the trust to the
publisher and the trustworthiness of the paths to each subscribers in its sub-tree.

Definition 8. (Internal Subscriber PST Trust) Let T = (V,E) be a PST,
where V = S∪R∪{p} for a publisher p, set of subscribers S and set of routers R.
For each subscriber s ∈ S such that s is an internal node, there is a path σs,p =
s, . . . , p where s is the initial vertex, p is the final vertex and with intermediate
vertices {v1, v2, . . . , v|σs,p|−2} if |σs,p| > 2. The trust of the σs,p is given by:

τs(σs,p) = τs(Λ
η
s,v1)⊗ τs(Ληs,v2)⊗ · · · ⊗ τs(Ληs,v|σ|−1

) (4)

Additionally, for each s ∈ S such that s is an internal node, let Ts = (Vs, Es)
be the sub-tree rooted at s. For each s′ ∈ (S \ s) ∩ Vs, there is a path σs,s′ =
{s, . . . , s′} that has initial vertex s, final vertex s′, and intermediate vertices
{v1, v2, . . . , v|σs,s′ |−2}. The trust of the path σs,s′ is given by:

τs(σs,s′) = τs(Λ
η
s,v1)⊗ τs(Ληs,v|σ|−1

)⊗ τs(Ληs,s′) (5)

For each internal subscribe node s in a PST T , the trust of s in T is given
by:

τs(T) = β(τs(σs,p), τs(σs,s′1), . . . , τs(σs,s′d−1
)) (6)

where β : Rd −→ R is some aggregation function of trust values, and d =
|Vs ∩ S|+ 1.

3.4 PST Trust Evaluation Function

Social Choice and Welfare Preliminaries Social choice theory is the study
of the specification of preferences, their motivating utilities, and the aggregation
mechanisms of individual preferences to a socially acceptable preference. Here it
is used to address the following problems: the aggregation of the trust evaluation
of paths to give a client’s trust evaluation of a PST; and the aggregation of the
clients’ PST trust evaluation functions to give the trustworthiness of a PST.

Sen [21] shows that if we can assign utility values to the preferences, and that
the utilities are comparable between individuals, then a choice function is usable.
As in nearly all other work building on trust preferences, we must assume that
the utility of our trust preferences can be compared, both in deciding which
individual is worse off (ordinal level comparability), and how much one gains
when another loses (cardinal level comparability).

Rather than adopt a utilitarian approach to determining the most trusted
PST, the PST that maximises the trustworthiness of the least well-off node is
dominates the trust metric. This is motivated by Rawls’ difference principle [18],
which states that social and economic inequalities satisfy the condition that they
are to be to the greatest benefit of the least advantaged members of society.

Definition 9. (Individual Evaluation Function) An individual utility func-
tion is a real-valued function to the set of alternatives C for an individual i,
ui : C → R.

Definition 10. (Leximin Social Welfare Functional) Let i(x) be the ith

worst-off individual under the alternative x, that is there is a subset M ⊂ N
where |C| = i − 1 individuals such that for all c ∈ C, ui(x) ≥ uc(x). For any
given pair of alternatives x, y ∈ C, xPy if and only if there is an i ∈ N such
that:

1. ui(x)(x) > ui(y)(y); and
2. uc(x)(x) = uc(y)(y) where c ∈ {n : n ∈ N ∧ ui(x) ≥ un(x)}.

If ∀i ∈ N.ui(x)(x) = ui(x)(x) then xIy.

Aggregation of Path Trust Evaluations in Individual PST Trust Func-
tions The aggregation functions α and β in definitions 6 and 8, are the lex-
imin aggregation function given in definition 11 and the minimum aggregation
function, respectively. As d - the number of paths - is variable across PSTs,
for internal subscribers, β can not make use of analytical leximin aggregation
(definition 11). The motivation for the choice of these aggregations is to allow a
client’s trust in a PST to be dominated by the least trustworthy path. Consider
an internal subscriber in a PST with paths of very high trust, except for a path
of low trust to a terminal subscriber. There is more risk of malicious behaviour
on this path and the terminal is undeservedly punished in favour of others, as all
subscribers should be treated equitably. This is a scenario our metric attempts
to avoid.

PST Trust Evaluation Function The social ordering of PSTs must improve
the well-being of the least well-off with respect to trust, so it follows that the
leximin social welfare functional is used, since it is assumed that all nodes are to
be treated equally. Rather than implement the leximin social welfare function as
one of pairwise comparisons, an analytical leximin function (def. 11) is used. This
allows PSTs to be ordered by their trust values and a combinatorial optimisation
problem that maximises the trust value of the PST for a given advertisement
to be defined. Unfortunately, its use is not without issue, as it requires cardinal
full comparability and it is, at the least, questionable if trust functions comply
with this property.

Definition 11. (Analytical Leximin Aggregation) The analytical leximin
aggregation operator, Fleximin, is an ordered weighted average where each ai ∈
[0, 1] and the weight vector W = [w1, . . . , wn−2, wn−1, wn] is defined as follows:

w1 =
∆n−1

(1 +∆)n−1
,

wj =
∆n−j

(1 +∆)n+1−j for all 2 ≤ j ≤ n.

If |a− b| < ∆ then a = b. If a > b then |a− b| > ∆.

Definition 12. (Socially Trusted PST Aggregation) Let t = (Vt, Et) be
a PST where Vt = S ∪ R ∪ {p}. For each i ∈ S ∪ {p}, there is a real-value
τi(T) representing i’s trust value of t. The social trust value of t is given by
Fleximin(τi1(T), τi2(T), . . . , τi|S∪{p}|(T)).

4 The Problem

4.1 The PST Trust Maximisation Problem with Overhead Budget

Given this definition of aggregated social trust, we are now in a position to
formally define the problem of maximising the trust of a Publish/Subscribe Tree
that meets an overhead budget in terms of the cost of its links - the PST Trust
Maximisation Problem with Overhead Budget (MTPSTO):

Problem 1 (The MTPSTO problem). Given an overhead budget B > 0, an event
distribution E, an undirected connectivity graph Gc = (Vc, Ec), a publisher p
that holds an advertisement Ap, a set of subscribers S = {s | sfs(Ap) = true}
where sfs is the subscription function of s, a set of routers R = Vc \ C where
C = {p}∪S, find a PST T that is rooted at p, spans C and maximises the trust
value τ(T) = Fleximin(τc1(T), . . . , τc|C|(T)) where τci(T) is the trust evaluation

of ith node in C, subject to OT (Ev) ≤ B.

The MTPSTO decision problem is shown to be in NP-hard by a polyno-
mial time reduction from the Minimum Overhead PST Problem [2] and in NP
by a polynomial time verification algorithm. We omit the proof due to space
constraints.

5 The Algorithm

To solve the MTPSTO problem, an exhaustive search algorithm of all possible
PSTs is presented. The algorithm must calculate the trust value and the overhead
value of every PST in the connectivity graph Gc = (Vc, Ec) that is rooted at
the publisher p and spans all subscribers S, for an advertisement Ap. The set
of all PSTs for Ap is a subset of the set of all Steiner trees in Gc that span p
and S. Using this property and the fact that the set of all Steiner trees in Gc is
given by the enumeration of all spanning trees in Gc and all its sub-graphs, the
algorithm must find all the spanning trees in Gc and all its sub-graphs that are
also feasible PSTs. Note that graphs and sub-graphs with router vertices with
only one adjacent edge are ignored, as all spanning trees found will not be PSTs.
The router will be a terminal node in every PST that spans the graph and this
contradicts the definition of a PST.

5.1 Spanning Tree Enumeration

A number of algorithms have been proposed to solve the problem of enumerating
all spanning trees of a graph. Backtracking-based techniques have O(m+n+mt)
[14] andO(m+n+nt) [5] complexity for undirected graphs, where t is the number
of spanning trees. Prior to the these techniques, Char [3] proposed an algorithm
that lexicographically tests sub-graphs to determine if each is a spanning tree,
and although a complexity analysis was not given, it was later shown to be of
O(m + n + n(t + t0)) complexity where t0 is the number of sub-graphs found
that are not spanning trees [9]. Char’s algorithm is shown to be more suitable
for enumerating PSTs, as the spanning tree test of a sub-graph can be modified
to determine if it is a PST.

5.2 Approximation through Tabu Search

A number of approaches to the Steiner problem in graphs that use the tabu
search metaheuristic have been proposed [20] [6]. The Ribeiro and De Souza
[20] approach finds solutions that are better than the Takahashi-Matsuyama
heuristic [22] and F-tabu [6]. Given the relationship between Steiner trees and
PSTs, and the successful use of tabu search to solve the Steiner problem, this
metaheuristic is explored as means to solve the MTPSTO problem.

PST Tabu Move Selection and Evaluation Similar to the move structure
defined in [20], a tabu search move is defined as the addition or removal of a
broker node from the PST. As is the case with Steiner trees, there is a subset of
nodes that must always be included in the vertex set of the tree, these are the
publisher node and the subscriber nodes. It follows that only the combination of
broker nodes is variable, hence the choice of move structure. For insertion moves,
a broker node and its edges (from the connectivity graph), which are adjacent to
nodes in the PST, are added to the PST. For removal moves, a broker is removed
from the PST and every edge in the connectivity graph between pairs of nodes
in the PST are added to the PST.

In tabu search, the application of a move to an current PST solution gives
a new solution, however the application of a move to a PST gives a sub-graph
of the connectivity graph. To address this, the modified spanning tree algorithm
(section 5.1) is used to find all PST in the sub-graph. Each PST is evaluated for
its trust and overhead value. The PST that maximises trust and is below budget
is then selected as the tree that is derived as a result of the application of the
move to the current PST solution. If no tree is under budget, the one with the
highest trust value is chosen.

Penalty Function Tabu search is designed for minimisation and maximisation
combinatorial problems without constraints, however the MTPSTO problem has
an overhead budget constraint within which trust is maximised. Although a Near
Feasibility Threshold (NFT) technique [11] was investigated, superior results

were obtained with a static penalty function. In this approach, all over-budget
PSTs are penalised by increasing the trust value by 50%.

Diversification Strategy Takahashi and Matsuyama [22] present a Steiner
tree heuristic that can easily be modified to find a Steiner tree that is a PST.
The modifications required is to stipulate that the subscribers and the publisher
are the Steiner nodes. After every n iterations of the tabu search algorithm
or when there are no moves for the tabu search to exploit, the diversification
method is invoked.

Surrogate Objective Function Each move when applied to a PST gives a
number new solutions that must be evaluated for their trust and overhead values
(objective values). Evaluation of each move can become costly as the size of the
problem instance increases. To address this, the use of a surrogate evaluation
function is proposed that estimates the trust value of solutions derived from a
move. Moves that are likely to not result in an improvement over the current
solution are discarded. The solutions derived from the smaller moves set are then
fully evaluated for exact objective values.

A greedy approach is adopted for the surrogate objective function, as it
attempts to maximise the improvement to the least well-off node. Given the
subgraph Gmod that is induced by the application of a move m to the current
PST solution, TPST , the surrogate objective value is given by the most trusted
path between the node with the least trust in TPST and the publisher, p. Due to
the fact that a semiring-based trust model for path trust is used, it is possible to
to use the generic shortest distance algorithm algorithm defined in [23] to find
the most trusted path between two nodes.

Tabu Search Algorithm for MTPSTO The tabu search algorithm for the
MTPSTO begins by using the diversification method to find the initial PST
solution and setting to the current solution. Its objective value is evaluated and
the tabu search iterates until the maximum number of iterations without an
improvement in the objective value is met. During each iteration, first the set of
moves is established by determining the routers that can be added and removed
from the PST. Moves that are in the tabu list are discarded. Using the surrogate
objective function, the move set is further reduced to the best estimated inser-
tion and removal moves. The modified Char spanning tree algorithm is used to
enumerate all PSTs resulting from the application of the moves in the move
set to the current solution. These PSTs are then evaluated for their trust and
overhead values. The PST with the highest trust value and lowest overheads is
selected as the new current solution. If it is also better than the existing best
solution found by the algorithm so far, then it is set as the new best solution.
The move that yields the new current solution is marked is places in the tabu
list and will not be available for selection for a given number of iterations.

6 Evaluation

In this section, an evaluation of the exhaustive search and the tabu search al-
gorithms for the MTPSTO problem are presented. The evaluation is concerned
with two properties, the quality of the solutions found and the running times
of the algorithm. Solution quality is given by the relative error of the trust and
overhead values with respect to the optimal solution.

The algorithms were implemented using Java and are dependent upon two
third-party libraries, the Java Universal Network/Graph Framework (JUNG)
(ver. 2.01) and the OpenTS library (ver. 1.0-exp10). JUNG is a framework for the
modelling, analysis and manipulation of graphs. The OpenTS library provides
a tabu search framework that is used as the basis of the implementations of the
tabu search algorithms.

Each experiment was executed five times and the running times given in
the results tables are averages over these executions unless stated otherwise.
Experiments were performed on Amazon EC2 using a High-Memory Extra Large
instance (m2.xlarge). The instance has 17.1 Gb of RAM, two virtual cores with
3.25 EC2 Compute Units reported as two 2.67 GHz Intel Xeon X5550 CPUs by
cat /proc/cpuinfo, and 420 Gb of instance storage. Amazon Linux AMI 64-bit
with Linux kernel 2.6.35.11 was the chosen operating system and the Java run-
time environment used was IcedTea6 1.9.1. The only option passed to the Java
virtual machine was to set the maximum heap size to 16 Gb, -Xmx16G. The choice
of this evaluation environment was motivated by the high memory requirements
of the exhaustive search algorithm. To ensure fair comparability of the running
times, the same instance type was used for the tabu search algorithm, despite
its lower memory usage.

6.1 Evaluation Test Data Sets

The test data sets are comprised of problem instances varying in |R|, as the
primary objective is to analyse the proposed algorithms with respect to con-
nectivity graphs of increasing sizes in both V and Ec. The graph density of all
problem instances is approximately equal to 0.5. By increasing the number of
routers in each problem and maintaining constant graph density, the test data
sets allow for the evaluation of algorithms with respect to problems of increasing
complexity, as both the number of possible moves at each iteration of the tabu
search and the dominant factor of the PST enumeration algorithm n(t + t1)
increase. For all problems, the cardinality of the set of subscribers, S, is 5.

Test data sets are made of subsets of five problems, each problem shar-
ing identical parameters other than the value of the overhead budget, B. Each
problem is identified by an identifier in the following format, <Problem Data

set><Subset Number>-<Problem Number> where <Problem Data set> is the
data set identifier (A and B), <Subset Number> indicates the value of |R| for all
problem instances in the subset, and <Problem Number> is the problem identifier
where 1 =⇒ B = 2000, 2 =⇒ B = 3000, 3 =⇒ B = 4000, 4 =⇒ B = 5000
and 5 =⇒ B = 231−1 (Java’s largest maximum integer). The values chosen for

B exclude 1000 as there is no optimal PST solution with an overhead value that
is less than or equal to 1000 for problems where the optimal solution is known.
No budgets are considered where 5000 < B < 231 − 1, as all optimal solutions
found where B = 231 − 1 are identical to those where B = 5000. The choice of
B = 231 − 1 is so that the algorithms can find the most trusted PST within the
largest permitted integer overhead budget.

Problem set A consists of problems where 1 ≤ |R| ≤ 9. Set A is the only
problem set where optimal solutions are available for comparison to those found
by the tabu search algorithms, as for larger problems, the running times of
the exhaustive search are excessive. Problem set B consists of problems where
20 ≤ |R| ≤ 100. Although no exact solutions known for these problems, the
results are useful for evaluating the scalability of the tabu search algorithm.

6.2 Results

Table 1 shows the execution times of the exhaustive search for each subset of
problems in problem set A. The average times given are those of the five al-
gorithm runs for each subset of problems, except for A9 where this was im-
practical. Each experiment run finds the solutions where the overhead budget is
2000, 3000, 4000, 5000, and 231− 1. For problem subsets A0 to A4, the exhaust-
ive search executes quickly, however, there is an order of magnitude difference in
the execution time with the addition of an additional router to problems subsets
A5 and A8. The timings exhibit non-linear growth, which is to be expected, as
the problem under consideration is in NP-Complete. Given the execution time
of the exhaustive search for problem A9, attempts to solve larger problems were
not attempted.

Table 1. Execution Times of Exhaustive Search Results for Problem Set A

Pr. Min. (s) Max. (s) Avg. (s)

A0 0.0153 0.0871 0.0339
A1 0.0239 0.1522 0.058
A2 0.1238 0.3774 0.1852
A3 0.8051 1.2791 0.9304
A4 1.7682 2.4166 1.9041
A5 19.5833 20.212 19.7224
A6 285.8669 287.4492 286.3381
A7 945.8277 949.9657 947.4963
A8 6149.868 6164.197 6158.712
A9 97672.93 97672.93 N/A

Tables 2 and 3 give the results for the tabu search algorithms for problem
sets A and B, respectively. The running times for problem subsets A1 to A4 are

inferior to those of the exhaustive search. For problem subset A5 and above,
the tabu search outperforms the exhaustive search algorithm with respect to
execution time. For only seven problems in problem set A, the tabu search does
not find the exact solution. Of these, four have negligible error to the optimal
solution in the trust value of the PST. The average relative error in the overhead
costs is 0.1148.

For problem set B, no exact solutions are available due to these problem
instances being of too large for an exhaustive search. However, the results show
that even for large problem instances, the tabu search algorithm is capable of
finding solutions in running times that are considerably faster than those of the
exhaustive search. The slowest time, 88.44s for problem B30-4, is some three
times faster than that of an exhaustive search for problem instance consisting of
six routers.

In conclusion, it has been shown that the tabu search scales to large prob-
lem instances with running times comparable to those of the exhaustive search
algorithm for significantly smaller instances. The results for problem set A have
demonstrated that the tabu search is capable of finding good approximation
solutions.

7 Discussion

For a PST to form, the subscribers and routers must trust the publisher, so it
is natural to devolve responsibility for the creation and selection of the PST to
the publisher. Our protocol thus degenerates to the collection of trust vectors
by the publisher for the candidate nodes in the tree, the execution of the tabu
search algorithm, and finally the notification of the selected nodes of their roles
and routing tables.

We have provided a formal definition of how trust can be used to evaluate
the worth of a PST, dependent upon position, and under the assumption of full
cardinal comparability of the trust metrics. Using this metric and existing work
on PST overheads, we have shown how to derive optimal and near-optimal trees
which maximise trust and meet a link cost budget. Under what circumstances
does this assumption hold?

Trust can be formed using a number of trust sources, but typically in the
literature, it is a function of reputation. In a given application context, such
as a P2P file sharing system, users may have different perceptions of identical
behaviour. Some may tolerate corrupted file downloads more than others, and
in this scenario may rate identical transactions differently. For example, in Ei-
gentrust [10], a given user i downloads a corrupted file from a user k and rates
the transaction as -1, but a user j may download the same file from k and rates
the transaction as 0, perhaps due to having a higher tolerance of malicious be-
haviour. When calculating trust values, it is therefore not possible to state that
nodes i and j holding trust values of 0.7 in some entities are comparable, as their
perceptions and understanding of trust and consequently their trust ratings of
others differ.

Table 2. Solutions for Problem Set A using the Tabu Search algorithm

PST Rel. Error

Pr τT OT ητ ηO Sec

A1-2 0.0181 2398 - - 3.01
A1-3 0.0181 2398 - - 3.02
A1-4 0.0181 2398 - - 3.01
A1-5 0.0181 2398 - - 3.00

A2-1 0.0931 1850 - - 8.44
A2-2 0.0931 1850 - - 8.49
A2-3 0.0931 1850 - - 8.40
A2-4 0.0931 1850 - - 8.37
A2-5 0.0931 1850 - - 8.36

A3-2 0.0224 2917 - - 11.12
A3-3 0.0224 2917 - - 11.12
A3-4 0.0224 2917 - - 11.03
A3-5 0.0224 2917 - - 11.06

A4-2 0.1855 2224 - - 7.28
A4-3 0.1855 2224 - - 7.21
A4-4 0.1855 2224 - - 7.20
A4-5 0.1855 2224 - - 7.21

A5-2 0.0542 2262 - - 13.63
A5-3 0.0812 3580 - 0.1202 8.26
A5-4 0.0812 3580 - 0.1202 8.24
A5-5 0.0812 3580 - 0.1202 8.22

A6-3 0.0360 3846 - - 139.19
A6-4 0.0360 3846 5×10−7 0.1287 138.96
A6-5 0.0360 3846 5×10−7 0.1287 127.22

A7-2 0.0692 3570 - - 70.95
A7-3 0.0692 3570 - - 72.92
A7-4 0.0692 3570 - - 78.38

A8-3 0.0031 3657 - - 9.77
A8-4 0.0031 3657 1×10−6 0.0928 9.77
A8-5 0.0031 3657 1×10−6 0.0928 9.82

A9-1 0.2184 1885 - - 20.39
A9-2 0.2184 1885 - - 14.69
A9-3 0.2184 1885 - - 20.55
A9-4 0.2184 1885 - - 20.49
A9-5 0.2184 1885 - - 20.51

Table 3. Solutions for Problem Set B using the Tabu Search algorithm

PST PST

Pr τT OT Sec Pr τT OT Sec

B20-1 0.1210 2948 42.00 B30-1 0.1329 2234 57.19
B20-2 0.1210 2948 41.97 B30-2 0.1329 2234 61.82
B20-3 0.1210 3254 36.33 B30-3 0.1329 2234 72.58
B20-4 0.1210 3254 33.76 B30-4 0.1329 2234 88.44
B20-5 0.1210 3254 33.73 B30-5 0.1329 2234 84.46

B40-1 0.0245 2564 56.52 B50-1 0.0124 2224 18.96
B40-2 0.0245 2564 60.04 B50-2 0.0124 2224 18.87
B40-3 0.0245 2564 50.73 B50-3 0.0124 2224 18.70
B40-4 0.0245 2564 50.77 B50-4 0.0124 2224 19.70
B40-5 0.0245 2564 50.81 B50-5 0.0124 2224 19.96

B60-1 0.0661 1630 9.86 B70-1 0.0381 2838 30.00
B60-2 0.0661 1630 9.98 B70-2 0.0381 2838 29.99
B60-3 0.0661 1630 9.82 B70-3 0.0381 2838 46.44
B60-4 0.0661 1630 9.89 B70-4 0.0381 2838 46.77
B60-5 0.0661 1630 9.91 B70-5 0.0381 2838 45.85

B80-1 0.1320 1962 17.84 B90-1 0.0354 1282 11.56
B80-2 0.1320 1962 13.54 B90-2 0.0354 1282 11.59
B80-3 0.1320 1962 13.56 B90-3 0.0354 1282 11.59
B80-4 0.1320 1962 13.55 B90-4 0.0354 1282 11.57
B80-5 0.1320 1962 13.57 B90-5 0.0354 1282 11.57

Even when two entities have the same understanding of trust, they may
assign different values to to trustees. This also applies to the trust valuations
of alternatives under consideration. If the trust continuum is the unit interval,
ordinal level comparability feasible, as an alternative can be rated as trusted,
untrusted and indifferent or uncertain (a distinction can not be made), but the
presence of an origin alone does not imply cardinal full comparability, a scale
is required too. Trust can not, when represented using quantitatively, be inter-
personally comparable, unless there is agreement about the meaning of the scale
of trust metrics, i.e. is there must be an accepted definition of a unit of trust.

But we do not form a single PST. Instead we will repeat the collection of
trust vectors and the evaluation of trees ad infinitum, as the publishers and
subscribers in the network change. We postulate that the dominant strategy
within this repeated game is to converge to a common understanding of the
range of trust values, and to be truthful about the levels of trust, allowing for
full cardinal comparability. We hope to demonstrate this to be true in future
work.

8 Related Work

Wang [24] produced one of the earliest descriptions of the security issues in pub-
lish/subscribe networks, which was then built upon by Raicu in [17] to provide
a formal definition of confidentiality in content based publish/subscribe. Miklós
describes a method to define access control policies on clients’ advertisement and
subscription filters [13], which assumes that the infra-structure is trusted. Fiege
et al. [4] attempted to address the level of trust between publishers, subscribers
and infra-structure through the development of scopes of visibility. An imple-
mentation on the REBECA [15] shows how such a scoping approach might work.
An alternative approach using Role Based Access Control (RBAC) is demon-
strated by Belokosztolski et al. [1], building on the HERMES middleware [16].
Policies have been used to control the tree construction by Wun [25].

9 Conclusion

We have presented an algorithm for evaluating trust in publish / subscribe trees,
where assumptions about the participants are weaker than in prior work. This
algorithm is based on our own trust metric combined with an overhead metric
from [8] in order to maximise the trust in the tree with respect to both producers
and consumers with respect to a given budget. In addition we present a Tabu-
based approximation which is significantly more efficient.

References

1. Belokosztolszki, A., Eyers, D., Pietzuch, P., Bacon, J., Moody, K.: Role-based
access control for publish/subscribe middleware architectures. In: Proc. 2nd Intl.
workshop on Distributed event-based systems. pp. 1–8. ACM (2003)

2. Cao, X., Shen, C.: Subscription-aware publish/subscribe tree construction in mo-
bile ad hoc networks. In: Intl. Conf. on Parallel and Distributed Systems. vol. 2,
pp. 1–9. IEEE (2009)

3. Char, J.: Generation of trees, two-trees, and storage of master forests. Circuit
Theory, IEEE Transactions on 15(3), 228–238 (1968)

4. Fiege, L., Zeidler, A., Buchmann, A., Kilian-Kehr, R., Mühl, G.: Security aspects in
publish/subscribe systems. In: In 3rd Intl. Workshop on Distributed Event-based
Systems (DEBS04. pp. 44–49. Citeseer (2004)

5. Gabow, H.N., Myers, E.W.: Finding All Spanning Trees of Directed and Undirected
Graphs. SIAM Journal on Computing 7(3), 280 (1978)

6. Gendreau, M., Larochelle, J., Sanso, B.: A tabu search heuristic for the Steiner
tree problem. Networks 34(2), 162–172 (Sep 1999)

7. Grandison, T., Sloman, M.: A survey of trust in internet applications. IEEE Com-
munications Surveys & Tutorials 3(4), 2–16 (2000)

8. Huang, Y., Garcia-Molina, H.: Publish/subscribe tree construction in wireless ad-
hoc networks. In: Mobile Data Management. pp. 122–140. Springer (2003)

9. Jayakumar, R., Thulasiraman, K., Swamy, M.: Complexity of computation of a
spanning tree enumeration algorithm. Circuits and Systems, IEEE Transactions
on 31(10), 853–860 (Oct 1984)

10. Kamvar, S., Schlosser, M., Garcia-Molina, H.: The eigentrust algorithm for repu-
tation management in P2P networks. In: Proc. of the 12th Intl. Conf. on World
Wide Web. pp. 640–651. ACM (2003)

11. Kulturel-Konak, S., Norman, B., Coit, D.W., Smith, A.E.: Exploiting Tabu Search
Memory in Constrained Problems. INFORMS Journal on Computing 16(3), 241–
254 (Jun 2004)

12. Marti, S., Ganesan, P., Garcia-Molina, H.: SPROUT: P2P Routing with Social
Networks. In: Current Trends in Database Technology-EDBT 2004 Workshops.
pp. 511–512. Springer (2005)

13. Miklós, Z.: Towards an access control mechanism for wide-area publish/subscribe
systems. In: Proc. 22nd Intl. Conf. on Distributed Computing Systems Workshops.
pp. 516–521. IEEE (2002)

14. Minty, G.: A Simple Algorithm for Listing All the Trees of a Graph. Circuit Theory,
IEEE Transactions on 12(1), 120–120 (1965)

15. Mühl, G.: Large-Scale Content-Based Publish/Subscribe Systems. Ph.D. thesis,
Berlin Institute of Technology (2002)

16. Pietzuch, P., Bacon, J.: Hermes: a distributed event-based middleware architecture.
Proc. 22nd Intl. Conf. on Distributed Computing Systems Workshops pp. 611–618
(2002)

17. Raiciu, C., Rosenblum, D.S.: Enabling Confidentiality in Content-Based Pub-
lish/Subscribe Infrastructures. In: 2006 Securecomm and Workshops. pp. 1–11.
IEEE (Aug 2006)

18. Rawls, J.: A theory of justice. Oxford University Press, second edn. (1971)
19. Ray, I., Chakraborty, S.: A Vector Model of Trust for Developing Trustworthy

Systems. Computer Security ESORICS 2004 pp. 260–275 (2004)
20. Ribeiro, C.C., De Souza, M.C.: Tabu search for the steiner tree problem in graphs.

Networks 36, 138–146 (2000)
21. Sen, A.: Interpersonal aggregation and partial comparability. Econo-

metrica: Journal of the Econometric Society 38(3), 393–409 (1970),
http://www.jstor.org/stable/1909546

22. Takahashi, H., Matsuyama, A.: An approximate solution for the Steiner problem
in graphs. Math. Japonica 24(6), 573–577 (1980)

23. Theodorakopoulos, G., Baras, J.: On trust models and trust evaluation metrics
for ad hoc networks. Selected Areas in Communications, IEEE Journal on 24(2),
318–328 (Feb 2006)

24. Wang, C., Carzaniga, A., Evans, D., Wolf, A.: Security issues and requirements for
Internet-scale publish-subscribe systems. In: Proc. of the 35th Annual Hawaii Intl.
Conf. on System Sciences (HICSS). pp. 3940–3947. IEEE (2002)

25. Wun, A., Jacobsen, H.A.: A policy management framework for content-based pub-
lish/subscribe middleware. In: Cerqueira, R., Campbell, R. (eds.) Middleware 2007,
LNCS, vol. 4834, pp. 368–388. Springer Berlin / Heidelberg (2007)

