A Distributed Computing Environment for
Building Scalable Management Services

Nikolaos Anerousis

AT&T Labs Research

180 Park Avenue, Bldg. 103
Florham Park, NJ 07932-0971
e-mail: nikos@research.att.com
http://www.research.att.com/~nikos

Abstract
Marvel is a distributed computing environment that allows the creation of scalable man-
agement services using intelligent agents and the world-wide web. Marvel is based on an
information model that generates computed views of management information and a dis-
tributed computing model that makes this information available to a variety of client appli-
cations. Marvel does not replace existing element management agents but rather builds on
top of them a hierarchy of servers that aggregate the underlying information in a synchro-
nous or asynchronous fashion and present it in the form of Java-enriched web pages. It
uses a distributed database to reduce the cost associated with centralized network manage-
ment systems and mobile agent technology to a) support thin clients by uploading the nec-
essary code to access Marvel services and b) extend its functionality dynamically by
downloading code that incorporates new objects and services. A prototype implementation
in Java is presented together with results from its first application on a broadband home
access network using cable modems.

Keywords
Network management, web-based management, distributed computing, information ag-
gregation, Marvel.

1. Introduction

Java and the world wide web have received significant attention recently as a means of pro-
viding low cost and easy to use management services. Customer network management is
an example of an application that has benefited significantly from the web-based manage-
ment model. Traditionally, customer network management services have required the in-
stallation at the customer premises of high-end network management applications such as
HP Openview to access fairly low level management information using SNMP or log files
that are copied and examined off-line. By incorporating this information into web pages,
service providers have a more cost effective way of providing management services to their
customers. Moreover, customers have come to appreciate the easy-to-use interface and the
absence of a need to maintain a separate service management system.

Customer network management is only one successful application of web technology in
network management. This reveals however an important trend: that the emphasis on pro-
viding network management services is not on how these services are provided (i.e., the
underlying information modeling and protocol technology such as SNMP or CMIP), but
rather on thdunctionalitythat these services provide to the user. Web technology requires

(c) 1999 IFIP

a provider to define both the level of abstraction at which management information is pre-
sented and the graphical user interface to interact with these services. By hiding the details
of the underlying management technology under an easy to use and access interface, net-
work management becomes a useful and widely available commodity rather than a privilege
of the network operator. Today, the bundling of management capabilities with a service is
considered to be a product differentiator of increasing importance.

On the other hand, web technology has its limitations and cannot be used (yet) to replace
every management application, particularly the high-end network operation centers. There
are several reasons contributing to this fact:

1. The management systems of large networks require a large display area to project
maps of different logical views of the network. Even if the web-based interface is rep-
licated, there is little support in current web technologies for coordinating individual
displays with each other.

2. Web interfaces require the client to retrieve large amounts of code and state informa-
tion from a server. As a result, the rate at which information can be consumed by the
client's display is very limited compared to the capabilities of a traditional centralized
network management system.

3. Web-based interfaces that are limited to HTTP interactions have a very restricted con-
trol interface with the server (hypertext links, post operations, CGI scripts, etc.)

4. Java-enriched interfaces are affected by the performance problems of Java and the re-
liability of its graphical user interface.

5. The web computing model does not allow clients to use many local resources (e.g. the
file system, network connections to other servers, etc.), and as a result significant
bandwidth and computing resources are wasted in transferring information from and
to the server.

6. Web interfaces require that an additional layer of processing be introduced in the
management architecture to convert management information into a web-based form.
This may impact the freshness of information and the response time of the manage-
ment system to control actions.

7. Finally, the power behind web-based management can sometimes be its most signifi-
cant limitation: since management services and the way management information is
presented at the client are defined at the server, there is no capability for the client to
further process this information to create, for example, more detailed management
views or correlate the information with other prior knowledge.

The Marvel project at AT&T Labs Research is an attempt to investigate the limitations of
web technologies in network management and propose an architecture that can both scale
and rival conventional management systems in terms of performance and expandability.
Marvel (which stands for Management Aggregation and Visualization Environment) is try-
ing to address the following issues:

« Expand the web-based views of management information well beyond customer net-
work management and network element management applications. Marvel uses a
framework for information aggregation that allows the dynamic construction of arbi-
trary views of management information that can also be beneficial to network opera-
tors [ANE98c].

« Propose a distributed computing model for accessing management information that
can be easily incorporated into web clients. Standards such as CORBA and Java re-

(c) 1999 IFIP

mote method invocation (RMI) [JAV97] are now widely accepted for network man-
agement applications. Marvel uses a distributed computing environment to reduce the
cost related to deploying centralized hardware and software and at the same time hide
all details of this distribution from its users.

< Use concepts from intelligent agent and mobile code technology to enhance the func-
tionality of the web-based interface and improve the availability and maintainability
of management services.

Marvel is not limited to the web-based interaction model. Rather, any type of client appli-
cations can be built around its distributed computing services, from traditional applications
with their own user interface, to server-driven graphical interfaces. The emphasis, however,
of this paper is on presenting the aspects of Marvel that can be most beneficial in deploying
web-based management services.

This paper is organized as follows: Section 2 presents the architecture of Marvel; Section 3
describes the current implementation work. Experiences from using the Marvel system on
a production network can be found in Section 4. Section 5 presents related work in the field,
and Section 6 our conclusions and directions for further study.

2. Marvel Architecture

2.1 Information model

Marvel follows an object-oriented model to store management information. Marvel objects
are computed views of managementinformation that reside in existing network management
agents or other repositories of information in the network. We also refer to those agents as
element management agents (EMAS), since they are usually associated with a particular
network element and follow one of the network management standards such as SNMP,
CMIP or DMI.

Marvel objects are stored in the database of a special management agent (the Marvel server
- MS), and are sometimes referred toaggregated managed objed&MO) since they
represent the result of a filtering process on information collected from element management
agents and/or other servers. An object implementation does not follow a particular standard;
its structure however resembles the OSI structure of management information [ISO91]: ev-
ery Marvel object contains a list of attributes, and each attribute represents a computed view
of lower-level management information. However, in contrast with the OSI model that does
not specify how attribute values are computed, Marvel follows some very specific guidelines
that allow the manager to link each attribute value to a complex filtering process. More
details on how this information model operates and the language used to express information
aggregations were presented in [ANE98c]. In this way, Marvel attributes can be specified
in a declarative fashion during the specification of the object and save much programming
effort, which would usually be required in a similar CMIP agent implementation.

For example, one Marvel object may represent a customer profile in a customer network
management system. It may contain attributes that represent the customer’s identity and
billing information, the services that the customer is subscribing and performance data ac-
quired from the service usage logs. In the case of an ATM virtual network service, perfor-
mance data can be presented for every virtual path that composes the virtual network, or as
an aggregate over all component virtual paths. For example, the customer may be interested
in seeing the total capacity usage of the virtual network, a quantity that can be easily com-
puted by adding the corresponding performance figures of the component virtual paths. Mar-

(c) 1999 IFIP

vel allows to specify how these attribute values are computed in a declarative fashion:
attributes are linked to groups of information components and to a filtering function that
computes the final value. Optionally, the declarative specification can be bypassed to cope
with information abstractions that are not easily specified declaratively [ANE98c].

2.2 Computation model

Every Marvel system is composed of a hierarchy of servers. We chose a distributed archi-
tecture for several reasons:

« Computed views of management information require significant processing resourc-
es, especially when they must be maintained continuously up-to-date. By distributing
the computing task, our architecture is more scalable.

« Computations can take place closer to the sources of management information such as
element management agents, thereby reducing the amount of management traffic to a
centralized network management facility.

e Addistributed architecture is more reliable since the failure of one server affects only
the availability of information computed within that server. In addition, server mainte-
nance and upgrade tasks can be performed without affecting the operation of the en-
tire system.

« And finally, a distributed architecture can be implemented by putting together compo-
nents of lower cost and smaller footprint.

Every server stores its objects in a persistent database. Since computed views of manage-
ment information usually include valuable historical data that cannot be easily reconstruct-
ed, object persistence ensures the availability of this information through server failures.

Objects in Marvel provide two tiers of services: Basic access, which are mandatory for all
objects, and Extended that are implemented optionally. The latter can be used to provide a
richer customized interface to the object for performing more complex operations related
to its intended management function. There are three types of basic services:

1. Attribute accessservices are used to set and retrieve attribute values and control sev-
eral aspects of every attribute’s operation. These functions inget{estrieves an at-
tribute value as an opaque objed®t action (dynamically downloads control logic
that operates on one or more attributes or other objects), etc.

2. Visualization services are used to provide clients with the necessary information to
setup graphical user interfaces (GUIs) to access the object’s basic and extended ser-
vices. One benefit of this approach is that clients do not need to be aware of an ob-
ject’s internal structure to provide a user-friendly interface. In essence, the GUI is
“programmed” as part of the object and is transferred to the client when it first access-
es the object. The object may provide more than one visualization services depending
on the type of clients that are supported by the Marvel system (Section 2.3 contains a
detailed description of the visualization model).

3. Eventservices are used to subscribe internal and external consumers to receive event
notifications generated by the object, and control the flow of events. Events in Marvel
are usually aggregations of lower-level events corresponding to the management view
portrayed by the object. The Marvel event system is described in detail in [YUC99].

The Marvel object designer is responsible for providing an implementation for all basic and

extended services. Access to the latter can sometimes be provided indirectly through the

(c) 1999 IFIP

basic services. For example, the visualization functions can be overridden to set up a user
interface that accesses some of the object’s extended services.

In addition, every Marvel server provides a set of high level services that can be used by
client applications to navigate and examine the database:

1. Navigation services are used to navigate through the server database and examine its
contents. Current Marvel implementations store objects in a tree, and include func-
tions like getRoot(retrieves the root objectyjetParent(retrieves the parent of an ob-
ject), getSubordinategretrieves the object’s childrenpetPath (retrieves the path
from the root), etc.

2. Registration services are used to examine the structure and capabilities of every ob-
ject in the database. In this way, clients can dynamically browse through the services
provided by the object and invoke a service with the appropriate parameters. This in-
trospection capability does not require clients to be previously aware of the services
provided by every object. Rather, services are “discovered” in real-time and invoked
after loading the appropriate stub code at the client. Objects must register themselves
when they are created and provide information on the attributes they contain, the ex-
tended services they support and the stubs that must be loaded to invoke these servic-
es.

3. Object managementservices are used to instantiate, upgrade or delete objects while
the server is running. The manager provides the name of the object to be instantiated,
its location in the database and a pointer to the code that can be used to instantiate the
object. The server then dynamically loads the code and generates a new object in-
stance. Objects can be upgraded, in which case, the state of the object is frozen, the
old code is purged from the agent, the new code is loaded and the captured state is
passed to the new object.

4. Event managementervices are used to administer the operation of the Marvel event
service, by enabling or disabling the generation of events of a particular type, manag-
ing event consumers, controlling the interface to an external event correlation engine,
etc.

The above services can be implemented using industry-standard platforms such as CORBA
[OMG93] and Java [SUN97] which are currently being used in many network management
applications. Java’'s remote method invocation (RMI) is a package that provides distributed
computing primitives tightly integrated with the language, and is extremely easy to use and
integrate into Java applications. CORBA is a more widely accepted standard but requires
more heavyweight implementations. Our intention is to provide the same object services
under both frameworks: Java RMI is more suitable for web (and other lightweight) clients,
while CORBA for more demanding applications that require the widest possible interoper-
ability.

2.3 Object visualization model

Marvel does not rely on an existing standard to store management information or a particular
protocol to access it. The architecture assumes that all interaction between a client and the
Marvel system occurs at a very high level, provided by a user interface that is dynamically
loaded into the client. The interface hides the details of how objects are defined and what
services they provide.

(c) 1999 IFIP

Marvel was designed under the assumption that the majority of its clients will have no prior
knowledge of the information stored in Marvel servers and the methods used to access it.
Clients rely on standard features provided by the distributed computing platform to down-
load all the necessary code to navigate through the database and generate a graphical user
interface to interact with Marvel objects. The Marvel framework requires that every object
is able to “visualize” itself by generating a user interface. In fact, there may be several ways
of visualizing an object, depending on the capabilities of the client. For this reason, Marvel
supports a small number gfsual domainsFor every supported domain, a Marvel object
must implement a visualization function capable of displaying the object in that domain.
For example, a Gopher system would require that the object be converted into a textual
representation before it can be displayed. A web-based system would require that every
object be converted into an HTML palgend any control actions for the object be imple-
mented through HTML post operations and a CGl interface [MAS97]. A Java enriched web
browser can download Java applets to provide a more interactive interface and use directly
distributed computing facilities such as CORBA and Java RMI to access the object’s ser-
vices. As web and remote visualization standards evolve, new visual domains such as XML,
VRML, etc. can be added in the future.

The latter visualization technique is of particular interest to our architecture due to the wide
acceptance of the world wide web and Java. As a result, object conversion to Java-enriched
HTML is a mandatory service that must be provided by every Marvel object. The technique
works as follows:

First, the client invokes the object’s toJeHTML() method in one of the following ways:

« by directly invoking the object’s method through the distributed computing environ-
ment, or,

« by indirectly making an HTTP get request supplying the object’s name and address.
The get request is then translated by the HTTP server to a call to the object’s toJeHT-
ML() method, and the results are returned through the HTTP reply (Figure 1).

When the toJeHTML() method is called, the object generates an HTML page that can be
viewed by the browser. It does so by generating a default layout for the page, on which the
values of the attributes will be displayed. Then, each attribute is instructed to convert itself
into a Java-enriched HTML form. Simple data types such as strings and integers need only
convert themselves into simple text. More complex data types (especially the ones repre-
senting computed views of management information such as tables and time-series graphs)
may choose to invoke a Java applet (by inserting the <applet> primitive). The same holds
for attributes that represent the object’s control capabilities. When the applet is used purely
for monitoring purposes, it is possible to supply all the necessary information inside the
applet specification block through the <param> primitive. It is also possible to pass to the
applet the name and address of the object, in which case the applet can interact with the
object directly. This is required for applets that need to perform control operations on the
object, or to refresh the displayed information after the page has been loaded.

When the web browser encounters the <applet> block within the HTML page, it attempts
to load the applet’s code and any other Java classes needed for the applet’s operation. Java
classes are always loaded from an HTTP server.

1. The Hypertext Markup Language (HTML) is the language used to format web pages [GRA97].

(c) 1999 IFIP

Web Browser Marvel Server
The navigation

page makes a indirect object visualization request > HTTP daemon
request for an for the object: /Customers/att |
object

Generated HTML page call to toJeHTML()

<html>
page is displayed Kbody>
in the browser and |-—
the applets
are started

text--> <
ICustomer Name=AT&T

applet object generates
KK-- attr2 appears as applet - a HTML page

>
applet codebase=/classes
code=customercontrol.class >

K--attrl appears as html

Marvel database

the applet

communicates [<param

with the servername="MarvelServ">
object directly kparam object="/Customers/

att">
K/applet>

Distributed Computing Environment: CORBA or Java RMI

Figure 1: Example of an indirect object visualization procedure through an HTTP server

2.4 Obiject distribution model

Marvel objects are distributed across a hierarchy of Marvel servers. The number and location
of these servers is determined by the system designer, taking into account the amount of
management data that needs to be processed, the storage and computing capacity of the
servers, etc. Servers that perform frequent aggregation functions on management informa-
tion should be located as close to the sources as possible. Servers are typically organized in
a hierarchical structure for convenience. For example, at the lowest level, there exist servers
that process data collected from element management agents using one of the standard man-
agement protocols. These servers can generate views that correspond to the TMN subnet-
work layer. A server at the level immediately above can generate management views for the
network and service layer, etc. (Figure 2). Clients can access the services of an object di-
rectly, by using the object’s service API. Objects can also use the same interfaces to perform
operations on other objects on remote servers.

In order to make navigation easier through this hierarchy of databases and hide the details
of object distribution, Marvel uses a redirection primitive as part of the object navigation
services. An external configuration directory contains information about the hierarchy of
Marvel servers. Every server can determine its parent, siblings and descendants in the hier-
archy by supplying its identity to the configuration database. The server then creates pseudo-
objects that, when accessed through the navigation interface, return a pointer to the naviga-
tion service of the corresponding server. In this way, the manager is able to navigate through
the hierarchy of Marvel servers and gain access to their objects without knowing the details
ofthe hierarchy or address or physical location of these servers. Navigation in this distributed
database resembles very much the navigation through a Unix file system with NFS mount
points.

(c) 1999 IFIP

network server
Level 2
(AR RN RNRRRNRRRRRRRRRRNY) (RERRRRRRRRRRRRRARERRREREREY] AR REE R NN RRRRERRRRRRRRRENR Q
g
2
Q
server for @
A\ subnetwork B) g
H \ >
server for H \ g
H \
; subnetwork A 4 1 server for
, H ‘subnetworkC Level 1

' 1 ' l} [} \
|III’IIIIIIIIIIIIIIIIII‘IIlIIIIIII'IIIIIIIIIIIIIIIIIII‘IlIIII!IIIIIIIIIIIIIII[\IIIIIIIIIIIIII
v v

\ LevelO
(element agents)

Subnetwork A Subnetwork B

Subnetwork C

Figure 2: Example of Marvel server distribution

3. Marvel Implementation

We selected Java to implement the Marvel architecture because it has a number of useful
features:

< Distributed object services (Java RMI) are well integrated with the language.

e Ability to load and execute code dynamically.

« Graphical User Interfaces are a core part of the language.

« Compile once - run everywhere capability.

« Is supported from practically every computer on the Internet with a Web browser.

In the current implementation, Marvel clients are web browsers with the capability to run
Java. In future implementations, we expect a wide variety of clients, from text based tools
to customized applications that make more efficient use of the distributed computing envi-
ronment. Marvel servers are fully implemented in Java to take advantage of code portability
and the dynamic execution features of the language.

3.1 The Marvel server

Every Marvel server is composed of a collection of subsystems (Figure 3). This section
provides a general description of each subsystem. We have omitted most implementation
details and API specifications due to lack of space.

Marvel objects are defined directly in Java and stored persistently [ODI97]. The root of the
inheritance tree provides a template for implementing an object’s basic and extended ser-
vices, and a facility for registering with the local server. Object services are currently pro-
vided using Java RMI. The database is implemented as a tree of objects. It is usually
convenient to follow a natural containment relationship for placing objects in the tree. For
example, an object representing a summarization of performance parameters from a set of
users could be placed as the parent of the objects that contain performance parameters for
individual users. Every object has a unique string identifier (the name of the object) that
distinguishes it from its siblings. Path names in the Marvel database are constructed by
following a path from the root to the object and using ‘/’ as the path separator, exactly as in

(c) 1999 IFIP

— | Web Browser

to other servers and client applications T

[

<~
/

| Java RMI access interface
i Object
Query Processing Rei_,]istry HTTP T
Server
- A
2
B o Marvel HTML pages
S5 - P> objects Java Classes
25 toJeHTML()
c o T
O.=
oo
| orices
‘l>

Persistent Storage Database "

Aggregation Processing |

Figure 3. Server block diagram

| Protocol Modules

| SNMP | CMIP | Java RMI | CORBA | DMI |

\\‘ A A A A A 4//
element agents or other Marvel servers

the Unix file system. For example “/Customers/att” refers to an object named “att” located

under a container object called “Customers”. Every objectimplementation has the capability
to initialize threads that can be used for background computations, event generation, etc.

A set of basic attribute classes are also included in the Marvel core package, to implement
simple data types, tables and time series. More complex data types can be easily derived
from these base classes. The constructor function for every object class is responsible for
instantiating every attribute. An important property of the Marvel system is that attributes
are also Java objects and are therefore permitted to export their own service interfaces.
Therefore, the designer has the option of implementing attribute-specific services as a com-
plement to the object’s basic and extended services. When the attribute class library needs
to be augmented with a new data type, a display function must also be provided for the new
attribute. In this way visualization becomes an integral part of data type definition, and so,
client applications need not be aware of the data types supported within each server since
the appropriate viewer/controller will be loaded automatically.

Operating closely with the database is the aggregation processing engine. This engine is
responsible for computing every object’s attribute values. Value computations can either be
manual (the object programmer is responsible for collecting the necessary information, or
automatic (in which case the attribute’s declarative specification is used [ANE98c]). In the
latter case, the value computation proceeds as follows: First the information components
are identified. These can be objects within an SNMP agent, attribute values within a CMIP
agent, attribute values within another Marvel server, etc. Then, using the appropriate pro-
tocol, the required values are collected, and afilter function is applied that produces the final
value. This computation can occur in a synchronous fashion (when the manager requests
the attribute value) or asynchronously (by a separate thread executing in the background).
The latter is preferable in cases where the attribute is requested very frequently or changes
in its value must be monitored for generating potential event reports.

(c) 1999 IFIP

An external configuration directory is used to store information about the entire Marvel
system (the hierarchy of servers, group definitions used in attribute specifications, dynam-
ically loaded code, etc.). The directory is the only centralized piece of our architecture and
is consulted frequently during the operation of each server. We have chosen a centralized
directory to avoid information replication issues between the servers, since the configuration
information is not static: Marvel servers can be added into the system at any time, group
definitions can change to incorporate new elements in the network, etc. Currently, we are
using an X.500 directory with LDAP as the directory access protocol. A directory manage-
ment application is responsible for maintaining the directory contents (e.g., defining new
groups, configuration parameters of individual servers and objects, etc.). We are following
closely the directory enabled networks (DEN) initiative [JUD98] to eventually align the
Marvel directory architecture with this work.

AnHTTP serveris integrated in the Marvel server for performance reasons. Incoming HTTP
requests for Marvel objects are converted into a call to the object’s toJeHTML() function
and the result is printed directly to the http response stream. This technique does not buffer
the resulting HTML text (as is the case for CGI and fast-CGl calls) and allows for very fast
rendering of these pages in the browser.

The event processing module is responsible for aggregating lower-level events, generating
event natifications, registering event consumers and creating event channels over which
events are transmitted [YUC99]. Event aggregation is usually accomplished through an ex-
ternal event correlation engine. When a composite event is generated, it is distributed to the
Marvel event consumers that have registered as listeners for that particular event type.

Many times a manager may wish to generate a computed view of management information
using an unusual filtering predicate. For example, one may wish to create a sorted table of
customers spending more than $20 every month. It would be probably inefficient to dedicate

a separate object to represent the above quantity since this type of query may be encountered
very infrequently, or with a different predicate every time. For this reason, the Marvel ar-
chitecture allows for a query processing module. This module receives queries in a struc-
tured language and generates transient objects that represent the appropriate computed
views. The objects are deleted once the results of the query have been returned to the client
application.

3.2 The Marvel client

The minimum requirement for a Marvel client is to have a bootstrap capability to load the
client-side code from a Marvel server. The bootstrap code will then enable access to Marvel
services. The current architecture favors clients that support display of HTML pages and
Java, such as the most popular web browsers. Every Marvel server maintains a “home page”
which, when loaded by a client, starts a navigation applet that can be used to examine the
server's database and invoke operations on objects. These include navigating through the
object database, invoking an objedatisplayfunction and displaying the results in a web
browser, subscribing to events generated by a particular object, browsing through an object’s
event log, controlling the generation of events, receiving and displaying event notifications,
etc. (Figure 5)

3.3 Benefits of Intelligent Agent Technology

The use of intelligent agent technology allows us to offer complex network management
services using a much smaller client footprint compared to traditional network and systems

(c) 1999 IFIP

management tools. On the other hand, pushing more functionality within the Marvel servers
has not resulted in a loss of flexibility or efficiency: The capability to load new server-side
code offers many new opportunities for network management, such as the ability to delegate
management tasks to many servers and coordinate their execution to achieve dynamic and
parallel computations, the ability to customize and configure existing services in real time
either by introducing service adaptors or by upgrading the existing service logic, and the
ability to decentralize management tasks. At the client side, the server-launched applets
allow the users of the management system to access instantly new management services
and information and interact in real-time with complex data types and service interfaces.

4. Marvel Applications

4.1 The SAIL network

We are currently using the Marvel system to manage the SAIL experimental home access
network. SAIL (Speedy Asymmetric Internet Link) is an AT&T Labs broadband home ac-
cess trial that brings a 10 Mbps data channel to users homes through a downstream CATV
channel, and uses a 28.8 modem for the return path. Sail consists of a head-end router which
multiplexes all user traffic on the CATV channel a terminal server, and cable modems (one
per user) thatterminate the upstream and downstream channels and route the collected pack-
ets onto a local Ethernet on which the user has connected a number of PCs or workstations.
The SAIL network currently supports about 150 users and will grow to about 400. The home
access architecture however has been engineered to handle many cable distribution head-
ends, each one of them providing service for several hundred users. Home access networks
have exactly the large scale properties that can benefit from the Marvel architecture to pro-
vide summarizations of performance data and bulk control actions. The architecture is
shown in Figure 4.

Customer level 2
Database
Head End
level 1

Terminal Server

AA
Head End
Router

cable distribution home ethernet

Figure 4: Managing the SAIL Network

Summarizing performance such as bandwidth usage in this environment is very attractive

because not only does it give statistics for larger sets of the user population, but can also
help in planning the system capacity and the number of served users at every branch of the
cable distribution system. In addition measuring the error rates for different groups of users

can help to identify areas with transmission problems and sometimes pinpoint the location

of the problem.

(c) 1999 IFIP

In terms of control operations, cable modems occasionally require updates in their operating
software. Marvel is also valuable in this case since it is able to perform this distribution with

a single control action on a group that represents the entire network. We have found that the
Marvel system has many advantages over commercial network management applications
because performance aggregations can be stored and accessed at any time. In order to do so
when using one of the current commercial network management tools, a new application
needs to be written that accesses off-line the centrally collected data from the cable modems
using a proprietary database access interface.

In addition to the performance summarization features we also support customer views
through objects that represent “user profiles”. These objects combine account information
from the user registration database with per-user temporally aggregated performance data.
Every such object generates a web page that a user can access to view its account status
together with a time series of their bandwidth usage and observed quality of service (trans-
mission error rates in the downstream channel). Time series are visualized using a special
Java applet that displays a chart and allows scrolling and zooming for more careful exami-
nation of the data.

-
e e [
¢ mym— |

R

= e -
1 I T T L T
= 1 L rar——

e el el
T TI C TE Ee
- i =

=
e e ovase ey
1 kT 14 P e i ad mn |
i el T 0 e ke i -
BN DITENE FaifnllFEEETE LB w | ——

TR PR e B P " -

el § il

EE - e

f

. PR e

Figure 5: A snapshot of the cable tree group object

Inthe current architecture we use one Marvel server for every CATV distribution tree (about
50 modems). The server periodically obtains information from the cable modems through
a low level monitoring and control protocol and updates the appropriate objects. A group
object contains aggregated performance information for the group and also a table attribute
which is used to sort individual user information based on usage or error rates. Finally, a
time-line chart indicates the times that every user has been active (see Figure 5). These two
attributes can be used to identify quickly users with high usage or error rates or online ac-
tivity as well as compare individual users. A second level server contains performance and

(c) 1999 IFIP

control aggregations for the entire network and allows software distribution to the entire set
of cable modems.

4.2 Experiences with the SAIL management system

The Marvel system was deployed to manage the production SAIL network in September
1997. Itreplaced an older web-based system which polled cable modems for error informa-
tion and converted the data into HTML pages for every user once a day. Marvel allows
browsing through the performance data with better granularity (data collection from the
network occurs every five minutes) and freshness (all information is at most 5 minutes old).

It further integrates monitoring and control of components from different manufacturers
(cable modems, terminal servers and head-end routers) under one user interface. The amount
of code needed in order to implement new managed objects was also better than expected:
excluding the code needed to collect data from EMAS, every Marvel object requires about
3-4 lines of Java code per attribute. Constructing new attribute display applets proved to be
equally easy when using a Java GUI builder tool such as Sun’s Java Workshop.

The only limitation we have found with the current system is performance. Java is an inter-
preted language, and a noticeable delay is introduced when pages with many applets are
displayed. These performance problems are expected to disappear in the future with the use
of just-in-time (JIT) compilers. Another issue that we are currently investigating is how to
enforce security access control on the Marvel database. Especially for customer manage-
ment applications, customers should not be allowed access to each other’s data, and for this
reason we are developing an authentication procedure that supplies clients with the neces-
sary credentials to access information stored in Marvel.

With the integration of the event subsystem, operators can browse through large numbers
of event types, subscribe to receive events of interest, and link incoming notifications with
audio-visual effects in applets running inside the client. An event log browsing facility is
also provided for examining detailed event traces that are not transmitted to the client. Of
particular interest to the SAIL management system are events that notify the operator of
unusual high error rates at a customer’s premise, high utilization at a terminal server site,
and individual customer activity.

5. Related Work

[KAL96] presents a special agent proxy that acts as a front end for one or more nodes that
need to be managed as a group. It uses a spreadsheet paradigm to process the underlying
management information and provide a table of computed attributes. The spreadsheet lan-
guage supports all arithmetic, logical and relational operators. Except from computed at-
tributes, the spreadsheet is also capable of generating event reports by evaluating predicates
containing relational expressions.

[GOL96] proposes extensions to the SNMP-SMI that allow the creation of MIB views within

an agent. Views are created by defining operations on SNMP tables using a language similar
to SQL. Supported operations include joins, filtering, table snapshots, etc. However, the
main drawback of this approach is that views are restricted to the information contained in
one MIB only.

The idea of loading code into a management agent to perform locally some management
tasks was proposed for the first time in [YEM91]. The initial approach was to download
management scripts that were compiled and executed at the agent. The arrival of Java has

(c) 1999 IFIP

made this task significantly simpler, and also allows the reverse operation (code downloaded
from the agent to the client). More recently, many researchers are investigating the benefits
of intelligent/mobile agent technology as a more generic framework for performing distrib-
uted management tasks [MAG96, BAL97].

In the visualization area, [CRU93] first proposed an immersive environment that enables
the manager to navigate through the network state and perform high level control operations
through the exchange and processing of multimedia information. Early work on Web-based
management can be found in [BAR97] and [REE97]. The first presents an HTTP proxy to
SNMP and CMIP resources and further describes a framework for remote execution of man-
agement tasks written in Java. The latter describes the implementation of a Web-based man-
agement console for the IBM Netfinity PC management application. [MAS97] highlights

the advantages of using the Web as a network management tool and presents the advantages
and disadvantages of different Web technologies (CGI scripts, HTML forms and Java) in
element, network and service management applications.

Parallel to our work is the development of the Java Management API (JMAPI) toolkit from
Sunsoft [SUN96]. JIMAPI builds on the idea of downloading Java byte code to web browsers
that allows them to access server-defined management services. Marvel has several advan-
tages over JMAPI, namely the capability to define automatically computed views of man-
agement information, protocol adapters to a large variety of managed elements, a unified
object naming space, and support for a large variety of thin clients.

Similar in functionality to JMAPI is the WBEM project [THO98]. WBEM relies on the
HyperMedia Management Protocol (HMMP) to access management information, allowing
management solutions to be platform independent and physically distributed across an en-
terprise. Amore detailed survey of web technologies for network management can be found
in [HONO98].

6. Conclusions and future work

Marvel is a framework that enables the development of scalable network management ser-
vices. Scalability is achieved by a) supporting computed views of low level management
information that convey the essence of the network operating state rather than the details,
b) distributing the view computation task to a hierarchy of processors (servers) and, ¢) sup-
porting large numbers of clients allowing ubiquitous access to network management infor-
mation.

Marvel objects represent aggregations of management information which can be obtained
through any combination of standard management protocols such as SNMP, CMIP, DMI or
any other non-standard solution. The manager is responsible for specifying the policy with
which these aggregations are computed. Information stored in Marvel objects is then made
available in a variety of visual forms using the concept of visual domains and object self-
visualization. A distributed computing environment such as Java RMI or CORBA provides
remote object access services. We have given particular attention to the web visual interface;
web browsers can navigate through the Marvel distributed database and visualize objects
of arbitrary complexity by dynamically loading the appropriate viewers/controllers.

The SAIL broadband home access network is currently serving as the platform for testing
the view computation framework and evaluating several aspects of the Marvel system such
as security, client/server interaction performance, etc. Work is also under way to add event

(c) 1999 IFIP

support, enhance the attribute library with additional data types and design an improved
user interface that integrates data mining with event notification capabilities.

Leveraging from the popularity of the web, we achieved our goal of providing simple access
to complex management services. The quality of bundled network management services is
becoming an important differentiator for many telecommunication service offerings and
Marvel is one step towards achieving this goal. Marvel clients can be as simple as web
browsers, which dramatically reduces the footprint (and cost) associated with the client, and
makes Marvel suitable for providing a wide range of management services, especially cus-
tomer network management applications.

Marvel follows an important trend in contemporary network management that places more
emphasis on the functionality perceived by the end-user, as opposed to standards compliance
at every level of the architecture. Mobile code technology does not require clients to follow

a particular protocol standard to access management information, since the protocol itself
is mobile code that is downloaded from the server. In fact, compatibility with standards is
only a means of ensuring interfacing with managed elements, not an indicator of quality for
the offered management services. Of course, interoperability issues are critical, especially
for the purpose of integrating Marvel with other management systems, and for this reason
it is worthwhile to investigate in the future how the access to information aggregations and
higher level management services provided by Marvel could be potentially standardized.

References

[ANE98c] N. Anerousis, “An Information Model for Generating Computed Views of
Management Information'Proceedings of the 9th IFIP/IEEE International
Workshop on Distributed Systems: Operations and Managerhwark,
DE, October 1998.

[BAL97] M. Baldi, S. Gai and G.P. Pico, “Exploiting Code Mobility in Decentralized
and Flexible Network Managemen®roceedings of the First Intl. Workshop
on Mobile AgentsBerlin, Germany, April 1997.

[BAR97] F. Barillaud, L. Deri and M. Feridun, “Network Management using Internet
Technologies”, inProceedings of the 1997 IEEE Integrated Management
San Diego, CA, 1997.

[CRU93] L. Crutcher and A.A. Lazar, “Management and Control for Giant Gigabit
Networks”, IEEE Network Magazine, vol. 7, no. 6, pp. 62-71, November
1993.

[GOL96] German Goldszmidt, “Network Management Views using Delegated
Agents”, inProceedings of the 6th IBM/CAS Conferenteronto, Canada,
November 1996.

[GRA97] LS. Graham, “HTML Sourcebook”, John Wiley and Sons, 1997.

[HON97] J. Hong et. el., “Web-based Intranet Services and Network Management”,
IEEE Communications Magazine, October 1997.

[1S091] Information Processing Systems - Open Systems Interconnection, “Structure
of Management Information - Part 1: Management Information Model”, July
1991. International Standard 10165-1.

[JUD98] S. Judd and J. Strassner, “Directory-enabled Networks - Information Model
and Base Schema”, preliminary draft, February 1998.

(c) 1999 IFIP

[KAL96] Pramod Kalyanasundaram, Adarshpal S. Sethi and Christopher M. Sherwin,
“Design of a Spreadsheet Paradigm for Network ManagemenPraneed-
ings of the 1996 DSOM: Distributed Systems Operations and Management
L' Aquila, Italy, October 28-30, 1996.

[MAG96] T. Magedanz, K. Rothermel and S. Krause, “Intelligent Agents: An Emerg-
ing Technology for Next Generation Telecommunications?Riioceedings
of the 1996 INFOCOMSan Francisco, CA, 1996.

[MAS97] M.C. Maston, “Using the World Wide Web and Java for Network Service
Management”, inProceedings of the 1997 IEEE Integrated Management
San Diego, CA, 1997.

[ODI97] Object Design Inc., “Objectstore Persistent Storage Engine for Java”, URL.:
http://www.odi.com/content/products/pse/doc_120/doc/index.html.

[OMG93] Object Management Group, “The Common Object Request Broker Archi-
tecture and Specification”, Rev. 1.2, Dec. 1993.

[REE97] B. Reed, M. Peercy and E. Robinson, “Distributed Systems Management on
the Web”, inProceedings of the 1997 IEEE Integrated Managemsan Di-
ego, CA, 1997.

[SUN97] Sun Microsystems Corporation, “Java RMI Specification”, ftp://ftp.java-
soft.com/docs/jdk1.1/rmi-spec.pdf.

[SUN96] Sun Microsystems Corporation, “Java Management API Architecture”, ht-
tp://java.sun.com/products/JavaManagement/.

[THO98] J.P. Thompson, “Web-Based Enterprise Management Architecture”, IEEE
Communications Magazine, March 1998.

[YEM91] Y. Yemini, G. Goldszmidt and S. Yemini, “Network Management by Delega-
tion”, in Second International Symposium on Integrated Network Manage-
ment, pp. 95-107, Washington DC, April 1991.

[YUC99] S. Yucel and N. Anerousis, “Event Aggregation and Distribution for Web-
based Management Systems”Hroceedings of the 6th IFIP/IEEE Integrat-
ed ManagemenBoston, MA, May 1999.

Biography

Nikolaos Anerousis (http://www.research.att.com/~nikos/) is a Senior Technical Staff
Member at the Networking Research department of AT&T Labs Research (formerly AT&T
Bell Laboratories). His research interests include network dimensioning and optimization,
network service pricing, software architectures for management and control of broadband
networks and multimedia services. He received the Dipl. Eng. degree from the National
Technical University of Athens, and the M.S., M.Phil. and Ph.D. degrees from Columbia
University, New York, in 1990, 1991, 1994 and 1995 respectively, all in electrical engineer-
ing. Since 1998, he is also an adjunct assistant professor of electrical engineering at Colum-
bia University. Most of his research work has been in the area of broadband network control
and management. In 1992, he designed and implemented the first operational performance
management system using TMN standards on the AT&T Xunet broadband platform. He is
currently working on scalable management architectures using mobile code technology and
packet telephony systems. Dr. Anerousis is a member of the IEEE and a member of the
Technical Chamber of Greece.

(c) 1999 IFIP

	A Distributed Computing Environment for Building Scalable Management Services
	Nikolaos Anerousis
	Abstract
	Keywords
	1. Introduction
	1. The management systems of large networks require a large display area to project maps of diffe...
	2. Web interfaces require the client to retrieve large amounts of code and state information from...
	3. Web-based interfaces that are limited to HTTP interactions have a very restricted control inte...
	4. Java-enriched interfaces are affected by the performance problems of Java and the reliability ...
	5. The web computing model does not allow clients to use many local resources (e.g. the file syst...
	6. Web interfaces require that an additional layer of processing be introduced in the management ...
	7. Finally, the power behind web-based management can sometimes be its most significant limitatio...

	2. Marvel Architecture
	2.1 Information model
	2.2 Computation model
	1. Attribute access services are used to set and retrieve attribute values and control several as...
	2. Visualization services are used to provide clients with the necessary information to setup gra...
	3. Event services are used to subscribe internal and external consumers to receive event notifica...
	1. Navigation services are used to navigate through the server database and examine its contents....
	2. Registration services are used to examine the structure and capabilities of every object in th...
	3. Object management services are used to instantiate, upgrade or delete objects while the server...
	4. Event management services are used to administer the operation of the Marvel event service, by...

	2.3 Object visualization model
	Figure 1: Example of an indirect object visualization procedure through an HTTP server

	2.4 Object distribution model
	Figure 2: Example of Marvel server distribution

	3. Marvel Implementation
	3.1 The Marvel server
	Figure 3: Server block diagram

	3.2 The Marvel client
	3.3 Benefits of Intelligent Agent Technology

	4. Marvel Applications
	4.1 The SAIL network
	Figure 4: Managing the SAIL Network
	Figure 5: A snapshot of the cable tree group object

	4.2 Experiences with the SAIL management system

	5. Related Work
	6. Conclusions and future work
	References

