
SNMPV3 can still be simple?

Ornar Cherkaoui, Nathalie Rico Ahmed Serhrouchni
University du Quhbec a Montrkal Ecole Nationale Sup4rieure des Tkl&communications
Pavillon President-ennedy local PK4158 46, rue Barrault
201, av. du Prksident-ennedy Paris 75634 Cedex 13
Montreal (Qu.4bec)H2X3Y7 CANADA FMNCE
cherkaoui. owaifd!uqam. ca Ahmed.Serhrouchni@enst.fi

Abstract

The Simple Network Management Protocol (SNMP) was introduced in 1988. The initial version
(SNMPV1) is still widely implemented, deployed, and used. SNMFV3is now in its final stages of
standardization. SNMTV3 allows new capabilities for open, interoperable, and secure
management on the Internet environment, SNMF’V3builds on SNMPvl and V2 to include
methods for security (authentication, encryption, and privacy), and a new administrative
framework. From a practical perspective, the SNMPV3 architecture must allow the evolution of
the system to consider different versions of SNMP, different applications, and different security
models. We will present an implementation model for SNMPV3 that keeps the simplicity of
SNMPV1, while at the same time making it possible to evolve the framework to address different
security needs and different cotigurations. The implementation model is an abstract view of the
implementation that represents the building blocks required for any realization of agents,
platform, proxies, etc. We explain how the model with a modular approach can allow
interoperability with other SNMT applications. The model uses the interfaces as defined by the
RFCS to achieve the architectural goals (extensibility, reusability, etc.) and to simpli@ the module
construction. An implementation was done at UQAM and it uses Java to create the modular
reusable components.

Key words

Network Management, SNMPV3, Security, Java.

1. Introduction
As the sophistication and complexity of telecommunications networks and services grow, we
need to model and build management systems that can evolve easily to manage the different
networks, services, and customers.

The Simple Network Management Protocol (SNMP) defines a framework for the management of
TCP/IP capable data communications network devices. With the dilTerent versions of SNMP (vi,
v2, v3), the functions added are becoming more complex: version 3 includes security
(authentication, encryption) and a new administration framework. The SNMPV3 architecture

(c) 1999 IFIP

resolves this problem by using modularity to allow the evolution of portions of SNMP without
requiring a redesign of the general architecture.

The management platform and agents have to be adapted to the fimctions required to avoid
burdening it with unnecessary components. The agents residing in the equipment must be kept
simple and use the minimum amount of resources. Keeping agents and platform as simple as
possible is an important goal to allow easy evolution of the management system and to simpli@
the task of the network administrator.

We will present an implementation model of SNMPV3 that keeps the simplicity of SNMPV1,
while at the same time making it possible to evolve the framework to address different security
needs and different cotilgurations. We achieve this goal by using a modular approach. The
model uses the interfaces as defined by the RFCS to achieve the architectural goals (extensibility,
reusability, etc.). The model lends itself to a modrdar implementation: modules can be easily
added and adapted to specific security needs and other functionality required.

The outline is as follows, We will first begin with a presentation of the WIMP protocol and with
the dilTerent versions of the standard. We will present the objectives of the new architecture and
describe the different components of the architecture. We will describe the SNMPV3 message.
Then we will explain our SNMPV3implementation model that uses a modular approach. We will
show how modules can be reused when the system is extended and how the model allows
handling multiple security models, different SNMP versions, and different applications.

2. SNMP Framework

2.1 Historical perspective

SNMP is a management protocol originally designed for the management of TCP/IP capable data
communications network devices. The goiding principle for its design was simplicity, to ensure
agent implementations could easily be made available. The Management Information Base (MIB)
consists of objects (not in the object-oriented sense) representing variables. The management
protocol itself offers a set of operations to retrieve and set values of particular object instances, to
traverse tables, and to send simple traps, for example, unsolicited events from the agents to
managers. The reader unfamiliar with SW concepts is asked to refer to [1] [2].

SNMPV1became both an open IETF standard and a de facto industry resulting from widespread
market acceptance. A broad range of vendors implemented SNMP versions and extended the
scope of SNMP in many directions, including network management, system management,
application management, manager-to-manager communication, and proxy management of legacy
systems. One of the most important weaknesses of SNMPV1is the lack of adequate mechanisms
for securing the management fanction. This includes authentication and privacy, as well as an
administrative framework for authorization and access control. The IETF working group that
developed SNMPV2 wanted to include security functionality in the new version. Various
proposals were put forward (SNMPV2C,SNMPV2U,SNMPV2*) [3][4][5][6][7][8][9] but none of
those were adopted as an IETF standard. The working group was not able to reach agreement on
how to define the required security mechanism.

(c) 1999 IFIP

The third version of SNMP [12][13][14][15] [16][17] is derived from and builds upon both the
first and the second versions. SNMPV3 allows new capabilities for open, interoperable, and
secure management on the Internet environment, It supplements the SNMR2 framework by
supporting the following: security (methods for authentication, encryption, privacy,
authorization, and access control) and an administrative framework (naming of entities, user
names and key management, notification destinations, proxy relationships, remotely configurable
via SNMP operations). With SNMPv3, a single protocol entity may provide simultaneous support
for multiple security models, as well as multiple authentication and privacy protocols.

2.2 SNMP framework

All versions of SNMP (vi, V2 and v3) share the same basic structure and components, and follow
the same architecture, Over time, the framework has evolved [18] and the definition of these
architectural components has become richer and more clearly defined, but the fundamental
architecture has remained consistent. The SNMP framework emphasizes the use of modularity
for the evolution of portions of SNMP without requiring a redesign of the general framework.
The fi-amework of the Internet-Standard Management Framework consists of a data definition
language, a definition of management information (MEl), a protocol definition, security, and
administration.

2.3 Goals of the framework

The objective of the SNMTV3framework is to allow evolution to realize effective management in
a variety of conilgmations and environments. The SNMPV3framework builds and extends these
architectural principles by building on the basic architectural components, in some cases
incorporating them from the SNMPv2 framework by reference, and by using these same layering
principles in the definition of new capabilities in the security and administration portion of the
architecture. More speciilcally, the goals are to reuse as much as possible the work in the
previous versions (SNMPV2Uand SNMPV2*); to address the need for security support; and to
make it possible to evolve the framework to support difTerent security models, d~erent features
required, and different conjurations. Also, the architecture should make it relatively
inexpensive to deploy a minimal configuration. This architecture must allow the different
modules to be reused independently of the version of the SNMP protocol, depending on the role
of the driver (platform, proxy agent), of the different encryption and authentication techniques,
and of the different management applications.

As defined by the IETF, the goal of the framework design is to use encapsulation, cohesion,
hierarchical rules, and loose coupling to reduce the complexity of design and make the evolution
of portions of the framework possible. Encapsulation describes the practice of hiding the details
that are used internal to a process. To achieve cohesion, similar functions can be grouped
together and their dfierences ignored, so they can be dealt with as a single entity. It is important
that the fimctions, which are grouped together, are actually similar. Functionality can be grouped
into hierarchies where each element in the hierarchy receives general characteristics from its
direct superior, and passes on those characteristics to each of its direct subordinates. Coupling
describes the amount of interdependence between parts of a system,

(c) 1999 IFIP

3 SNMPV3 entity

The SW entity defined by IETF [3] is composed of an SNMP engine and one or more
applications. The SNMP engine provides services for sending and receiving messages,
authenticating and encrypting messages, and controlling access to the managed objects. An
SM@ engine contains a Dispatcher, a Message Processing Subsystem, a Security Subsystem and
an Access Control Subsystem. Figure 1 shows the SNMP entity composed of applications such as
command generators, notification originators and receivers, and the different modules of the
SNMP engine (Dispatcher, Message processing Subsystem, Security Subsystem).

I

I II I

I

I I I

Figure 1: SNMP entity

The Dispatcher allows for concurrent support of multiple versions of SNMI? messages. The
dispatcher sends and receives messages to/from the network, determines the version of an SNMP
message, interacts with the corresponding Message Processing Model, and provides an abstract
interface to SNMP applications for delivery of a PDU. There is only one Dispatcher in an SNMP
engine,

The Message Processing Subsystem is responsible for preparing messages for sending and
extracting data from received messages. It contains multiple Message Processing Models
corresponding to the ditYerent SNMP versions (SNMPV3, SNMPV1, and SNMPV2C Message
Processing Model) or to other Message Processing Models.

(c) 1999 IFIP

The Security Subsystem provides services such as the authentication and privacy of messages and
potentially contains multiple Security Models (User-Based Security model or other Security
models). A security model defines the threats against which it protects, the service provided and
the security protocols used (procedure and MIB data) to provide the service such as
authentication and privacy.

The User-Based Security Model (USM) for SNMPV3 [4] defines the elements ofprocedure for
providing SNMP message-level security. USM protects against following primary and secondary
threats: modification of information, masquerade, message stream rnoditlcation, and (optionally)
disclosure. The USM uses MD5 and the Secure Hash Algorithm as keyed hashing algorithms for
digest computation. This provides data integrity to directly protect against data modification
attacks, to indirectly provide data origin authentication, and to defend against masquerade
attacks. The USM uses the Data Encryption Standard (DES) in the cipher block chaining mode
(CBC) to protect against disclosure. The configuration parameters in the MIB (including key
distribution and key management) can be remotely monitored and managed. A single protocol
entity may provide simultaneous support for multiple security models, as well as multiple
authentication and privacy protocols. All of the protocols used by the USM are based on
symmetric cryptography, i.e. private key mechanisms. The SNMPV3 architecture permits the use
of public key cryptography, but as of this writing no SNMPV3 security models utilizing public
key cryptography have been published.

The Access Control Subsystem provides authorization services by means of one or more Access
Control Models. An Access Control Model defines a particular access function to support
decisions concerning access rights. An example of Access Control Model is the View-Based
Access Control Model. The View-Based Access Control Model defines the elements of procedure
for controlling access to management information. It includes a MIB for remotely managing the
configuration parameters for the View-Based Access Control Model. The View-Based Access
Control Model can simultaneously be associated in a single-engine implementation with multiple
Message Processing Models and multiple Security Models. It is possible to have multiple,
different Access Control Models active and present simultaneously in a single engine
implementation, but in practice it is expected to be very rare.

The Applications Modules are the processes that interact with the SNMP engine using messages
that may use formats defined by a protocol, or that may use implementation-specific formats.
Applications are developed to achieve certain goals. A proxy application may fonvard a message
ffom one SNIMP engine to another (an SNMP proxy), or from SNMP to another protocol (a
foreign proxy). There are several types of applications, such as command generators which
monitor and manipulate management data, command responders which provide access to
management da~, notification originators which initiate asynchronous messages; notification
receivers which process asynchronous messages; and proxy forwarders which forward messages
between entities. The applications use the services provided by the SNMP Engine.

For example, it is possible to design a platform that can handle each management application
and each type of communication protocol (SNMPV1, SNMPV2, and SNMPv3) and a specific
security type. The architecture can support older versions of SNMP, as well as future changes to
SNMF’. The architecture can handle multiple security systems, where a portion may be secure
while another portion may be non-secure.

(c) 1999 IFIP

3. SNMPV3 Message
The SNMPV3 message contains fields for global data (such as the SNMP version, the message
identifier, the maximum message size, the security model, and the level of security), fields for the
security model information, fields for naming scope (context identifier and name), and finally,
the PDU. The SNMP version identifies the version of the Message Processing Model in use.
SNMP engines use the message identifier (Msg ID) to coordinate the processing of the message
by different portions of the framework. MMS (Maximum Message Size) is the maximum
message size supported by the sender of the message. Multiple security models may exist
concurrently in the SNMP entity. The initial model of the SNMPV3 Secority Framework is the
User-Based Security Model of the SNMPV3 Security Framework. The LoS (Level of Security)
field contains flags to control the processing of the message.

An SNMP context is a collection of management information accessible by an SNMT entity. An
item of management information may exist in more than one context. An SNMP entity has
access to many contexts. A context name is used to name a context. A scoped PDU is a block of
data containing a contextEngineID, a contextName, and a PDU. The context ID defines the
engine, which realizes the managed objects referenced in the PDUS. Figure 2 shows the SNMPv3
message format.

The Security Model Security [formations used for communication
“a~!,~~~hs=’ltits Used to dispatch the packet between the Security Model modules in the

to the right security module
processing of the message\ I

#xmdinganclr eceiving SN MP engines.

SNMP Version

\

\Maximum Size of the

This is needed to know
Identifii a context

response packet
hich module willdecode The maximum size that the

the packet sender can accept when Actual Payload

another SNMP engine Requested variables or

Message Identifier sends an SNMP message replied values

Used to match a request (response of another
with a response message)

Figure 2: SNMPV3Message Format

4. Implementation Model of SNMPV3

We will present an implementation model of SNMPv3 that keeps the simplicity of SNMPvl,
while at the same time making it possible for the engine to address multiple security needs and
diHerent con.tlgurations [19]. The modules can be easily added and adapted to the specific

(c) 1999 IFIP

security need and other functionality required. The implementation model has the following
characteristics:

. The model follows the framework and the interface definitions in RFC2271;

● Different modules can be dynamically attached and detached through a unique point;

● Classes and hierarchies allow reuse of components,

For the implementation, we chose Java because it is portable, dynamic, object-oriented,
multithreaded and simple to use.

4.1 Following RFC2271 interface definitions

One goal of the implementation model is to define objects or modules that can be reused for
different scenarios. The difficulty lies in partitioning the functionality between the different
modules and to define the interfaces for those dMerent modules in the SNMP Engine to allow
individual modules to be replaced or augmented. At the same time, interfaces must not be defined
with too many details not to unnecessarily constrain the implementation. Object-oriented
methodology is adapted to tackle the interface problem. In order for objects in the model to work
together, objects have to know exactly what they can expect from every object they might call
upon for a service. The abstract service interfaces between the different subsystems (as defined in
the IETF standard) are used in the model and help provide the modular structure that keeps
SNMPV3 implementations simple. Primitives specify the service provided and the abstract data
elements that are to be passed when the services are invoked.

The implementation model and its decomposition in different modules ease the understanding of
the implementation. The decomposition and the interfaces in the model follow the RFC
definitions [3][4][5] [6][7]. For example, RFC2271 describes an interface in the processing
modules that allows the dispatcher to request an SNMP packet. The required parameters are
given as input and the SNMT packet is returned.

status Information = -.

prepareOutgoingMess age (
IN transportDomain
IN transportAddress
IN message Process ingModel
IN securityModel
IN securityName
IN securityLevel
IN contextEngine ID
IN contextName
IN pduVersion
IN PDU
IN expectResponse
IN send PduHandle

OUT destTransportDomain
OUT destTransportAddress
OUT outgoingMessage
OUT outgo ingMessageLength

)

success or error Indication

-- transport domain to be used
-- transport address to be used
-- typically, SNMP version
-- Security Model to use
-- on behalf of this principal
-- Level of Security requested
-- data from/at this entity
-- data from/in this context
-- the version of the PDU
-- SNMP Protocol Data Unit
-- TRUE or FALSE
-- the handle for matching
-- incoming responses
-- destination transport domain
-- destination transport address
-- the message to send

-- its length

Intheirnplcmentation, ajava class corresponds totheinterface deftition:

(c) 1999 IFIP

public abstract StatusInformation prepareOutgoingMessage(
int transportDomain, // IN as specified by application
IpAddress transportAddress, // IN as specified by application
............
IpAddress destTransportAddress [],// OUT destination address
byte[] outgoingMessage [l, // OUT the message to send
int outgoingMessageLength[] // OUT the message length

);

The modules are constructed around Java classes (one module per one Java class). Dynamic
construction ofJava classes resrdtsin the creationofmodules . This implementation model which
follows closelythe standards allows rapid prototypingand easy development ofnew applications.

4.2 Dynamic attachment and detachment ofmodulesthrough auniquepoint

The implementation model uses modules that can be easily added and adapted to the specific
functionality required. Only necessary modules are taken to compose the desired implementation:
if an implementation does not require security models, the modules are constructed without the
security models and are kept as simple as possible.

Theproposedmodel allowsto attachand detachthemodules throughtheuseof auniquemethod
called’’AddModuleo’’a nda uniqueinterface. The SNMPengine isassembled toplaythe role of
agents, platform or proxies. The dynamic construction of modules avoids wasting computer
resources (memory, etc.). ASNNIPvl agent can reassembled with only3 modules, reducing the
memo~ required. A module can be attached or detached during the execution. The class
SmnpEngine.java offers the method to add modules. This method is also used during the
initialization of theengine toload all modules. To add anew module, aclass instance is derived
from SnmpModule.java and the object is a parameter passed to the method AddModuleo.

The implementation model is composed of modules and buses between modules. Those buses can
keep a list of active modules and enough information on each module to route the message to the
correct module. Figure 3 shows the different buses in the system.

(c) 1999 IFIP

Bus Application
messages to applications using

ContextEnginelD
I

Figure 3: Buses in the model

4.3 Class hierarchy

The classes are defined in a hierarchy to inherit the functionality of other classes and to hide the
details of different classes behind a common interface @polymorphism),Figure 4 shows the class
hierarchy.

(c) 1999 IFIP

Figure 4: Class hierarchy

Abstract classes are used to impose a series of methods for the class that correspond to the
implementation. For example, a class for an application must contain methods for receiving the
messages, the responses to messages, etc. As a result, a unique and identical interface for all
applications is used.

The SNMP engine has an internal MI13. In the implementation model, every module can add
variables to the internal IW13of the engine. Only one interface is required to build a IvIIB.A MIB
controller takes the request destined to SNMP engine and sends them to the proper modules. All
requests must be kept in a sorted list for all OID (Objeet identifier) variable. The SNNfP request
is then broken down in a series of GET and SET that are sent to the different modules. Each
module registers its variables with the NUB controller. This list contains all registered OIDS and
a pointer to the application that handles the request. For each OID request, the corresponding
module is called.

4.4 Modules and buses

The implementation model is composed of the dispatcher, the security modules, the application
modules and the transport modules. A class is associated with each module. Figure 5 shows the
modules that contain the fimctions related to the SNMF’protocol and the bus that handle the
routing of messages to the modules. The buses are used to keep a list of modules and enough
information to route the messages to the right module. Each bus in the architecture has a module

(c) 1999 IFIP

for temporary storage, Those information are used to make the link between the modules attached
to the bus and the functionality offered by each module. For example, a bus between the
dispatcher and the processing modules contains a tempora~ table that associates the SNMT
version to the module that handled the packets. Additionally, modules are attached to the
Dispatcher, The dispatcher routes the path of the packets to the appropriate decoding/encoding
module. For example, the “Dispatcher” object will dispatch SNMPV1 packets to the correct
SNMPV1 Message Processing module for processing. The same process is applied to Security
modules and Applications, Dispatchers are also responsible for keeping track of connected
modules, so, a 1 to n link exists for dispatcher objects to their modules.

Modular Snmp
Main Modulethat allows the addition
and deletion operations of modules

Bus Application
Sends messages to applications
using ContextEnginelD

i

t
........

Usually based on a hashing function in one Encryption Modules
direction,thosemodulesmustverify the Ensurethat messages can only

authenticity of the message. be read by the destination.

Figure 5: Implementation model

Modules all have some common methods and attributes; they are grouped in a parent class. This
parent class implements two other fimctions. First, it implements functionality for keeping
libraries of modules. Second, it implements a special class, “SNMP Engine”, which represents
the entire SNMP entity. Its behaves like a master control that handles engine wide operations like
adding a new module, stopping/starting the engine and forwarding debugging messages.

(c) 1999 IFIP

Data in transported to and from modules and dispatchers within a “Packet” object that acts as a
container for ASN. 1 coded SNMP data. The entire system works as a whole to transport
information to and from the “UDP Transport” and “Application” modules.

In the proposed implementation model, threads are used to handle faults. A fault in the execution
does not block the message handling. If a thread blocks waiting for message in the network, it is
mandatory to continue after the software failure. When a packet is received, a new thread is
created to handle the packet processing. The previous thread is then released. Many threads can
coexist and can result in inconsistent variables. In our implementation, two threads are not
allowed to process the same program at the same time.

The implementation covers all main SNMP entity components. The following category of Java
classes were implemented: interface and service classes, central module classes, processing
module classes, application classes, UDP transport, User security Model classes, Security module
classes (DES, MD5, SHA-1, CBC, HMAC) and classes for type definitions.

4.5 Resulting configurations

The implementation model allows different corr&urations. Elements of an SNMP engine can be
reused for the different roles (agent, platform and proxy). The ddTerent modules are constructed
based on the implementation model to have the required configuration for the platform and the
agent.

Figare 6 shows a configuration with a platform and an agent.

-SNMP V3

e

Internet SNMP v3-fm\

Agent SNMP V3

Fignre 6: Conf@ration with a platform and an agent

(c) 1999 IFIP

Figure 7 shows a conjuration with a platform and a secure agent exchanging directly in
SNMF’V3.When versions are different or the security modules (encryption and authentication)
are not the same, it is necessary to use a proxy to ensure secure communication between the
different security versions.

DsNMp”@sNMp”

Figure 7: Configuration with a platform and a secure agent

The requirements vary depending on the situation. It is hence important to be able to easily
construct the platform/agent/proxy adapted to the specific needs. Using an implementation model
based on a modular approach is an important asset.

5. Conclusion

We proposed an implementation model for SNMPV3 that allows the evolution of the system to
consider different security models and different configurations while keeping the simplicity of
SNMPvl. This work builds upon the existing products and protocols. The modularity of the
approach adds considerable flexibility to the solution. At the same time, this modularity help
keep SNMPv3 implementations as simple as SNMPV1. In the implementation model, the key is
to use the abstract service interfaces between the modules defined in the RFCS. It will allow the
evolution of the architecture to encompass different scenarios (two-tier models, three tier models
with proxy or delegated agents), different security models and different access control models.
This architecture allows to reuse the different modules depending on the version of SNMP, on the
security model required (type of encryption and authentication) or on the different management
applications. Also, the model allows the interoperability with Corba, JMAPI, and others. The
implementation uses Java to create modular reusable components, Java is an open, industry
standard suited for defining reusable components. Java is also a portable, object-oriented
language that is architecturally neutral.

(c) 1999 IFIP

References

[1] Rose, M., and K. McCloghrie, “Structure and Identflcation of Management Information for
TCP/IP-based internets”, STD 16, RFC 1155, May 1990.

[2] Case, J., M. Fedor, M. Schoffstall, and J. Davin, The Simple Network Management
Protocol”, RFC 1157, University of Tennessee at Knoxville, Performance Systems
International, Performance International, and the MIT Laboratory for Computer Science,
May 1990.

[3] The SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M., and S., Waldbusser,
“Introduction to Community-based SNMPV2”,RFC 1901, January 1996.

[4] The SNMPv2 Working Group, Case, J,, McCloghrie, K., Rose, M., and S., Waldbusser,
“Structure of Management Information for Version 2 of the Simple Network Management
Protocol (SNMPV2)”, RFC 1905, January 1996.

[5] The SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M., and S. Waldbusser,
“Textual Conventions for Version 2 of the Simple Network Management Protocol
(SNMPV2)”, RFC 1903, January 1996.

[6] The SNMPV2 Working Group, Case, J., McCloghrie, K., Rose, M., and S., Waldbusser,
“Conformance Statements for Version 2 of the Simple Network Management Protocol
(SNMPv2)”, RFC 1904, January 1996.

[7] The SNMPv2 Working Group, Case, J., McCloghrie, K,, Rose, M,, and S., Waldbusser,
“Protocol Operations for version 2 of the Simple Network Management Protocol
(SNMPV2)”, RFC 1905, January 1996.

[8] The SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M., and S. Waldbusser,
“Transport Mappings for Version 2 of the Simple Network Management Protocol
(SNMPV2)”, RFC 1906, January 1996.

[9] The SNMPV2 Working Group, Case, J., McCloghrie, K., Rose, M., and S. Waldbusser,
“Management Information Base for Version 2 of the Simple Network Management Protocol
(SNMPV2)”, RFC 1907 January 1996.

[10] The SNMPV2 Working Group, Case, J., McCloghrie, K., Rose, M., and S. Waldbusser,
“Coexistence between Version 1 and Version 2 of the Internet-standard Network
Management.

[11] McCloghrie, K, Editor, “An Administrative Infrastructure for SNMPv2”, RFC 1909,
February 1996.

[12] Galvin, J., and McCloghrie, K., “Administrative Model for version 2 of the Simple
Network Management Protocol (SNMPv2)”, RFC 1445, Trusted Information Systems,
Hughes LAN Systems, April 1993.

[13] Barrington, D, R. Presnhn, and B. Wijnen, “An Architecture for Describing SNMP
Management Frameworks, RFC 2271, January, 1998.

(c) 1999 IFIP

[14] Case, J., Barrington, D., Presuhn, R., and B. Wijnen, “Message Processing and
Dispatching for the Simple Network Management Protocol (SNMP)”, RFC 2272, January
1998.

[15] Levi, D., Meyer, P., and B, Stewart, “SNMPV3Applications”, RFC 2273, January 1998.

[16] Blumenthal, U., and B. Wijnen, “The User-Based Security Model for Version 3 of the
Simple Network Management Protocol (SNMPV3)”,RFC 2274, January 1998.

[17] Wijnen, B., Presuhn, R., and K. McCloghrie, “View-based Access Control Model for the
Simple Network Management Protocol (SNMP)”, RFC 2275, January 1998.

[18] Barrington, David, “The evolution of Architectural Concepts in the SNMPV3 Working
Group”, The Simple Times 5(l), December 1997.

[19] Cherkaoui, O., Saint-Hilaire, Y. and Serhouchni, A., “Towards a modular and
interoperable SNMPV3”, NOMS’98, New Orleans.

(c) 1999 IFIP

