
SoLOMon: Monitoring End-User Service
Levels

S. Fr�lund, M. Jain, and J. Pruyne

Hewlett-Packard Laboratories

1501 Page Mill Road

Palo Alto, CA 94304

ffrolund, jainm, pruyneg@hpl.hp.com

Abstract

To manage distributed applications, we need to accurately monitor end-user

service levels. There are two key challenges in monitoring end-user service levels:

expressiveness and scalability. There is a big semantic gap between the metrics

that administrators want to monitor and the metrics o�ered by commercial

measurement systems. Moreover, it is hard to apply the same kind of metrics

to di�erent applications because di�erent applications are likely to o�er di�erent

types of instrumentation points. We want to apply the same metrics to very

large numbers of instrumentation points, which makes scalability a key issue.

In this work we present the Activity Monitoring Language (AML) for declar-

atively specifying metrics, and a run-time system, called SoLOMon (Service

Level Objective Monitor), that implements the concepts in AML. Expressive-

ness is a result of AML, which allows the high-level speci�cation of user-de�ned

metrics in an application-neutral way. SoLOMon's scalability is a result of re-

ducing events and measurements as close to their physical source as is possible

without the loss of accuracy.

1 Introduction

The technology for monitoring enterprise-scale systems has not kept pace with

the deployment of large scale, distributed, heterogeneous applications. This has

introduced several challenges for the IT departments of enterprises:

� There is a large semantic gap between the business metrics that the IT

department would like to monitor and the type of measurement that is

actually available.

� Monitoring solutions are application speci�c because each application

presents di�erent types of measurements and di�erent measurement inter-

faces. There is no uniform way of carrying over the solution for monitoring

one application to another, or of correlating metrics across applications.

(c) 1999 IFIP



Monitor Repository

Reporter

Visualizer

Gateway

AML
Authoring
Tool

Measurement control

Measurements

Screen

Report

Providers

Measured system

Agents

Figure 1: Architecture of The SoLOMon Monitoring System

� There is no easy, ubiquitous, scalable mechanism for gathering, correlat-

ing, and transporting the data from distributed sites to a central location.

� Most measurement systems do not have access to end-to-end metrics, and

thus do not provide complete information.

To address these challenges, we introduce the Activity Monitoring Language

(AML) for specifying measurement reduction according to user-de�ned metrics

in an application-neutral way. An AML program declaratively speci�es the

computation of high-level business metrics from low-level events. In addition

to measurement reduction, AML also facilitates measurement control. The

bottom-level event sources are selected based on an attribute �ltering mecha-

nism.

SoLOMon (Service Level Objective Monitor) is a distributed measurement

system that can execute AML speci�cations. There is a well-de�ned, and exten-

sible, interface between SoLOMon and the native measurement points in the

applications under measurement. Rather than provide a proprietary instru-

mentation format, SoLOMon provides an integration framework for existing

instrumentation formats. AML contains an \interface de�ntion language" to

facilitate the integration of existing instrumentation formats. The architecture

of SoLOMon is illustrated in Figure 1.

The gateway component converts AML speci�cations into streams of mea-

surements. Streams of measurements may have several consumers: graphical

measurement visualizers, report generators, noti�ers that apply thresholds to

streams and produce events and alarms, and monitors that feed streams of mea-

surements to other tools. These consumers may be implemented by anybody,

(c) 1999 IFIP



and are not part of SoLOMon. In �gure 1, we depict a monitor, reporter, and

visualizer.

The gateway component itself can receive measurements from two sources:

agents in a measured system or a measurement repository. The measurement

repository contains historical data whereas the agents provide current data.

Agents are part of the SoLOMon system, and perform measurement reduction

according to mobile data
ow graphs. AML speci�cations are compiled into

data
ow graphs that are loaded by agents at runtime. These graphs program

the reduction engine in agents. Agents are organized in tree structures, which

gives hierarchical measurement reduction. Moreover, since an agent can be

collocated with a measurement point, our agent concept allows measurement

reduction close to the measurement source|a key to scalable measurement

collection.

The repository has a database in which it stores historical measurement

data. We populate the repository through the monitor tool. The monitor tool

obtains a live measurement feed from the gateway component and directs this

live feed into the repository. The repository only contains the measurement

that the user explicitly redirects to it|we can only present historical views on

measurements that were explicitly collected.

Providers represent the instrumentation points in the application being man-

aged. The provider abstraction gives a uniform interface to the heterogeneous

instrumentation points in the various applications managed by SoLOMon.

The remainder of the paper is organized as follows. Section 2 describes AML

in more detail, and section 3 describes an approach for implementing SoLOMon.

Section 4 describes work related to SoLOMon. Conclusions and future work are

presented in section 5.

2 AML

In this section we describe the AML concepts. The constructs of AML are

designed with scalability in mind; we want to perform as much measurement

reduction as close to the physical measurement source as possible. In AML,

this goal manifests itself in constructs that can be calculated in a distributed

manner.

2.1 Language Constructs

Each construct in AML is designed to perform one step in the process of trans-

forming local, event-based measurements into values that represent a time-

averaged view on multiple events from multiple instrumentation points. At the

lowest level, we de�ne providers and provider types which encapsulate di�erent

instrumentation points in a system. Above these, we de�ne metrics which are

procedures to convert events from these instrumentation points into values. The

(c) 1999 IFIP



provider CCMS f (1)

attributes (2)

initiator: string; application: string; (3)

events (4)

responseTime(eventID: uuid, time: long); (5)

g; (6)

(7)

provider ARM f (8)

attributes (9)

user: string; application: string; activity: string; (10)

events (11)

start(tranID: uuid, timestamp: long); (12)

stop(tranID: uuid, timestamp: long, status: int); (13)

g; (14)

(15)

metric responseTime: 
oat msec; (16)

(17)

responseTime for ARM f (18)

val = stop(status == "ok",tranID == t).timestamp - (19)

start(t = tranID).timestamp; (20)

g; (21)

(22)

responseTime for CCMS f (23)

val = responseTime.time; (24)

g; (25)

(26)

reducer mean(source S: 
oat, period: long) f (27)

val = sum(S,period) / count(S,period); (28)

g; (29)

(30)

source avgRTSrc: 
oat; (31)

avgRTSrc = mean(responseTime, 10) from �lter f user == ``joe''g (32)

Figure 2:

(c) 1999 IFIP



combination of a metric and a number of providers creates a source. Providers

generate events and sources generate values. A source can be controlled (e.g.

turned on or o�). The highest level construct is the reducer which transforms

one set of sources into another. We use reducers to aggregate values, such as

computing the mean value over some time period. In the following sections, we

describe each of these constructs in more detail by showing examples of how

they are used. We will refer to �gure 2 to show how each of the constructs is

de�ned in AML.

2.1.1 Providers and Provider Types

Provider types de�ne the instrumentation in the system being monitored. Pro-

vider types are user-de�ned as the type of information (events) may vary widely

from one domain to another, and new types are likely to arise in the future.

Provider types are the key abstraction that allow SoLOMon to work with het-

erogeneous information sources.

In Figure 2, lines 8-15 show an example of the AML syntax that de�nes

an ARM [HP97] provider type. ARM is an application instrumentation API

that gives a method of marking the beginning and ending of a transaction. A

provider type de�nition has two sections: an attribute section and an event

section. In the example, providers have attributes that capture the user of the

process in which the instrumentation is embedded, the name of the application,

and the name of the activity (transaction) initiated by the enclosing process.

Provider instances bind values to these attributes. The binding of values to

attributes happens at run-time and is not part of the AML speci�cation.

The event section declares the di�erent kinds of events that ARM providers

can produce. In the example, ARM providers produce start and stop events.

Events also have attributes. timestamp is an attribute of the start event.

timestamp is of type long, and is the time at which the start event occurred.

As we see in the next section, event attributes are used in de�ning metric

procedures.

To further illustrate the notion of provider type, we give the AML de�nition

for a hypothetical provider type that captures CCMS providers in Figure 2 lines

1-6. CCMS is the name of the monitoring system in the SAP/R3 environment.

In this example, a CCMS provider produces events called responseTime. These

events correspond to the completion of a business transaction.

We use the concept of an event as the common denominator for hetero-

geneous measurement data. Producing events imposes minimal requirements

on participating instrumentation points because the concept of an event does

not require any processing, such as time intervalization, of measurement data.

Having events at the base layer gives rise to a \push" model for measurement

collection and processing. Some legacy systems are likely to support a \pull"

model instead. We can integrate such systems into SoLOMon by wrapping them

with code that periodically polls the legacy measurement system and produces

(c) 1999 IFIP



an AML event.

2.1.2 Metrics

The next level of abstraction in AML is the metric. A metric is a procedure

that computes values from provider events. Figure 2 lines 16-25 de�ne a metric

to compute response time values. We use the keyword metric to de�ne the

name, type, and unit, of the metric. We then use overloading to de�ne, for

each provider, the procedure for computing the metric from events. The higher

level constructs can thus be written in terms of metrics without regard to the

underlying providers that generate the values. The de�nition in Figure 2 con-

tains procedures for providers of type ARM and CCMS. The values computed

by the response time metric are of type 
oat. In general, metric values can be

composite entities, such as pairs or records over other values.

The procedure to compute response time values from ARM events is complex

because these values are computed based on two correlated events. We need the

start and stop events from the same transaction to compute a valid response

time. We therefore need to correlate events over a transaction. We use pattern

matching over event attributes to describe event correlation. A pattern speci�es

acceptable values for (some of) the attributes in an event. For example, in lines

19 and 20, we describe a pattern that matches all stop events whose attribute

status has a value of \ok":

stop(status == "ok") (1)

Notice that in (1) we do not specify values for all attributes. If a pattern does

not specify a value for an attribute, it trivially matches the attribute.

For the purposes of event correlation we need to describe patterns whose

attribute values depend on attribute values in other events. For example, to

correlate ARM start and stop events, we need to construct a pattern for the

stop event that contains the tranID value from the start event. We use the

following syntax to express this:

stop(status == "ok",tranID == t).timestamp -

start(t = tranID).timestamp (2)

In (2), the == is a comparison operator and the = establishes a binding. The

expression t = tranID establishes a binding for t. We can then use t in speci-

fying patterns. Thus, when we write tranID == t we construct a pattern based

on the value of t.

Notice that expression (2) may be evaluated only when all patterns are

matched. Here there is only one pattern: the pattern for stop events. This

pattern is matched whenever there is a successful stop event that has a tranID

equal to that of a previous start event. We can access the attributes of the

resulting matched event. To use the value of event attributes we use a dot (\.")

notation as follows:

(c) 1999 IFIP



stop(status == "ok",tranID == t).timestamp (3)

The result of evaluating (3) is the value bound to the attribute timestamp

of the stop event that matches the contained pattern. We can then perform

arithmetic expressions over these event attribute values. In the response time

metric our operator is subtraction.

The computation of metric expressions over multiple events requires that

events be stored. When a new event occurs, it may trigger the evaluation of a

metric expression. For example, the occurrence of a stop event may cause the

metric response time to be evaluated if a corresponding start event has oc-

curred previously. In order to determine that such a start has in fact happened,

we need to store old start events. We impose the semantics that the evalua-

tion of a metric expression causes deletion of all the participating events. As

measurement systems typically operate in resource constrained environments,

forcing this semantics in the speci�cation allows for e�cient implementations.

Although events are removed after they have been used in a computation, we

still need a policy to deal with events that are never used in computations. For

example, we may never see a stop event that matches a given start event. The

runtime system must ensure that we do not store such start events forever. We

choose to have an expiration time for events.

Consider the expression for computing response time values for CCMS

providers:

val = responseTime.time; (4)

There are no patterns involved in expression (4). So we can evaluate this

expression for each responseTime event. The result of the expression is the

value bound to the event attribute called time. The responseTime metric

de�nitions for ARM and CCMS provide us with a single notion of response

time for both CCMS and ARM though the underlying events produced by the

corresponding instrumentation are very di�erent.

2.1.3 Sources and Filters

A source is a logical instrumentation point that, when activated, can produce

a stream of values. Underlying a source is a set of providers and a metric.

The metric de�nes a procedure for computing values based on events from the

providers. An example of a source is shown in lines 31-32 of �gure 2.

In line 31, we declare a source avgRTSrc. In line 32, responseTime is the

name of a metric. The expression \�lter f user == ``joe''g" instantiates a
�lter that matches on an attribute user in providers. The �lter will select all

providers where this attribute is bound to the value \joe." The from keyword

associates the �lter with the metric. The second statement thus binds the

source avgRTSrc to the result of associating the responseTime metric with all

providers that have a user named \joe."

(c) 1999 IFIP



2.1.4 Reducers

The association of a �lter and a metric is a primitive source. AML treats sources

as �rst class entities, and de�nes operators over sources so that new sources can

be constructed from old sources. A reducer is an operator over sources.

We allow the usual set of arithmetic operators over sources. In addition,

we provide a number of built-in reducers to provide intervalization of sources.

We pre-de�ne the built-in reducers are sum, count, min, and max. The

signi�cance of these will be described in Section 3.2.

Built-in reducers provide time intervalization of measurement data. For

example, sum is a built in reducer that takes a source S and a number T , and

returns a source S0. Each value in S0 is a sum of the set of values in S that

appear over the interval T . A value in S0 appears every T time units. If over a

particular interval no values appear in S, a special null value appears in S0 as

the value for that particular interval.

As illustrated in lines 27-29 of Figure 2, we use the built-in sum reducer and

a built-in count reducer to construct a user-de�ned reducer mean. Both sum

and count behave as expected, and the mean reducer uses them to compute the

time-averaged mean for the values in a source S. The mean reducer also takes

a number period, that represents the time interval over which values in S are

averaged. mean returns a source that contains the mean of S values computed

on period time boundaries.

In this example, we compute arithmetic expressions over sources. We use a

division operator \/" on the sources returned by sum and count. The result

of merging two sources according to a binary operator is a source whose values

are constructed from a per-value application of the operator on the values of

the two merged sources.

Let a stream of values represent the runtime behavior of a source. We use

the following notation to represent sources:

s = (t,v1 v2 v3 ...) (5)

(5) represents a source s that is time intervalized on an interval of length t. s

produces the values v1, v2, v3, and so on one after each interval t. With this

notation, the semantics of a binary source operation, such as division, are as

follows:

(t,v1 v2 v3 ...) / (t,v4 v5 v6 ...) = (t,v1/v4 v2/v5 v3/v6 ...)

Operators can only work on sources that are either all unintervalized or that

are intervalized with the same period. For unintervalized sources, the division

operator works as follows:

(,v1 v2 v3 ...) / (,v4 v5 v6 ...) = (,v1/v4 v2/v5 v3/v6 ...)

(c) 1999 IFIP



Time intervalization of data requires state in the reducer that performs the

time intervalization. For example, the sum reducer must store a sum value

that is updated whenever the input source produces a value. The sum value is

set to 0 on interval boundaries, and it is written to the output source before it

is set to 0. It is hard to e�ciently implement user-de�ned reducers with state

in a distributed manner. Therefore, user-de�ned reducers cannot have state.

In particular, it is only built-in reducers that can time intervalize values.

The values produced by sources do not have any associated attributes, im-

plicit or explicit. In particular, they do not have associated implicit timestamps.

A value in a measurement stream may be the result of two events that ostensi-

bly occur at very di�erent times. Also, we do not assume clock synchronization

or bounded clock skew between machines. Thus semantics of a time-stamp for

this value is unclear. A side-e�ect is that unintervalized data stored in a repos-

itory cannot later be intervalized. However, the intervalization period of stored

intervalized data can be increased.

The mean reducer in lines 27-29 of Figure 2 provides a general way to describe

time averaging of measurement data. For example, we can use the mean reducer

to measure the average response time for the user \joe" as shown in line 32 of

the example.

3 Implementing SoLOMon and AML

The implementation of SoLOMon and AML should be low overhead, exten-

sible, and timely in terms of the delivery of measurement data. Moreover,

the implementation should be scalable in terms of the number of measurement

points supported. We are currently prototyping the SoLOMon runtime system

to satisfy these goals. In this section, we describe how to implement SoLOMon

in a distributed JAVA environment. We use JAVA as an example platform

because it supports dynamic code loading over a network. We could also im-

plement SoLOMon in other distributed middleware environments such as COM

or CORBA.

We illustrate the overall structure of the SoLOMon runtime in Figure 3.

We describe the mapping from AML to an implementation language, in our

case JAVA. Furthermore, we show how the runtime representation of an AML

speci�cation can be used to activate instrumentation points and generate mea-

surement data according to user-de�ned metrics.

3.1 The AML to JAVA Mapping

We represent AML metrics and reducers as data
ow graphs in the SoLOMon

runtime system. A graph that represents a metric has leaf nodes that corre-

spond to provider events. The evaluation of the metric is triggered by event

(c) 1999 IFIP



Compiler

Gateway

Web Server

foo.aml

"display foo.s1"
Visualizer

"instantiate foo.s1"

Agent

Agent

ARM runtime

ARM provider

ARMStub.class

linking

register events

ARM instrumentation

"get foo"

"get foo"

ARMSkel.class

fooCreator.class

stream measurements

measurements

"activate foo.s1"

"activate foo.s1"

Figure 3: An overview of the AML to JAVAmapping and the SoLOMon runtime

structure

occurrences at the leaf nodes. In the case of a reducer, the leaf nodes repre-

sent the sources being reduced, and the root represents the source which is the

result of the reducer. The evaluation of a reducer graph is triggered by values

being produced by the leaf sources. For an introduction to data
ow in general,

refer to any of [Den74, AGP78, GKW85]; for a more indepth description of

the implementation of metrics and reducers in terms of data
ow graphs, refer

to [FJP98].

Given an AML text �le, foo.aml, the AML compiler maps the metrics,

reducers, and sources in foo.aml into a JAVA class called fooCreator. The

class fooCreator has a method called createGraph that takes the name of a

source and returns a data
ow graph that performs measurement reduction as

prescribed by that source.

At runtime, measurement providers are the entry points into the SoLOMon

runtime system. Providers are the runtime incarnation of provider types de-

clared in AML �les. The AML compiler generates provider stubs that can

be used by a native measurement system to generate providers. For exam-

ple, suppose that an application process contains ARM instrumentation. This

ARM instrumentation can then use the provider stubs emitted for the ARM

provider type to instantiate an ARM provider. The ARM instrumentation use

the provider to register against the SoLOMon runtime and to push events into

the SoLOMon runtime. At registration, a provider informs a SoLOMon agent

about its attributes, the values bound to those attributes, and the events that

it may generate. The stubs generated for a particular provider type will de�ne

the data format for registration and event generation for providers of that type.

(c) 1999 IFIP



In addition to provider stubs, the AML compiler also generates provider

skeletons from a provider type. The provider skeletons de�ne the data
ow leaf

nodes that receive provider events. The skeletons are loaded dynamically by

SoLOMon agents as they instantiate data
ow graphs.

In Figure 3, we assume that foo.aml only contains a single provider type

called ARM. The stubs for this provider type are contained in the �le called

ARMStub.class and the skeletons are in ARMSkel.class. The stubs are linked

into ARM providers, and the skeletons are loaded dynamically by agents that

need to operate on ARM events.

3.2 Instantiation of Sources

A frontend tool such as a visualizer instantiates the data
ow graphs at run-

time. For example, a user may ask the visualizer to display measurements as

de�ned by a source, say s1. The tool then asks the gateway to instantiate

the source into a stream of measurements. In response, the gateway returns a

measurement stream. To feed measurement values into this stream, the gate-

way asks the SoLOMon agents to activate the speci�ed source. Agents then

load the data
ow creator fooCreator through a web server. They then call

the method createGraph on fooCreator, with the source name s1 as a text

string. In return, they get the appropriate data
ow graph. Agents then ask

their sub-agents to also activate the source, and perform the wiring between

their own data
ow graph and those of their children. The bottom-level agents

perform this wiring against one or more providers that have registered with the

agent. The bottom-level agent only wires the data
ow graph against providers

that match s1's �lter. This �lter can be instantiated as JAVA objects through

the fooCreator class.

We want to perform as much measurement reduction at the bottom-level

agents as possible. Thus, ideally, we want lower-level agents to always wire their

root node to the leaf nodes of higher-level agents. However, this wiring is not

always possible. For example, if we have a reducer that counts all events in a

distributed system, we cannot compute this value at any local agent. Counting

is a global operator that can only be performed by the top-most agent. In

order to correctly wire data
ow graphs, we have to \cut" them so that global

operations are not distributed.

Our �rst step in performing the cut is to de�ne a tree-structured hierarchy

among agents. By restricting this hierarchy to a tree structure, we limit each

agent to having exactly one parent agent that it reports to. We also use the

observation that there are well de�ned methods of distributing the built-in

reducers: sum, count, min, max. For example, a global sum is simply

the sum of a set of partial sums. Likewise, a global count is the sum of a

set of partial count operations. Similar strategies are apparent for min and

max operations. Because we can decompose these operations, they allow us to

perform our cut.

(c) 1999 IFIP



The tree hierarchy and built-in reducer properties allow us to use the follow-

ing algorithm to distribute a data
ow graph. When the \root agent" receives

a reference to a data
ow graph from the gateway, it uses this reference to

download the graph from the web-server and uses the createGraph method to

instantiate the graph. The graph is then traversed by the agent looking for

one of the built-in reducers. If none of these are found, the graph cannot be

cut, and the agent sends the graph, in its entirety, to each of its children. The

output of this graph in each of the children is sent to the root. The root does

no processing on these events, and simply passes them through to the gateway.

If the root does discover one of the built-in operators, it performs a cut

operation as follows. It instantiates the proper global reducer for this operation.

As described above, for sum the global operation is sum, for count the global

operation is also sum, and so on. The root then passes the portion of the

graph below and including the reducer to each of its children. The output of

the children will be directed to the global reduction operator instantiated by the

root. The root will therefore perform the global reduction step before passing

the result on to the gateway.

The process described here was in terms of two levels: a root and its children.

The algorithm generalizes easily to multiple levels. All non-leaf level agents

implement the cut algorithm described above, and pass the appropriate sub-

graphs to their children. Leaf agents do not need to run the algorithm, and will

simply load and run each graph they receive.

4 Related Work

HP's Data Source Integration (DSI) language [Hew96] is used in conjunction

with the HP Measureware collection agent [Hew95]. DSI allows external mea-

surement providers to use the Measureware collection infrastructure. A DSI

speci�cation de�nes the format of a particular class of measurement data that

is produced by an external measurement provider. In contrast to AML, DSI

only addresses the interaction between measurement providers and a single col-

lection agent. DSI does not support distributed and hierarchical measurement

reduction, not does it support control of measurement providers based on their

attributes.

The InfoVista system [Cor97] contains a language for describing metrics. It

is possible to describe composite metrics in terms of simpler metrics. However,

InfoVista does not support distributed computation of metrics: composite met-

rics are computed at a centralized measurement server. Moreover, InfoVista

uses explicit, rather than attribute-based, naming of measurement sources.

The Distributed Measurement System (DMS) [RJTS95, JFS95] has per-

computer measurement agents that collect, intervalize, and transport measure-

ment data to a central location. An agent The notion of threshold, or intenisty

level, in DMS allows control of individual measurement sources. They can be

(c) 1999 IFIP



turned on and o� and instructed to operate at di�erent levels of data aggre-

gation. However, DMS only provides a �xed set of intensity levels, there is no

way to de�ne custom thresholds and use them for existing DMS measurement

sources. Moreover, DMS measurement sources have unique names, there is no

support for attribute-based naming.

The stream concept in data
ow languages, such as Lustre [NPPD91] and

ESTEREL [BG92], is similar to our notion of a source. Where AML provides

reducers to perform computation of sources, these languages provide operators

to perform computation over stream values. However, the data operators in

Lustre and ESTEREL do not support any notion of intervalization. Further-

more, Lustre and ESTEREL do not support attribute-based naming of data

sources, nor do they provide operators to specify the computation of values

based on events.

5 Conclusion

We have introduced SoLOMon, a distributed monitoring framework designed

to provide scalability and expressiveness. SoLOMon's scalability is primarily

achieved by reducing measurements as close to their physical source as possible.

Expressiveness in SoLOMon is a result of using a high-level language, AML,

as a declarative front end to the measurement system, making the system pro-

grammable.

The SoLOMon framework is built around the notion of reducing events to

values. A topic for future work would be to extend the framework to provide

ways to generate events from values. Another extension is to provide operators

that reduce events to other events.

6 Acknowledgements

The work reported in this paper has bene�tted greatly from interactions and

discussions with a number of individuals. We want to acknowledge the contri-

butions of Muthusamy Chelliah who participated in the early design meetings.

Joe Martinka continually supported and encouraged our endeavors into dis-

tributed measurement systems. We thank Joe Sventek for his comments on a

draft version of this paper. Finally, we thank Brad Askins and Pankaj Garg for

their feedback on our work.

References

[AGP78] Arvind, K.P. Gostelow, and W. Plou�e. An asynchronous program-

ming language and computing machine. Technical Report UCI-

(c) 1999 IFIP



TR114a, U.C. Irvine, Dept. of Information and Computer Science,

UC Irvine, December 1978.

[BG92] G. Berry and G. Gonthier. The esterel synchronous program-

ming language: Design, semantics, and implementation. Science of

Computer Programming, 19:87{152, 1992.

[Cor97] InfoVista Corporation. It quality of service management solu-

tions. Technology white paper from http://www.infovistacorp.com/,

March 1997.

[Den74] J.B. Dennis. First Version of a Data Flow Procedure Language,

volume 19 of Lecture Notes in Computer Science. Springer-Verlag,

1974.

[FJP98] S. Frolund, M. Jain, and J. Pruyne. Solomon: Monitoring end-user

service levels. Technical Report HPL-TR98-153, Hewlett-Packard

Laboratories, 1998.

[GKW85] J.R. Gurd, C.C. Kirkham, and I. Watson. The manchester proto-

type data
ow computer. Communications of the ACM, 28(1):34{52,

January 1985.

[Hew95] Measureware agent: User's manual, 1995.

[Hew96] Measureware agent: Data source integration guide, June 1996.

[HP97] Hewlett-Packard. Application response management.

http://www.hp.com/-openview/rpm/arm/index f.html, 1997.

[JFS95] J.Martinka, R. Friedrich, and T. Sienknecht. Murky transparencies:

Clarity through performance engineering. Proc. of the Intl. Conf.

on Open Distributed Processing (ICODP'95), February 1995.

[NPPD91] N.Halbwachs, P.Caspi, P.Raymond, and D.Pilaud. The synchronous

data
ow programming language lustre. Proc. of the IEEE, 79(9),

September 1991.

[RJTS95] R.Friedrich, J.Martinka, T.Sienknecht, and S. Saunders. Integra-

tion of performance measurement and modeling for open distributed

processing. Proc. of the Intl. Conf. on Open Distributed Processing

(ICODP'95), February 1995.

(c) 1999 IFIP


