
Scaling Internet Services by Dynamic

Allocation of Connections

G. Goldszmidt, G. Hunt

IBM T. J. Watson Research Center

30 Saw Mill River Road

Hawthorne, NY

USA

fgsg, gdhhg@watson.ibm.com

Abstract

Network Dispatcher (ND) is a software tool that \routes" TCP con-
nections to multiple TCP servers that share their workload. It exports a
set of virtual IP addresses that are concealed and shared by the servers.
It implements a novel dynamic load-sharing algorithm for allocation of
TCP connections among servers according to their real-time load and
responsiveness. ND forwards packets to the servers without performing
any TCP/IP header translations, consequently outgoing server-to-client
packets are not handled, and can follow a separate network route to the
clients. Its allocation method was proven to be e�cient in live tests,
supporting Internet sites that served millions of TCP connections per
hour. This paper describes the load management features of ND.

Keywords
Internetworking, Tra�c Management

1 Introduction

As TCP/IP tra�c increases, many Internet sites are often unable to serve their
workload, particularly during peak periods of activity. This paper describes
the load management of ND, a tool which enables TCP/IP server clusters
to handle millions of TCP connections per hour. ND shares a collection of
Virtual IP Addresses (VIPAs) with the cluster servers. Each VIPA is shared
by the ND host and a \Virtual Encapsulated Cluster" (VEC), a collection of
(heterogeneous) servers that provide the same function and serve equivalent
content.

1

(c) 1999 IFIP

For example, a VEC may consist of 10 hosts sharing the same VIPA,
each accepting TCP connections on port 80 and delivering equivalent content.
When a Web browser accesses a page, it may open several concurrent TCP
connections, each of them may be routed to another VEC host.
ND uses a load-sharing algorithm that allocates connections in inverse

proportion to the current load of each VEC server. This algorithm is imple-
mented by two interacting components that work in tandem but at di�erent
rates. The Executor is a kernel-level extension to the TCP/IP stack, and the
Manager is a user-level management tool.

The service time and the amount of server resources and network band-
width consumed by each request varies widely. To address these workload
characteristics, ND establishes a dynamic feedback control loop with the
servers. The Manager dynamically monitors the current performance of the
servers, evaluates a con�gurable estimate of each server's load, and computes
in real-time the proportional allocations for each server. The Executor allo-
cates new TCP connections proportionally to the Manager-computed weights,
and then forwards following packets of each connection to the corresponding
server.

At the main Web site for the 1996 Summer Olympics, a single ND sup-
ported 4 VECs on some 50+ SP/2 nodes [5]. The 1998 Wimbledon Web site,
handled over 150000 connections per minute, with negligible latency overhead.
ND was used to implement several large scale Web sites, with Ethernet, Token
Ring, FDDI, and ATM networks, supporting heterogeneous servers. We have
found that greater performance and scalability can be obtained by con�guring
parallel and hierarchical sets of NDs.

In the event of a ND failure, its VIPA addresses can be transferred to
another backup ND, by
ushing the ARP cache on the corresponding IP
routers. Complete recovery without (or with minimal) loss of active connec-
tions, is implemented by maintaining a shadow ND host that keeps track of
all existing connections and other state.

The focus of this paper is the operational management of the ND, and its
load management component. A more detailed description of all the compo-
nents of ND, is given in [6]. Reference [8] includes a preliminary evaluation
of ND's performance in the context of HTTP tra�c, and other features, in-
cluding high-availability, support for nonlocal server sites, and client a�nity.
Reference [5] describes some of the challenges of building, operating and man-
aging a large distributed system using ND. Reference [4] describes the IBM
eNetwork Dispatcher product, which is based on this work.

The rest of this paper is organized as follows. Section 2 describes how ND
is used. Section 3 describes the Manager and its dynamic feedback load shar-
ing algorithm, Section 4 describes the con�gurable load metrics index. Section
5 describes some alternative approaches to solve the scalability problem, and
Section 6 concludes.

2

(c) 1999 IFIP

2 Con�guration and Use

One of the most useful features of ND is the ability to dynamically change
all con�guration information. This enables system managers to add and re-
move services and servers without interruption. In particular, it enables the
dynamic upgrade of content and software at the servers. ND provides a single
point of control for the allocation of cluster resources, for collecting real-time
logs, and monitoring the current performance of the cluster. As it dynamically
monitors the performance of the cluster, it automatically removes servers that
are not performing properly.

The administrator of ND de�nes the VIPAs, ports and servers of each
VEC. The VIPAs become known via DNS and ARP. Each VIPA that a server
supports must be known as an alias on an interface so that the local TCP
stack will accept the corresponding incoming IP packets. However, the servers
may not export the VIPAs via ARP, since that would create LAN con
icts.
One method to do this is to give the alias to a non ARP-exported interface,
like the loopback interface, (e.g., by performing ifconfig commands). Notice
that ND, in contrast with other tools, does not require the installation of any
software nor O/S upgrades at the servers.

2.1 Network Con�guration

ND can be con�gured within one or several networks. Figure 1 shows a
typical 2-network con�guration of ND. The internal network connects ND to
the servers (S1, S2, S3) and is used for ND-to-server packets. The external
network is used for both incoming client-to-ND packets and for outgoing
server-to-client packets. The client-to-ND tra�c could also be con�gured to
arrive via a network interface that is connected directly to the IP router. For
instance, the internal network could be an Ethernet, the external network
could be a Token Ring where servers forward their tra�c, and the packets
could arrive into ND from an ATM link. In Figure 1 ND has the VIPA
129.34.129.8 on the interface that connects it to the \external" network, and a
private IP address 9.2.254.64 in the internal network. The VIPA 129.34.129.8
is an alias to the loopback interfaces of the 3 servers.

2.2 Forwarding Packets

For each IP packet that represents a new TCP connection request, ND chooses
a server from the target VEC, using a Weighted Round Robin (WRR) algo-
rithm. The �rst and subsequent client-to-server IP packets for this TCP
connection are forwarded to the corresponding server. Outgoing server-to-
client packets do not need to
ow through ND but may follow a separate
route, as illustrated by Figure 2. Bandwidth utilization can be more e�cient
by allowing the server-to-client IP packets to follow a separate route through

3

(c) 1999 IFIP

129.34.129.8

9.2.254.64

129.34.129.8
9.2.254.23

129.34.129.10

129.34.129.8
9.2.254.87

129.34.129.75

129.34.129.8
9.2.254.35

129.34.129.36

External
Network

Internal
Network

Service
address

ND

S1 S2 S3

IP
Router

Figure 1: Sample network con�guration for 2 networks.

di�erent networks. This half-connection forwarding method is particularly
useful for TCP-based protocols like HTTP, that are characterized by small
client requests that may generate large server responses. HTTP client packets
are typically short, e.g., requests to get a new page, and acks for the data re-
ceived. Server-to-client packets are larger, as they include application content
data. When a Web server delivers multimedia data, the ratio of server-to-
client outgoing bytes to client-to-server incoming bytes is very large. ND
processes only the incoming packets. In contrast, header-translation tools
must process both incoming and outgoing packets. Additional details of the
WRR and the packet forwarding method are presented in [6].

Filtering Packets. ND acts as a TCP �lter for the VIPAs by discarding
many types of IP packets. For instance, it discards all IP packets destined
for ports that have not been explicitly de�ned via con�guration commands.
For example, ND can be con�gured to only allocate connections destined for
TCP port 80, and discard all other packets.

Quiescing, and Co-location. ND also supports quiescing servers, that
is marking them as inactive. When a server has been marked as quiesced,
the currently active TCP connections are not broken, but no new connections
are assigned to the server. This feature is useful for dynamically upgrading
the software and/or content on the servers. VEC server processes may also
execute on the same host as ND. This is very useful for low workload periods,
during which ND may be con�gured to allocate most connections locally.

4

(c) 1999 IFIP

IP
Router

IP
Router

ND

S1 S2 S3

Internet request

responses

Figure 2: Example of ND Tra�c

3 Managing Load in ND

The Manager component of ND de�nes the policy of dynamic load-sharing
connections among the VEC servers. The load sharing policy takes into ac-
count the real-time load and responsiveness of the servers. Figure 3 illustrates
the relationships between the Manager, Executor, Advisors, and servers. Ad-
visor processes collect and order load information from the VEC servers. The
Manager uses the load measurements provided by the Executor and the Advi-
sors to compute a con�gurable Load Metric Index (LMI) value for each service
port. Using present and past LMI values and the current weights, the Man-
ager computes a new set of weights. If these weights di�er by more than a
threshold from the current weights, they are assigned to the Executor's data
structures to be used by the WRR algorithm.

3.1 Dispatching TCP Connections

Remote clients, such as browsers, use TCP connections to request services
from VEC servers (e.g., Web Servers). The service time and the amount of
resources consumed by each request varies widely and depends on several fac-
tors. For example, it can depend on the type of service being provided, the
speci�c content involved in each request, or the current network bandwidth
available. Some \heavy" requests perform long transactions that involve com-
putational intensive searches, database access, and/or very long response data
streams. Lighter requests may involve fetching an HTML page from cache or
performing a trivial computation.

5

(c) 1999 IFIP

NetDispatcher Host

KernelExecutor

ManagerAdvisor

Servers

Weights

Load
Metrics

Load Queries

LAN

Counters

Figure 3: The ND Manager

This imbalance in request processing time often causes skewed utilization
of the server cluster. For instance, consider an application that sequentially
opens 4 concurrent connections to retrieve 4 graphic �les, A, B, C, and D, one
of which (D) is very large. Assuming that several independent clients execute
the same code, it is possible that some of the cluster servers will be running
at capacity while others are mostly idle.

Simple Allocation of TCP Connections. A na��ve distribution of TCP
connections among the back-end servers can (and often does) produce a
skewed allocation of the cluster resources. In the previous example, a simple
round-robin allocation scheme may result in many requests being queued up
on servers that are currently serving heavy requests. For instance, if there
were 4 servers in the cluster, one of them would always receive the request for
the large �le (D). Such an allocation policy can cause a severe underutilization
of the cluster resources, as some servers may stay relatively idle while others
are overloaded. This condition, in turn, will also produce longer observed
delays for the remote clients.

Actual TCP/IP tra�c patterns. Studies of TCP/IP tra�c (e.g., [16])
show that surges occur in waves, where long periods of little tra�c are followed
by intervals of heavy usage. These studies also indicate that tra�c peaks tend
to cluster. This self-similarity of network tra�c has been shown to apply to
both WANs and LANs in general, and to particular subsets, e.g., Web tra�c
[2]. Some form of dynamic feedback control is therefore necessary to enable
appropriate reaction to the actual tra�c patterns and the state of the servers.

6

(c) 1999 IFIP

This feedback could be used by the clients, the servers, or an intermediary
like ND to more evenly utilize the cluster resources. Implementing this in
ND has the advantage of being transparent to both clients and servers.

3.2 Load Sharing with Dynamic Feedback

ND needs some guidance in order to allocate the TCP-connections in a way
that utilizes the cluster resources e�ciently. Load-balancing and load-sharing
[3] are two techniques for improving performance by using several servers.
Load-balancing strives to equalize the servers workload, while load-sharing
attempts to smooth out transient peak overload periods on some nodes [11].
Load-balancing strategies typically consume many more resources than load-
sharing, and the cost of these resources often outweigh their potential bene�ts
[12]. The workloads that we observed at several highly loaded Internet sites
were characterized by having many very short transactions and a few long
ones. For this type of workload, ND used a load-sharing method that proved
to be very e�cient, and also achieved a relatively uniform distribution of the
workload.
ND implements a load-sharing allocation policy for new TCP connections,

which is driven by a dynamic feedback control loop with the VEC servers.
The Manager monitors and evaluates the current load on each server using
combinations of load metrics, as described in Section 4. The Manager uses this
data to compute the weights associated with each port server instance in the
Executor's WRR algorithm. The computed weights tend to proportionally
increase (decrease) the allocation of new TCP connections to underutilized
(overutilized) servers.

By controlling the assignment of these weights, the Manager can imple-
ment di�erent allocation policies for spreading the incomingTCP connections.
For instance, an allocation policy may assign 8i 6= j; Wp(Si) 0 ;Wp(Sj)
1. In this case, all the tra�c for port p will be sent to host j. By choosing j to
be the least-loaded host, the Manager can implement a best server allocation
policy. Such a policy may be very e�cient during periods of relatively low
load. Also, an administrator may decide to quiesce a server (Wp(Si) 0)
before performing some maintenance on it, or after discovering a problem.

4 Load Metric Index

The Manager computes a con�gurable Load Metric Index (LMI) value for each
service port. This computation estimates the current state of each server using
multiple load metrics and administrator con�gurable parameters such as time
thresholds. These metrics should be computed and gathered in a consistent
manner for all the relevent servers of a VEC.

7

(c) 1999 IFIP

4.1 Metric Types

Load metrics are classi�ed into three classes, according to the way in which
they are computed: input, host, and forward. Input metrics are computed
locally at the ND host. Host metrics are computed at each server host, and
forward metrics are computed via network interactions between ND and each
server host. These metrics could be further combined to provide a health index
[7] for network management purposes.

4.1.1 Input Metrics

Input metrics provide a current estimate of the state of the VEC servers, as
seen from ND. These metrics are derived from the counters and gauges that
ND's Executor collects. For example, the number of new connections received
in the last t seconds is an input metric. To compute this metric the Manager
periodically retrieves the values of the corresponding Executor counters. By
subtracting two counters of a server polled at times T1 and T2, the Manager
computes a metric variable that represents the number of connections received
during the interval [T1; T2]. The aggregation of such input metrics provides an
approximation to the current rate of new connection requests for each server
and each port service.

4.1.2 Host Metrics

These metrics are computed at the server host, and represent some measure-
ment of the load on some resource. The total number of active processes, or
the total number of allocated mbufs in a given server are examples of host
metrics. Notice that if the servers are heterogeneous, host metrics must be
normalized. Host metrics are typically computed at each host server by an
agent process that executes command scripts. These scripts return numerical
values that are reported to a corresponding Advisor process at the ND host.
The Advisor collects and orders the reports from all the hosts and periodically
presents them to the Manager.

If a metric report is not received within a policy-speci�c threshold time,
then the corresponding host metric is given a special \disabled" value. The
Manager may then decide to temporarily quiesce that host, h, by assigning
Wp(Sh) 0 for all its active ports, so that no new connections are forwarded
to it.

For example, for the Olympic Games Web site [5], ND used con�gurable
Advisor processes to collect host metrics, such as \number of active process-
es", for a set of homogeneous servers. The string, \ ps -ef | wc -l ," to-
gether with a time value representing the period between computations, and
a list of hosts and other con�guration values were given to an Advisor. The
Advisor sent the command string and its con�guration parameters to all the
corresponding host agents.

8

(c) 1999 IFIP

An advantage of this method is its ability to tailor the script to measure
very speci�c load metrics. The Olympic Games Web site used several di�erent
scripts for di�erent workloads. For example, for a given memory intensive
workload we measured the utilization of memory bu�ers (mbufs) for network
connections. The main disadvantage of the scripting method is its potentially
high overhead, particularly when the metrics must be updated very frequently
and when the hosts have very high CPU utilization. This overhead includes
the computational cycles spent in the frequent execution of the scripts at the
servers, and the network bandwidth spent on exchanging metric reports.

4.2 Forward Metrics

Forward metrics are computed by sending messages from ND to a speci�c
host service. For instance, the time required to retrieve an HTML page from
a Web server to the ND host is a forward metric. An HTTP Advisor at
the ND host can send an HTTP "GET /" request to each Web server in a
VEC, and measure their corresponding delays. Such a metric measures an
approximation of the retrieval time that includes all the relevant factors: the
actual instruction path through the service application, the time that the
request spends in the di�erent queues at the server host, LAN access time,
and so forth.

If a request is not answered by a con�gurable time-out, the corresponding
service is marked as temporarily not receiving new requests of the particular
service type. The Manager can then decide that a service at a particular
host is temporarily disabled, and hence no more new connections of this type
should be forwarded to it.

4.3 LMI Con�guration and Computation

Host metrics typically take longer to acquire than forward metrics, which take
longer than input metrics. The relative importance of each load metric can
depend on the workload and services, which can change over time. Hence,
the Manager enables dynamic con�guration of relative metric weights R(i),
(
P

R(i) = 1), to be associated with each load metric l(i). R(i) de�nes the
relative importance of each l(i) metric for the Manager's load allocation algo-
rithm. The combination of all the weighted metric instances is an aggregate
load metric index LP (S) =

P
R(i) � l(i), for each server S and port P .

For instance, a network administrator may con�gure the algorithm for
port 80 to give 20% relative weight to a given host metric A, 40% to a service
metric B, and 30% and 10% to two distinct input metrics C and D. Hence,
for each server S, its computed LMI for port 80 is

L80(S) = 0:2 �A + 0:4 �B + 0:3 �C + 0:1 �D:

9

(c) 1999 IFIP

The R(i) con�guration weights can be changed at any time. Ideally this
should be done by an automated management tool. The \best" allocation
depends on installation speci�c parameters which are dynamically tuned to
the changing nature of the system workload. For example, a network manager
may dynamically change the R(i) weights to raise the in
uence of a host metric
(e.g. bu�er utilization) while lowering the in
uence of a forward metric (e.g.
HTTP page retrieval). We found this ability to tailor the LMI particularly
useful in situations where the workload and the content of the servers changed
frequently.

4.4 Weights Computation

Weight assignments are computed at a con�gurable periodic interval (e.g., 5
seconds), and whenever a signi�cant event occurred (e.g., when a new server
was added). The �rst step is the normalization of all the LMIs and the
current weights. For each active server instance, it takes the previous and
present LMIs, and the current weights, and computes their proportion of the
total. The second step actually computes a new vector of weights using a
replaceable Weight Computation Function (WCF). The WCF takes as input
all the above proportions, and some additional parameters. For instance, one
parameter is a smoothing factor that is used to prevent strong oscillations.
The third step is to compute an (absolute) aggregate of all the weight changes
for each port service. If the aggregate is more than a con�gurable \sensitivity"
threshold, the new assignments are committed, that is, they are assigned to
the Executor's tables. If the weight changes are less than the threshold, we
avoid the overhead of interrupting the Executor.

The main loop of the WCF computes the aggregate metrics for all the
executing servers by combining all the weighted metric instances. For each
executing VEC server it computes its current weight and load proportions
relative to the other servers. The input parameters to WCF include the above
aggregates and ratios, the medium weight for the current port, the current
weight of each server, the load metrics (and corresponding weights) of each
server, and a con�gurable smoothing parameter.

In addition to the above metric types, network administrators can de�ne
arbitrary new metrics to be considered in a similar fashion for management of
the connections. These metrics can be used to enforce any desired allocation
policies.

4.5 Discussion

Because the Manager implements a load sharing algorithm, at any particular
point in time there may be some imbalance in the utilization state of the
servers. This is unavoidable for many types of Internet service workloads
(e.g. Web pages), as these \transactions" typically complete very quickly,

10

(c) 1999 IFIP

before the relevant feedback can reach ND. In other words, the delay in the
feedback loop is often too long compared with the average transaction size to
enable e�ective load balancing.

The load sharing algorithm was shown to be su�ciently sensitive to host
overload, e.g., for the Olympic Web site. The Manager provided a very ef-
fective combination of the di�erent types of metrics. Its algorithm converged
rapidly, did not create oscillations, and resulted in an overall lower average
wait time for requests. Whenever a host h became overloaded, the input met-
rics indicated an abnormal number of connections. This, in turn, resulted in
a high number for the combined load metric for that host. When this oc-
curred the host was quickly quiesced, i.e., its weight was automatically set to
0. During this \cool-down" period, most hosts were able to resolve whatever
temporary resource allocation problem they had. By then the host metrics
indicated that the host was underutilized, lowering the combined load met-
ric. At this time the Manager automatically assigned a positive weight to h,
reintroducing it to the VEC working set.

Notice that any host that becomes overloaded can have an impact on
the externally perceived quality of service of a site, as requests to that host
may stay queued up for long periods of time. Marking the hosts as quiesced
prevents incoming request from hitting temporarily unresponsive servers. In
general, a site with a relatively stable and predictable workload may de�ne
a static LMI. However, for sites that have frequent workload variation, it
is very useful to dynamically modify the LMI. Ideally, this could be done
automatically by some automated learning mechanism.

5 Alternative Approaches

In [6] we describe in more detail the main characteristics of the following
methods, and compare them to ours. In an independent evaluation [15], ND
was shown to outperform other tools. We classify these alternative methods
into the following categories:

Client-based choice of server by the end-user or implicitly by the
software. It is not possible to ensure that this methods will produce a fair
distribution of requests across the servers, as they don't take into considera-
tion the current load or availability of the servers.

Splitting each TCP connection into two TCP connections. The main
disadvantage of this method (e.g., [18]) is its performance, in terms of both
higher latency overhead and lower throughput. Furthermore, such a scheme
may violate the intended semantics of a TCP connection, since a client may
get acknowledgments for packets that have not been actually received by the
server [17].

11

(c) 1999 IFIP

DNS-based methods. These methods (e.g., [10]) enable clients to implic-
itly choose a server. Mogul observed that DNS-based techniques cannot pro-
vide linear scaling for server performance at peak request rates [13]. Caching
of IP addresses creates skews the distribution of requests. Also, DNS solu-
tions are very slow (or unable) to detect server failures and additions of new
servers. A detailed analysis of many of the problems related to DNS-based
solutions is presented in [6].

Forwarding of IP packets, source-based or by LAN broadcasting.
For example,Convoy [14] forwards every client request to all the (NT) servers,
which then �lter the requests. Its scalability is limited by the throughput of
the slowest device/interface card in the cluster.

Packet forwardingwith TCP/IP header translation. This is the main
method used by commercial load balancers, e.g., [1, 9]. There are several
disadvantages of this approach. First, there is the latency overhead involved
in processing all packets in both directions. Second, there are the bandwidth
constraints of the translator device which becomes a main tra�c bottleneck.
Third, since each return packet must return via the translator device, it is
not practical to have multiple devices working concurrently with a common
set of host servers.

6 Conclusions

Popular Internet sites need to scale-up to serve their ever increasing TCP/IP
workload, particularly during peak periods of activity. ND supports the shar-
ing of virtual IP addresses by several servers, and properly distributes the
workload among them. Load allocation decisions are made in real time, as
each request arrives, based on the current state of the servers. Dynamic load
sharing enables e�cient allocation of computing resources and reduces the
service time of most requests. Con�gurable load metrics evaluated in real-
time are necessary to provide customized feedback for the workload of each
site.

Forwarding incoming client-to-server TCP packets unchanged is more ef-
�cient and scales-up better than alternative TCP header-translator methods.
For many TCP-based protocols (like HTTP), incoming request packets are
typically smaller than the response packets. Outgoing server-to-client traf-
�c can follow a separate network route, and need not be processed by ND.
Hence, its half-connection method provides a performance advantage over ad-
dress translation in terms of bandwidth utilization and latency. Depending
on the workload tra�c, the performance bene�t can be signi�cant. The dy-
namic con�gurability supported by ND has been shown to be a very useful
for network managers.

12

(c) 1999 IFIP

From our experiences of using ND to build large scale TCP/IP service
sites, we concluded the following: First, avoiding IP header translations (as
done by other tools) has many signi�cant performance advantages. Second,
dynamic load sharing enables e�cient allocation of resources and reduces the
service time of the requests. Third, con�gurable load metrics evaluated in
real-time are necessary to provide customized feedback for the workload of
each site. Fourth, a load balancing is an excellent instrumentation point for
real-time and o�-line monitoring of the cluster services.

References

[1] CISCO. LocalDirector. http://www.cisco.com/, October 1996.

[2] Mark Crovella and Azer Bestavros. Explaining World Wide Web Tra�c Self-
Similarity. Technical report, Boston University, October 1995. TR-95-015.

[3] D. L. Eager, E.D. Lazowska, and J. Zahorjan. Adaptive Load Sharing in Ho-
mogeneous Distributed Systems. IEEE Transactions on Software Engineering,
12(5):662{675, May 1986.

[4] Chris Gage. IBM eNetwork Dispatcher Version 2.0 Olympic-scale TCP/IP
Load-balancing and availability. White Paper (unpublished), June 1998.

[5] Germ�an Goldszmidt and Andy Stanford Clark. Load Distribution for Scalable
Web Servers: Summer Olympics 1996 - A Case Study. In Proceedings of the
8th IFIP/IEEE International Workshop on Distributed Systems: Operations &
Management, Sydney, Australia, October 21-23 1997.

[6] Germ�an Goldszmidt and Guerney Hunt. NetDispatcher: A TCP Connection
Router. Technical report, IBM Research, Hawthorne, New York, July 1997.
RC 20853.

[7] Germ�an Goldszmidt and Yechiam Yemini. Evaluating Management Decisions
via Delegation. In The Third International Symposium on Integrated Network
Management, San Francisco, CA, April 1993.

[8] Guerney D. Hunt, Germ�an Goldszmidt, Richard King, and Rajat Mukherjee.
Network Dispatcher: a connection router for scalable Internet services. Com-
puter Networks and ISDN Systems, 30(7):347{357, April 1998.

[9] HydraWEB. HTTP Load Manager. http://www.hydraWEB.com/, 1996.

[10] Eric Dean Katz, Michelle Butler, and Robert McGrath. A Scalable HTTP
Server: The NCSA Prototype. Computer Networks and ISDN Systems, 27:155{
163, 1994.

[11] O. Kremien and J. Kramer. Methodical Analysis of Adaptive Load Sharing
Algorithms. IEEE Transactions on Parallel and Distributed Processing, 3(6),
November 1992.

[12] P. Krueger and M. Livny. The Diverse Objectives of Distributed Scheduling
Policies. In Proceedings of the 7th IEEE International Conference on Distrib-
uted Computing Systems, pages 242{249, 1987.

13

(c) 1999 IFIP

[13] Je�rey C. Mogul. Network Behavior of a Busy Web Server and its Clients.
Technical report, Digital Western Research Lab, October 1995. WRL Research
Report 95/5.

[14] Valence Research. Convoy Cluster Software. White Paper (unpublished)
http://www.valence.com, 1998.

[15] J. William Semich. New Web Clustering Systems to Improve Server Response.
Web Week, 3(2), January 20 1997.

[16] William Stallings. Viewpoint: Self-similarity upsets data tra�c assumptions.
IEEE Spectrum, January 1997.

[17] Andrew S. Tanenbaum. Computer Networks. Prentice Hall, 3rd edition, 1996.

[18] Edward Walker. pWEB - A Parallel Web Server Harness, 1996.
http://phobos.nsrc.nus.sg/STAFF/edward/pweb.html.

Biographies

Germ�an Goldszmidt is a Research Sta� Member at IBM's T.J. Watson
Research Center, where he has been working since 1988. Dr. Goldszmidt's
research interests include networking, distributed systems management, and
their applications to e-commerce. In 1990 he started graduate studies at Co-
lumbia University, where he developed a network management framework,
MbD. He received his Ph.D. in Computer Science from Columbia University
in 1995. Before joining IBM, he was a research assistant at the Technion,
Israel Institute of Technology, where he developed a debugger for distributed
programs. He received his M.Sc. (1988) and B.A. (1985) from the Technion,
all in Computer Science.

Guerney D.H. Hunt is a Research Sta� Member at IBM's T.J. Watson
Research Center in Yorktown Heights, NY. Dr. Hunt's current research inter-
est include middleware and infrastructure to support ubiquitous computing.
He received his B.S. in Mathematics from Michigan Technological University
in 1973, an M.S.in Computer Science from Cornell University in 1975, and
a Ph.D. in Computer Science from Cornell University in 1995. From 1975
to 1981 he worked for the NCR corporation in Ithaca, NY. From 1981 to
1990 he worked for the IBM corporation in Endicott, NY. Since 1995 he has
been at the IBM T.J. Watson Research Center and has worked on Internet
technologies, systems technologies, operating systems, and middle-ware.

14

(c) 1999 IFIP

