
A Conceptual Framework for Network Management

Event Correlation and Filtering Systems

Masum Hasan Binay Sugla Ramesh Viswanathan

Bell Laboratories, Lucent Technologies

101 Crawfords Corner Road

Holmdel, NJ 07733

USA

fmasumh,sugla,rvg@bell-labs.com

Abstract

Event correlation is a key functionality of a network management system that is used to determine

the root cause of faults in a network, and to �lter out redundant and spurious events. A number

of event correlation systems have been proposed. The event correlation systems generally combine

causal and temporal correlation models with the topology of a network. The power and robustness

of the models used and the algorithms developed vary from system to system. However, in the

absence of a simple, uniform, and precise presentation of the event-correlation problem, it is impos-

sible to compare their relative power or even analyze them for their properties. In general, causal

and temporal-based correlation models have not been rigorously presented or thoroughly investi-

gated. In this paper we formalize the concepts of causal and temporal correlation using a single

conceptual framework. We characterize various properties of the framework. We can characterize

existing systems based on the formal properties of our framework, and we consider one system as

an illustrative example.

Keywords

Event correlation and �ltering, fault detection, root-cause analysis, correlation models, formal

methods

1 Introduction

An important component of a network management (NM) system is an event correlation and

�ltering system (ECS). An ECS aims to: (a) diagnose root causes of network faults and performance

degradations by establishing relationships between network events, (b) �lter event (alarm)
ood

by correlating events into a single conceptual event. To be useful, an ECS must be (a) correct:

the root causes inferred by an ECS should with high likelihood be entailed by the detected events,

i.e., the root causes must truly have occurred in the network, (b) optimal: the ECS should infer as

small a set of root causes that can explain all the detected events.

Because of the importance of an ECS, a number of systems [9, 6, 10, 13, 1] have been proposed

and implemented. A comparative study of the software frameworks used in these systems can be

(c) 1999 IFIP

found in [7]. These systems vary widely in the underlying representation structures used to model

the relationships between network events and consequently the algorithms used in their correlation

engines. Often the models and algorithms are only implicitly given via the software frameworks

that are used in the systems which themselves vary widely. For example, systems such as GTE

IMPACT [9] and other similar ones [12, 5, 14, 2] are rule-based systems in which the network event

relationships are speci�ed using AI rule languages and the correlation engine is then de�ned by

the execution of the rule engine on the speci�ed set of rules. The CEDAR-HY+ system [6] uses

a database-like language to specify event relationships which are then compiled to Petri net like

transition nets which serve as the correlation engine. In the HP OpenView ECS [13], a circuit

diagram and functional programming language is the speci�cation framework and the correlation

engine is an execution of this program speci�cation. The SMARTS InCharge [10] system uses a

CORBA-like speci�cation framework but the correlation engine is obtained by a suitable encoding of

the speci�cation in terms of codebooks. Finally, the Seagate NerveCenter [1] requires programming

the correlation engine directly as state transition diagrams and �nite state machines. This wide

diversity in the description and implementation of the systems makes it di�cult to compare them.

Moreover, in the absence of a simple de�nition of the event correlation problem that is independent

of the software framework used, it is impossible to analyze any existing system or one proposed in

the future for correctness or optimality.

In this paper, we aim to study the problem of event correlation from a general and rigorous point

of view. We present general frameworks for describing causal and temporal relationships between

events. For these frameworks, we de�ne the correlation relationships that would be correct to infer

from them. Finally, we can use these frameworks as a basis for understanding existing systems

more precisely. We believe that our framework is compelling for a number of reasons:

� It is general enough to encompass the models used in existing systems. Due to space limita-

tions, we consider only the SMARTS InCharge system in this paper but other systems can

be understood using our framework as well.

� It is scalable in a uniform way to incorporate di�erent notions of interest. For example, our

temporal correlation framework is obtained from a causal correlation framework by incorpo-

rating time in a very natural way.

� It admits very precise characterizations of a strong nature. For example, we give a proof

system for deriving causal correlations that is shown to be sound and complete.

� Finally, inspite of being fairly general, the correlation relationships de�nable are e�ciently

computable. For example, we give a linear time algorithm for computing correlations for our

causal framework.

The rest of the paper is organized as follows. We illustrate and make precise some intuitions

about events and event correlation in Section 2. These intuitions motivate the formal development of

causal correlation in Section 3 and temporal correlation in Section 4. In Section 5, we illustrate how

our formal framework can be used fruitfully to better understand existing systems by considering

the example of SMARTS InCharge. We end with some concluding remarks in Section 6.

2 Events, Faults, and Correlation

An ECS correlates events to diagnose faults. In this section, the concepts of event, fault, and

correlation are illustrated and made more precise. The intuitions presented here motivate the more

formal development presented in later sections.

(c) 1999 IFIP

2.1 Events and Faults

An event is an instantaneous occurrence at a time point. For the purposes of this paper, it is

su�cient to assume a discrete model of time, e.g., we can treat the time line to be the set of

natural numbers and a time instant to be a natural number. Typically, an event is associated with

an object in which it occurs; the objects are called managed objects (MOs). An object is an entity

with some state and to model the state of an object, an object can be treated as a collection of

attributes whose values may change with time with the attributes bound to the state of the object

at each time instant. More precisely, an object is an n-dimensional tuple whose components are

functions of time. One class of events are alarms that are directly generated in an object, i.e., one

of the attributes of the tuple is the event itself. Another class consists of events that are considered

to occur when there is a change in state of the object, e.g., an event can be deemed to occur when

one of the components of the tuple is below some �xed threshold value.

A fault is an event that is associated with an abnormal network state, i.e., network behavior

that deviates from expectation. This deviation can be attributed to hardware/software failures,

human errors, design
aws, or a combination of the above. Network faults can be classi�ed as being

hard or soft. A hard fault occurs when MOs fail completely (e.g., a router link failure, link cut, or a

server crash); a soft fault occurs when MOs function in a degraded performance state. In general,

a soft fault may cause a hard fault, and vice versa.

Events can be classi�ed as being primitive or composite. Events that are directly generated in

or correspond to change of state of a managed object can be considered to be primitive since they

are directly observable. On the other hand, some events are non-observable and cannot be directly

detected by hardware or software either because the MO where the event occurs is not monitored

or the event is not reported. For example, a router link failure may not be directly reportable. A

non-observable event is often a conceptual construct. The occurrence of a non-observable event is

established by inferring from the pattern of occurrence of other events with which it is correlated.

For example, a router link failure may be inferred from the connection failure at a server and client

attached to the router. Some of the events with which a non-observable event is correlated may

themselves be non-observable as well. One of the functions of an ECS is to establish non-observable

events from the observable ones that are reported.

2.2 Event Correlation

Event correlation works by establishing relationships between network events. We say that an event

e correlates a set of events e1, e2, : : :, ek, written e =) fe1; e2; : : : ; ekg, if e1; e2; : : : ; ek by entering

into a relationship with each other and with e de�ne the event pattern e. An ECS aids in the

following:

� Detection or isolation of faults. For example, consider a simple network consisting of clients

that are connected to servers through routers and repeaters. In this monitored network,

alarms can be generated by servers as server connection failure (si), or by clients as client

connection failure (ci), which can be attributed to either router link failure (r1) or repeater

failure (r2). Without this knowledge, de�ned as, r1 or r2 =) ci or si, a network operator or

an automated system cannot e�ciently and e�ectively pin-point the root cause of (possibly

large number of) connection failure alarms.

� Filtering events. In the above example, the correlation knowledge enables the ECS to report

the primary alarms (states of routers and repeaters, i.e., r1 or r2) while suppressing the

secondary and potentially numerous connection failure alarms.

(c) 1999 IFIP

1

2

3

4

5

6

7

8

9
10

11

12

13

Figure 1: An example of a causality graph

� Performance tuning. When root causes of network faults are isolated e�ciently and e�ectively,

performance degradations are short-lived and MOs related to faulty network events can be

tuned e�ectively.

The relationships between events used for event correlation and �ltering can be classi�ed as being

causal or temporal. We next consider these two forms of correlation and illustrate with examples

how these relationships can be combined together for more comprehensive event correlation.

3 Causal Correlation and Filtering

The simplest relationship between events that can be considered is a cause-e�ect or causality

relation. Causal correlation and �ltering is then the problem of determining root causes of faults

by using this causality relationship among events. Using e � e0 to denote that the event e causes

the event e0, it is natural to consider the causality relation to be a strict order, i.e., a binary relation

that is irre
exive and transitive. For any strict order �, we can de�ne its skeleton, denoted !, as

follows: e ! e0 if e � e0 and there is no e00 such that e � e00 � e0. Conversely, given the skeleton

relation, we can recover the complete causality relationship by taking its transitive closure, i.e.,

e � e0 if there are e1; : : : ; en such that e ! e1 ! � � � ! en ! e0. By irre
exivity, the skeleton of a

causality relationship can be represented as a directed acyclic graph (DAG) whose nodes are the

events and edges the relationship !. Thus, even though the skeleton and the complete causality

relationship determine the same pieces of information, the skeleton admits a simple diagrammatic

presentation. It is also conceptually easier to de�ne the correlation and �ltering properties using

the skeleton; we therefore prefer to work with this as our framework for representing the causal

structure among events.

De�nition 3.1 A causal event structure E is given by a pair hE;!i where E is a set of events

and ! � E�E is a binary relation on events such that the transitive closure of ! is irre
exive.

Figure 1 shows a causal event structure on the set of events f1; : : : ; 12g with the edges de�n-

ing the ! relation; the condition on ! required by De�nition 3.1 merely corresponds to checking

that the graph does not contain any directed cycles. Given the causal information about events

(c) 1999 IFIP

represented by a causal event structure, the purpose of an ECS is to deduce the correlation rela-

tionship, e =) fe1; : : : ; ekg, to be read as saying that the event e correlates all the reported events

e1; : : : ; ek. Then, if the events e1; : : : ; ek are reported, the ECS can be used to �lter down to e

since the presence of all the events e1; : : : ; ek is entailed by the event e. De�ning the correlation

relationship =) is not straightforward | we therefore consider some motivating examples before

presenting the precise de�nition.

Consider again the causality relationship given by Figure 1. Clearly, it would be reasonable

to consider the event 8 to correlate the events 2; 3; 6, i.e., 8 =) f2; 3; 6g since the event 8 causes

2; 3; 6. We can also conclude that 8 =) f1; 2; 3; 6g since 8 causes event 1 transitively via 2. On the

other hand, we do not want to conclude that event 8 correlates the set f2; 3; 6; 7g, since the event

7 cannot be caused by 8. Less obviously, we also do not want to de�ne that 8 correlates the set

f3; 6g, since even though 8 causes both 3 and 6, it would be incorrect to conclude the presence of

8 as the cause, since if event 8 had indeed occurred then we would have also seen event 2 which

is however not reported in the set. However, because events may be non-observable, we cannot

necessarily require the explicit presence of all the e�ects of an event in the set of reported events.

For example, 8 =) f1; 3; 6g, since even though 2 is not present in the set of reported events we

can infer its occurrence from the reporting of event 1. Finally, note that these ideas need to be

applied recursively: 11 =) f4; 5; 10g since the presence of 7 can be concluded from the presence of

4 and 5, but 11 does not correlate f5; 10g since the event 5 alone is insu�cient evidence to conclude

the presence of 7. These examples should suggest that the correlation relationship, =) , does not

admit a simple characterization such as, e.g., the transitive closure of the! relationship. To de�ne

correlation, we consider a slightly more general relation of the form S1 =) S2, where S1; S2 are

sets of events. In other words, we allow the left hand side of the relation to be a set rather than

a single event; the original relation can be obtained by taking S1 to be a singleton set. This more

general relation is given by a proof system for proving judgements of the form S1 =) S2. In our

proof system, we use the notation
J1; : : : ; Jn

J

for an inference rule that says that if all the judgements J1; : : : ; Jn can be proved then we can

prove the judgement J by application of this rule. We use J to denote an axiom that says that J

is provable (without having to prove anything else).

De�nition 3.2 Let E = hE;!i be a causal event structure. For any e 2 E, we de�ne the

immediate e�ects of e as follows:

ImmE� (e) = fe0 j e! e0g

For any sets S; S0 � E, we say that S =) S0 if it is provable using the following axioms and proof

rules.
(E�ects) feg =) ImmE� (e) if ImmE� (e) 6= ;

(Re
exivity) S =) S

(Transitivity)
S1 =) S2 S2 =) S3

S1 =) S3

(Union)
S1 =) T1 S2 =) T2

S1 [S2 =) T1 [T2

The proof system given in De�nition 3.2 consists of very few rules that are simple and natural;

yet, these su�ce to characterize the correlation relation we are interested in. Later, we will show in

(c) 1999 IFIP

a very precise sense that this proof system is complete, but for now we illustrate its power with some

examples using the causality structure given in Figure 1. We have f8g =) f2; 3; 6g immediately by

the axiom (E�ects). We can also derive f8g =) f1; 3; 6g using the proof system as follows. By (Re-

exivity), we have that f3; 6g =) f3; 6g and by (E�ects) that f2g =) f1g. Using (Union) on these

judgements, we can derive f2; 3; 6g =) f1; 3; 6g. Combining this judgement with f8g =) f2; 3; 6g

using (Transitivity), we can derive f8g =) f1; 3; 6g. If we use the rule (Union) on this latter

judgement with the already derived judgement f8g =) f2; 3; 6g, we can derive f8g =) f1; 2; 3; 6g.

Some remarks regarding the proof system in De�nition 3.2 are in order. First, we note that

there is a non trivial gap between the causal correlation relation de�ned by the proof system and

the causal event structure from which it is de�ned, with the causal event structure being a far

more direct speci�cation of the properties of events in a network that one may be aware of. Thus,

even in the simplest case of causal correlation, this is a concrete illustration of the utility of having

a separate representation for expressing the properties of events in a network (the causal event

structure) rather than directly expressing the correlation relation. Secondly, even though the proof

system is de�ned for the speci�c case of causal event structures, it is very useful as a basis framework

for de�ning other notions of interest. For example, it is implicit in a causal event structure that

each of the e�ects of an event e are independent and are therefore all caused whenever event e

happens. Referring again to Figure 1, when event 8 occurs, we have events 2,3,6 all occurring. One

may want to express richer causality patterns such as saying that event 8 causes events 2 and 3

to happen or event 6 to happen. This can be incorporated in the framework of the proof system

by simply modifying the (E�ects) axiom and keeping all other rules intact. The last considered

example can be expressed by the axioms f8g =) f2; 3g and f8g =) f6g. Finally, the axioms and

rules of the proof system provide a natural structure for de�ning a probabilistic notion of event

correlation whereby we can associate a probability with a correlation statement S1 =) S2 being

true. This is applicable in a scenario where some primitive events may be \lost" or not reported.

Due to space considerations, we do not detail this de�nition in this paper.

3.1 Causality from Propositional Relations

While a causal event structure is a fairly intuitive description of the causal relationship among

events, we can also consider an alternate representation of this causal information by de�ning the

occurrence of events in terms of propositional or boolean conditions on other events. For example,

using the operators ^ and _ for logical conjunction and disjunction respectively, we can de�ne

e = (e1 ^ e2) _ e3 to mean that the event e occurs when both events e1 and e2 occur or when e3
occurs. There are two reasons for considering this alternate representation: (a) it helps establish

in a very precise sense the soundness and completeness of the proof system given in De�nition 3.2,

(b) this point of view is more useful in giving a framework for temporal correlation.

De�nition 3.3 A causal event system C is given by a set of events E, and a set of equations of the

form e = ' where e 2 E and ' is a expression constructed using propositional boolean operations

and elements of E as propositional symbols.

Causal event structures, as given by DAGs, can be described as causal event systems de�ned

by equations as follows.

Example 3.4 Given a causal event structure E = hE;!i, we can de�ne the corresponding causal

event system C(E) to consist of the event set E and equations given by

e = e1 ^ : : : ^ en

(c) 1999 IFIP

where ImmE� (e) = fe1; : : : ; eng and is non-empty.

For example, the causal event system representation of the causal structure given in Figure 1 is the

following set of equations.

f2 = 1; 6 = 4; 8 = 2 ^ 3 ^ 6; 7 = 4 ^ 5; 12 = 13 ^ 8 ^ 9 ^ 11; 11 = 7 ^ 10g

For an event set E, we can de�ne a run � to be a map from E to the set ftrue; falseg. Intuitively,

a run denotes an execution of the network with �(e) = true denoting that event e occurred and

�(e) = false denoting that event e did not occur. Given a run � and a boolean expression '

constructed from events in E, we use [[']]� to denote the truth value of ' under the truth assignment

given by �; for example, if �(1) = true; �(2) = false, we have that [[1 ^ 2]]� = false. The equations

given in a causal system describe certain properties among events that we know to hold in all

possible executions of a network: this is formally captured by the following de�nition.

De�nition 3.5 For a causal event system C with event set E, a feasible run is a map from E to

ftrue; falseg such that for any equation e = ' in C, we have that �(e) = [[']]�.

We can now de�ne event correlation with respect a causal event system given by equations as

follows. We de�ne the more general notion where the left hand side of the correlation can be a set;

the speci�c case when this set is a singleton gives us the de�nition for when it is a single event.

De�nition 3.6 Suppose C is a causal event system with event set E. For S1; S2 � E, we say that

the correlation judgement S1 =) S2 holds if for any feasible run �, we have that:

(a) If �(e) = true for every e 2 S1, then �(e) = true for every e 2 S2

(b) If �(e) = true for every e 2 S2, then �(e) = true for every e 2 S1

Intuitively, condition (a) captures the notion that the events in S1 entail all the events in S2
that are reported, and condition (b) captures the notion that it is correct to conclude from the

reported events in S2 that the events in S1 did occur. For example, referring to the equations

generated from the causality graph given in Figure 1, it is condition (a) that invalidates the cor-

relation f8g =) f2; 3; 6; 7g, while it is condition (b) that invalidates the correlation f8g =) f3; 6g.

Remarkably, we can now show that the proof system given in De�nition 3.2 can be used to derive

exactly all the correlations that are said to hold by De�nition 3.6.

Theorem 3.7 Let E be a causal event structure and C(E) be its corresponding causal system as

de�ned in Example 3.4. For any S1; S2 that are subsets of the event set, we have that S1 =) S2 is

provable in the proof system of De�nition 3.2 if and only if S1 =) S2 holds with respect to C(E) by

De�nition 3.6.

3.2 Deducing Event Correlation

Using the characterization given by Theorem 3.7, we are now ready to describe an algorithm to

deduce event correlation properties for a given causal event structure. More precisely, given a

causal event structure and a set of reported events fe1; : : : ; eng, we will describe an algorithm for

computing a set S such that S =) fe1; : : : ; eng with S optimal in the sense of being the \most

conceptual" possible.

(c) 1999 IFIP

Given a causal event structure E = hE;!i, we �rst de�ne the rank of any event e 2 E as

follows:

Rnk(e) =

(
0 if ImmE� (e) = ;

Max (fRnk (e0) j e0 2 ImmE� (e)g) + 1 otherwise

For example, for the causality structure given in Figure 1, we have that Rnk(1) = 0, Rnk(2) = 1,

Rnk(8) = 2, and Rnk(12) = 3. Intuitively, the rank of an event corresponds to its \degree of

conceptuality". Events with rank 0 do not have any e�ects and can therefore be thought of as

primitive events that can only be directly observable, and the higher the rank of an event, the more

conceptual it is in the sense that there is a potentially larger set of events that can be inferred to

have occurred from its presence. We de�ne the rank of a set of events by taking the maximum of

the ranks of its elements, i.e., for a set S � E,

Rnk(S) = Max (fRnk (e) j e 2 Sg)

Assume now that we are given a set S � E of reported events. Using De�nition 3.5, we will now

de�ne a feasible run �S that assigns all the reported events in S to be true and assigns minimally

additionally events to be true. In other words, �S assigns events to be true only if it is \forced"

to, given the assumption that the events in S have been reported. The value of �S for an event e

is de�ned by induction on Rnk(e) and can therefore be computed in stages, where at Stage i, we

compute �S(e) for all events e with Rnk(e) = i.

Base Case: If Rnk(e) = 0, then we take �S(e) = true if e 2 S and �S(e) = false otherwise.

Induction Step: If Rnk(e) = i+ 1 then

�S(e) =

8><
>:

true if e 2 S

true if 8e0 2 ImmE� (e):�S(e
0) = true

false otherwise

Referring again to the example given in Figure 1, suppose that we are reported the set S = f1; 3; 6g.

At the base case, we compute �S(1) = �S(3) = true and �S for events 4,5,9,10,13 to be false. At

the �rst induction step, we compute �S(6) = true (since it is present in S), �S(2) = true (since

�S(1) = true), and �S(7) = false. At the next induction step, �S(8) = true (since �S(2); �S(3); �S(6)

are true), �S(11) = false. At the �nal induction step, �S(12) = false.

Given a set of reported events S, we can then compute its minimal cause to be the events that

are assigned true by �S and such that they do not have any cause that is also assigned true by �S :

MinCause(S) = fe j �S(e) = true and :9e0:(e0 ! e and �S(e
0) = true)g

Continuing with the example of S = f1; 3; 6g, we had calculated �S to be true only for the events

1,2,3,6,8. Among these, events 1,2,3,6 have causes which have been assigned true, and thus we get

that

MinCause(f1; 3; 6g) = f8g:

In general, we can show that for any causal event structure, MinCause computes a set that is a

correct correlate and that is of the maximum possible degree of conceptuality.

Theorem 3.8 Suppose that E = hE;!i is a causal event structure, and S � E is a set of reported

events. Then MinCause(S) has the following two properties.

(c) 1999 IFIP

1. Correctness: MinCause(S) =) S

2. Optimality: For any S0 such that S0 =) S, we have that Rnk(S0) � Rnk(MinCause(S))

Finally, we analyze the running time of the algorithm for computing MinCause for a set S and

causal structure E = hE;!i. We take the size of the causal structure jEj to be the maximum of

jEj; j ! j, i.e., the maximum of the number of nodes and edges in the DAG representation of E .

We need to �rst compute the rank of all the events in E which can be done in O(jEj) time using

a standard topological sort algorithm. In doing all the stages of calculating �S, we process each

event e 2 E at most once and each edge of ! at most once. Thus calculating �S can be done in

O(jEj) time. Finally, to calculate MinCause(S) from �S , we need to look at the value of �S(e) for

each event once and each edge below it once which therefore also takes O(jEj) time. We thus have

the following theorem that the algorithm runs in time linear in the size of the event structure.

Theorem 3.9 There is an algorithm that computes for any causal event structure E and set S of

reported events, the set MinCause(S) and whose running time is O(jEj).

4 Temporal correlation and �ltering

Events happen at particular time instants. We can establish richer correlations between events

based on the speci�c instants of their occurrence by de�ning temporal relationships between them.

Some examples of temporal relationships are: e1 followed by e2, �rst e1 event since the recent e2
event, e1 follows e2 within 2 minutes, e1 not within interval I (e1 was not observed in the interval

I), etc.

Our development of the temporal correlation framework mirrors the development of Section 3.1

extended now to allow temporal operators on events. For the purposes of discussion here, it is not

necessary to specify the exact temporal operators that we will be considering. We assume that they

are given by some chosen temporal event speci�cation language (TESL) which supports a number

of temporal operators (such as followed by, within, etc.).

De�nition 4.1 A temporal event system T is given by a set of events E, and a set of equations

of the form e = ' where e 2 E and ' is an expression constructed using temporal operators, given

in a TESL, on elements of E.

Conceptually, the causal event framework of Section 3.1 was obtained by interpreting events

to be propositions that have values true or false indicating their occurrence or non-occurrence. To

represent temporal relationship, we re�ne the interpretation of events to include information about

the time instants at which they occur. Formally, we interpret time to be some set TT with a linear

ordering. We can then interpret an event to be a function from TT to ftrue; falseg with its instants

of occurrence de�ned by the arguments (time instants) at which it is true. For an event set E,

we therefore now de�ne a run � to be a map from E to the function space TT ! ftrue; falseg. As

mentioned before, for an event e 2 E, we think of event e as occurring at time t in the run � if

�(e)(t) = true. For a run � and a temporal expression ' constructed from events in E, we can de�ne

[[']]� to be another event, i.e., a function from TT to ftrue; falseg. This can be done compositionally

in terms of the operations appearing in '. For example, suppose that ' is the temporal expression

'1preceded by'2 where '1 and '2 are some other temporal expressions. Intuitively, the event

' occurs whenever the event '1 occurs and has been preceded by an occurrence of the event '2.

Thus, we take [[']]� to be the function f that is de�ned by f(t) = true if [['1]]�(t) = true and there

(c) 1999 IFIP

is some t0 < t such that [['2]]�(t
0) = true and f(t) = false otherwise. Given the de�nition of a

composite event in a temporal event system T and some run �, we can thus evaluate the value of

the composite event as a boolean function of time. A feasible run can then be de�ned by extending

De�nition 3.5 to take time into account.

De�nition 4.2 For a temporal event system T with event set E, a feasible run is a map from E

to TT ! ftrue; falseg such that for any equation e = ' in C, we have that at any time instant t 2 TT,

�(e)(t) = [[']]�(t).

We are now ready to de�ne the temporal correlation relation. Intuitively, the entity on the right

hand side of the relation, =) , corresponds to the monitored observations that are input to the

ECS. In the case of causal correlation, this was the set of events that have been reported to have

occurred. To be able to make use of the temporal relationships between events, the ECS has to be

reported more than just the names of the events that have occurred | it should also be informed

about the speci�c time instants of their occurrence. In the temporal case, we therefore take the

correlation relation to be between histories of events timestamped with their instants of occurrence.

Formally, a history H is a subset of E � TT, i.e., a set of pairs of the form (e; t) indicating that

event e occurred at time t.

De�nition 4.3 Suppose T is a causal event system with event set E. For H1;H2 � E � TT, we

say that the correlation judgement H1 =) H2 holds if for any feasible run �, we have that:

(a) If �(e)(t) = true for every (e; t) 2 H1, then �(e)(t) = true for every (e; t) 2 H2

(b) If �(e)(t) = true for every (e; t) 2 H2, then �(e)(t) = true for every (e; t) 2 H1

While we have not been speci�c about the choice of the operators in the TESL, it is important

from the point of view of the correlation to be computable in real-time, that there are no temporal

operators whose evaluation requires \looking to the future". For example, if we had the eventually

operation 3 with the event 3' true at time t if ' is true at some time t0 > t, then it would not

be possible to evaluate the occurrence or non-occurrence of a composite event de�ned using this

operation since we only have access to the history of occurrence of events so far. On the other hand

a past version of this operator r with the event r' true at time t if ' is true at some time t0 < t

would be reasonable to allow in the system.

5 SMARTS InCharge: An Example ECS

InCharge is an ECS developed by SMARTS supporting an object-oriented network modeling

language called MODEL and a correlation engine based on an approach called the codebook approach

[10]. In Section 5.1, we give an overview description of the system. In Section 5.2, we show how the

algorithm used in InCharge can be obtained as a speci�c instance of our general causal framework

of Section 3 but that it is less powerful than our framework.

5.1 Overview

Event relationships and network con�guration information are encoded in a language called MODEL

(Managed Object De�nition Language) [11]. The MODEL language is an extension of CORBA

IDL [3]. It adds new syntactic constructs to specify semantics that cannot be speci�ed in CORBA

IDL, such as relationship, events, problems, and causal propagation. Given a MODEL speci�cation,

(c) 1999 IFIP

1

2

4

5

6

7

8
10

11

12

13

3

9

8

10 1397632

11 12

A)

B)

Figure 2: Example event correlation causality graph for InCharge model

InCharge then extracts a causality graph from it, converts it into a codebook, and uses the codebook

to perform correlation.

In the causal model supported by this system two types of events are distinguished: problem

(p) and symptom (s) events. The problem events manifest themselves as symptom events. In the

terminology of Section 2, symptom events correspond to observable events and problem events to

non-observable events. A causality graph is converted into a correlation graph which is a bipartite

graph and is obtained as follows. If p! e1 : : :! en in the causality graph, then in the correlation

graph there is an edge from p to the �rst of e1; : : : ; en that is a symptom, i.e., there is an edge p! ei
where e1; : : : ; ei�1 are not symptom events. A version of Figure 1 is shown in Figure 2(a), where

modi�cations are necessary since causality between problems is not supported in the InCharge

model. The correlation graph corresponding to the causality graph shown in Figure 2(a) is shown

in Figure 2(b). The set of symptoms connected to a problem p in the correlation graph is called its

code vector. The code vectors (together called the correlation matrix) for the problems 8, 11, and

12 are as follows:
8 : [1; 1; 1; 0; 0; 0; 0]

11 : [1; 0; 0; 1; 0; 1; 0]

12 : [0; 1; 0; 1; 1; 0; 1]

assuming the order of symptoms is from left to right as shown in the �gure. The occurred alarms

(symptoms) emitted from a network constitute an alarm vector.

The alarm correlation problem is then to �nd problems whose codes optimally match an alarm

(c) 1999 IFIP

vector. Borrowing techniques and concepts from information coding theory, the authors of InCharge

suggest a method to reduce the correlation matrix size so that each code vector still uniquely

identi�es a problem even in the presence of lost or spurious events. The reduced matrix is called a

codebook. The reduction problem can be stated as follows: given a set of code vectors each of length

L, minimum Hamming distance d between code vectors, compress the code vectors to a length l so

that d is maintained. For example, if we want to maintain minimum Hamming distance of 2 in the

code vector above, we can prune the last three symptoms (9, 10, 13), giving the code book:

8 : [1; 1; 1; 0]

11 : [1; 0; 0; 1]

12 : [0; 1; 0; 1]

The minimum Hamming distance for this codebook is min(d(8,11), d(8, 12), d(11, 12)) = min(3,

3, 2) = 2. The decoder will still match a problem against an alarm vector, even in the presence

of lost or spurious events. But exactly one symptom can be lost or spurious. For example, if the

alarm vector is [0, 1, 1, 0] (�rst symptom lost), or [1, 1, ,1, 1] (last one spurious) problem 8 will be

detected.

5.2 Discussion

InCharge does not support temporal correlation, as discussed in Section 4. Even for causal corre-

lation, the correlation model supported in InCharge is clearly less general than the one presented

in Section 3. In particular, problem to problem causality is not supported, i.e., in this model a

problem cannot be a symptom of another problem. Hence, it would not be able to handle the

situation where a problem (fault) does not exhibit any symptom but is known to be caused by

another problem, and where both of the problems may require handling.

Ignoring the issue of lack of support for problem to problem causality, we next compare the

correlation properties that can be inferred by InCharge with our general framework for the speci�c

causality graphs that are supported in InCharge. First, we note that the transformation of the

causality graph performed by InCharge described in Section 5.1 to obtain a bipartite graph can

be characterized in terms of our proof system of De�nition 3.2 as follows. It merely corresponds

to restricting the use of (E�ects) axiom feg =) ImmE� (e) to the case that e is a problem event.

Thus, any correlation inferred by InCharge is provable by the proof system of De�nition 3.2. On

the other hand, the transformation to a bipartite graph results in loss of information, i.e., there are

correlations that are inferrable in the original graph that cannot be obtained in InCharge. Referring

to our example of Figure 2, assume that the events f1; 3; 4g are reported. Our correlation framework

used on the graph of Figure 2(a), would then be able to conclude 8 as the cause event. On the

other hand, InCharge using the bipartite graph of Figure 2(b) would not infer this correlation since

the events 2; 6 have not been reported in this set.

Finally, the codebook approach may not be able to quickly adapt to changes in network con-

�guration information. This is because the addition of a new event will require an appropriate

entry in the correlation matrix, and because of the cause-e�ect relations of the new event with the

already existing events, the new entry may violate the minimum Hamming distance property in the

current codebook. Hence the costly procedure of computing a new codebook may be required. On

the other hand, our algorithm of Section 3.2 can easily incorporate such a network change because

the addition of a new event only requires calculating its rank which is a purely local computation.

(c) 1999 IFIP

6 Conclusion

We have presented simple models for describing causal and temporal relationships between net-

work events and given precise formulations of which event correlations are valid for these models.

This study distinguishes itself from previous work on event correlation systems in addressing the

identi�cation of precise criteria for the correctness of inferred event correlations. Although the

correctness de�nitions have been given in the context of the speci�c models considered in this pa-

per, the generality and simplicity of the models allows di�erent models used in other systems to

be mapped to them (as was illustrated in Section 5). Thus, our work can be seen as presenting a

general speci�cation of the event correlation problem that allows a formal analysis of the correct-

ness of any existing or future systems. On the other hand, it is important to point out that the

very simplicity of the models makes them unrealistic as mechanisms for directly expressing network

event relationships in any practical system | the intended audience of this work is not the user

but the developer of an ECS, for whom we believe that it provides a useful conceptual intermediate

medium for understanding the correctness and relative expressive power of their system.

There are many directions for further work. In the case of causal correlation, we presented an

algorithm for inferring a causal correlation and identi�ed a class of causal relations (those satisfying

De�nition 3.1) for which the algorithm was provably correct and optimal. On the other hand, in

the temporal case, while we de�ned the correctness condition for correlation we did not discuss

an algorithm for temporal correlation. Such a study would have to be done in the context of

speci�c temporal operators, and an analysis of the di�erent algorithmic complexity for di�erent

temporal operators would shed light on what kinds of temporal relations are feasible to include

in any practical system. This study has also not addressed the inclusion of network-topology

information. In this regard, a good framework would describe how to smoothly and automatically

integrate the causality and temporal information at individual nodes in a network to obtain the

causality and temporal relationships for the whole network, using its topology. More generally,

the work presented here uses as its starting point the causality graph or temporal relationship

between events | further work should address the automatic generation of these structures from

information that is more succinct and directly expressible for a network. Most of these issues are

addressed in the Java based distributed ECS called ECLite [8, 4] developed at Lucent Bell Labs.

We plan to address the formal issues omitted in this paper with a characterization of ECLite in a

future report.

References

[1] http://www.seagatesoftware.com/nervcpro/. Seagate NervCenter Pro Web site, 1997.

[2] http://www.cabletron.com/products/items/sa-csi1016/. Cabletron Web site, 1997.

[3] CORBA, the common object request broker: Architecture and speci�cation. Object Manage-

ment Group, July 1995.

[4] http://www.bell-labs.com/~masumh/projects.html. ECLite Fault Correlation System Web

Site, 1998.

[5] http://www.gensym.com. Gensym Web site, 1997.

[6] Masum Hasan. An active temporal model for network management databases. In A.S. Sethi,

Y. Raynaud, and F. Faure-Vincent, editors, Proceedings of the IEEE/IFIP Fourth Interna-

(c) 1999 IFIP

tional Symposium on Integrated Network Management, pages 524{535. Chapman and Hall,

May 1995.

[7] Masum Hasan, Lawrence Ho, Frank Feather, and Binay Sugla. The software frameworks for

network management event correlation and �ltering systems. Technical report, Lucent Bell

Labs Research, Network and Service Management Research Department, August 1998.

[8] Masum Hasan and Binay Sugla. The ECLite fault correlation system. Technical Report

BL0113540-980904-04TM, Lucent Bell Labs Research, Network and Service Management Re-

search Department, August 1998.

[9] G. Jakobson and M. Weissman. Real-time telecommunication network management: extending

event correlation with temporal constraints. In A.S. Sethi, Y. Raynaud, and F. Faure-Vincent,

editors, Proceedings of the IEEE/IFIP Fourth International Symposium on Integrated Network

Management, pages 290{301. Chapman and Hall, May 1995.

[10] S. Klinger, S. Yemini, Y. Yemini, D. Oshe, and S. Stolfo. A coding approach to event correla-

tion. In A.S. Sethi, Y. Raynaud, and F. Faure-Vincent, editors, Proceedings of the Fourth

IEEE/IFIP International Symposium on Integrated Network Management, pages 266{277.

Chapman and Hall, May 1995.

[11] A. Mayer, S. Kliger, D. Ohsie, and S. Yemini. Event modeling with the MODEL language. In

Aurel A. Lazar, Roberto Saracco, and Rolf Stadler, editors, Proceedings of the Fifth IEEE/IFIP

International Symposium on Integrated Network Management, pages 625{637. Chapman and

Hall, May 1997.

[12] Y. A. Nygate. Event correlation using rule and object based techniques. In A.S. Sethi,

Y. Raynaud, and F. Faure-Vincent, editors, Proceedings of the IEEE/IFIP Fourth Interna-

tional Symposium on Integrated Network Management, pages 278{289. Chapman and Hall,

May 1995.

[13] Kenneth R. Sheers. HP OpenView Event Correlation Services. Hewlett-Packard Journal,

October 1996.

[14] http://www.tivoli.com/o products/html/datasheet listing.html. Tivoli Web site, 1997.

(c) 1999 IFIP

