
A Methodology for Formalizing
GDMO Behavior Descriptions

P. Hasselmeyer

Information Technology Transfer O�ce

Darmstadt University of Technology

Wilhelminenstr. 7

D-64283 Darmstadt, Germany

peer@ito.tu-darmstadt.de

Abstract

Network management is a key technology for operating large heterogeneous

data transmission networks. To allow deployment of equipment from di�erent

vendors, the OSI TMN (Telecommunications Management Network) frame-

work de�nes the language GDMO (Guidelines for the De�nition of Managed

Objects). Unfortunately, the behavior of managed objects is de�ned in an in-

formal manner using natural language. This results in behavior speci�cations

which are often vague and ambiguous, increasing the possibility of di�erent

implementations not being interoperable. To achieve consistent, clear, con-

cise, and unambiguous speci�cations, a formal methodology has to be utilized.

This paper introduces a framework for the inclusion of formal behavior de-

scriptions into GDMO speci�cations. An object-oriented logic programming

language is presented, which can be used in conjunction with the framework to

specify the behavior of managed objects. The language is aimed at automati-

cally producing prototypes of the described system. It enforces strict type

checking at compile time to catch errors as early as possible. Furthermore, it

works on a rather abstract level to hide speci�c implementation details.

Keywords

Behavior speci�cation, OSI TMN, GDMO, information models

1 Introduction

Telecommunications tra�c is growing constantly. The convergence of tele-

phony and data transmission as well as the increasing use of the World-Wide

Web and other Internet services call for a drastic expansion of the telecom-

munications infrastructure. In this competitive market, management of the

network becomes a crucial issue in providing and maintaining a high level of

service quality.

Most networks have been growing for a number of years and contain net-

work elements from di�erent vendors. To provide a uni�ed network man-

agement of these heterogeneous systems, ISO (International Organization for

(c) 1999 IFIP



Formal Methods

0

D

Q

D

J

H

G

�

V

\

V

W

H

P

0

D

Q

D

J

L

Q

J

�

V

\

V

W

H

P

Manager
process

Agent
process

MOMO MO

Figure 1: Management model

Standardization) and CCITT/ITU (ITU: International Telecommunications

Union, formerly known as CCITT: International Telegraph and Telephone

Consultative Committee) introduced the TMN (Telecommunications Man-

agement Network) framework. The framework considers the management of

telecommunications networks as a distributed application. It distinguishes

two di�erent roles that a system can play { the manager and the agent role

(see Figure 1). Usually, each network element contains an agent process which

handles its managed objects under the control of one or more managers. Man-

aged objects are used to abstract from the implementation of a device. They

can represent physical (e.g. a switch matrix) or logical (e.g. a connection)

resources. Even though the hardware platforms of two switches might be

completely di�erent, their appearance at the management interface is more

or less the same and does not reveal the switch's internal structure.

Managed objects are modeled by attributes, actions, and noti�cations. At-

tributes represent a certain part of the internal state of an element. They can

usually be read and sometimes be modi�ed. Actions invoke certain functions

which a device can perform. Noti�cations are spontaneous messages emitted

if certain events occur. Managed objects which are alike are grouped together

to form managed object classes. Classes can inherit their appearance from

other classes and add new features.

To enable interaction of managers and agents, the appearance of managed

objects can be formally described using the language GDMO (Guidelines for

the De�nition of Managed Objects) [11]. The language de�nes a number of

so-called templates. Each template describes a certain aspect of a managed

object class (e.g. an attribute) or the class itself. As GDMO does not o�er

possibilities to de�ne data types, ASN.1 [9] is employed. It is important to

note that not only attributes have certain data types { actions and noti�ca-

tions also transfer data which is typed.

Besides the powerful set of notational tools to describe the appearance

of managed objects, GDMO o�ers the BEHAVIOUR-template. As the name

suggests, it is aimed at describing the behavior of some part of the GDMO

speci�cation. In practice, the template often contains additional kinds of

information besides the behavior, e.g. about the intended use of an object.

Unfortunately, the descriptions contained in these templates are usually plain,

informal (English) text. Using informal descriptions has two major disadvan-

(c) 1999 IFIP



A Methodology for Formalizing GDMO Behavior Descriptions

tages compared to using some formal notation. First, they are not automati-

cally translatable. Second, by the very nature of human languages, informal

descriptions are often vague and ambiguous. Furthermore, experience showed

that behavior descriptions are often incomplete. These de�ciencies make it

impossible to automatically generate prototypes from informal behavior de-

scriptions. Even manual implementations often di�er in details because of the

di�erent understandings of the descriptions.

To improve the quality of the descriptions and the resulting implementa-

tions, a formal method for specifying behavior is desirable. Such a method

would make the descriptions unambiguous and thus remove the possibility

of misunderstandings. Furthermore, a higher degree of completeness is an-

ticipated as missing features become more readily obvious in a formal, struc-

tured speci�cation. Formal behavior descriptions thus make it easier for an

engineer to understand the complete information model and to derive a valid,

consistent, and compatible implementation from it. Depending on the formal

method chosen, it may even enable the automatic generation of simulators or

prototypes.

This paper focuses on a framework and a language for formalizing be-

havior descriptions and combining them with existing GDMO de�nitions.

Special attention is paid to the possibility of automatically generating simu-

lators for given information models. The language has been developed within

the MOON (Management Of Optical Networks) project. This project is part

of the ACTS (Advanced Communications Technologies and Services) Pro-

gramme funded by the European Union. A number of leading telecommuni-

cations equipment manufacturers and network operators collaborate with re-

search institutions on the development of a platform-independent manage-

ment framework for the photonic layer of the future pan-European trans-

port network. As described in [6], the special characteristics of all-optical

WDM (Wavelength Division Multiplexing) networks are to be identi�ed and

described in a management information model using GDMO. Appropriate

managers and agents are to be developed and tested. For testing purposes, a

simulator software package exists, which implements information model pro-

cessing facilities as well as a protocol stack for communication. It can process

GDMO de�nitions and retrieve all information about the external appearance

of managed objects from it. Behavior of the objects has to be coded manually

using a proprietary logic programming language called RDL (Rules De�nition

Language) [8]. This language works on a rather low level of abstraction and

does not contain object-oriented features. Analysis showed that this language

is not well suited for formalizing behavior descriptions. It was therefore de-

cided to develop a di�erent language which avoids the shortcomings of RDL

and is suitable for generally formalizing behavior descriptions in information

models. The result of the research is the language which is described in this

paper. It is called BSL (Behavior Speci�cation Language). This language

supports the object-oriented features of GDMO and operates at a high level

(c) 1999 IFIP



Formal Methods

Managed
object

Hardware

Management interface Hardware interface

AgentAgent

Figure 2: Managed objects as mediators

of abstraction. It hides the internal implementation of the language from the

programmer and leads to short and precise speci�cations. Unlike the language

described in [2], BSL is a logic programming language which will be shown to

be more appropriate for simulators. A compiler for translating BSL to RDL

code has been developed and successfully used within the MOON project.

2 Types of Behavior to be Formalized

Depending on the examined part of a distributed system, di�erent aspects

can be identi�ed, which need to be formalized. Looking at the manager, it

might be important to identify its reactions to a single or a series of incoming

noti�cations. As these reactions might be di�erent for various network oper-

ating companies and are a key factor in the network management procedures,

behavior of managers should not be prescribed.

But even when looking at the agent, a number of di�erent aspects can be

investigated. An important point is the distinction between behavior which

can be observed at the management interface and behavior related to the hard-

ware implementation of a network element. The latter depends on the actual

realization of a device and should not be formalized as it would constrain the

range of possible implementations. Behavior at the management interface ab-

stracts from the actual implementation of a device and should be consistent

across all realizations. It should therefore be described in a formal manner.

While the reactions of managed objects to changes at the management inter-

face can be completely formally described, in
uences on the hardware must

be individually identi�ed and adapted for every real device.

Although the agent process is responsible for processing management re-

quests and operating the hardware, managed objects can be viewed as me-

diators between the network management interface and the hardware (see

Figure 2). As these, the general structure of managed objects' behavior is

simple: they react to stimuli coming from either side. The reactions might

include output to one or even both sides. Typical input from the hardware

side includes changed values and timer expirations. Output to the hardware

usually consists of setting a number of registers. As the hardware interface

should not be formalized, a method for abstracting from the hardware must

be found. For input from the hardware it is a natural choice to introduce

the notion of events. As used in this paper, an event is a certain state of

(c) 1999 IFIP



A Methodology for Formalizing GDMO Behavior Descriptions

1

H

W

Z

R

U

N

�

H

O

H

P

H

Q

W

CMIP Agent

MIB

Hardware
6

L

P

X

O

D

W

R

U

CMIP Agent

Manual influence

MIB

Figure 3: Network element versus simulator

the device, which may be the cause of a reaction. While this reaction is part

of an object's behavior and must be formalized, the mechanism for detecting

its source is left to the hardware designer. Hardware events which do not

change the appearance of the device at the management interface are not

formalized, even if they require changes to the hardware. This is considered

to be device-internal and might be solved di�erently in various devices. As

incoming management requests must be received by some type of hardware,

they can be interpreted as events as well, thus unifying all possible sources of

input under one single notion. Management operations can be split up into

the events create, delete, action, set, and get.

Another important distinction is to be made between real implementations

and simulators. Simulators have two main �elds of application. First, a

management information model can be tested even though the real device

does not yet exist. Mistakes in the information model can be found at an

early stage during the development process. Second, a manager can be tested

although the managed device is not available. But even if the managed device

is available, a simulator can help check the reactions of a manager in rare

circumstances which might be di�cult to induce on a real device.

As shown in Figure 3, while actual implementations posses both the net-

work management and the hardware interface, simulators lack the hardware

and only o�er the management interface. E�ects of management operations

on managed objects can be perfectly simulated but e�ects on the hardware

are lost and events from the hardware can never occur. To be able to simulate

at least part of the missing hardware, a possibility to induce events manually

or automatically must be given.

The remaining part of this paper aims at developing a framework and a

language for formalizing behavior for a simulator. It thus only uses the notion

of events but does not describe how to de�ne them. As the simulator pos-

sesses the management interface, incoming network management operations

generate the appropriate events create, delete, action, set, and get. As these

events are available in every TMN agent, they are an inherent part of the

framework and thus prede�ned.

(c) 1999 IFIP



Formal Methods

3 Including Formal Behavior in GDMO Descriptions

Before considering a concrete language for specifying managed object's behav-

ior, a methodology for combining formal descriptions with GDMO de�nitions

is presented. The methodology is independent of the language used and can

be combined with other approaches for formalizing behavior. It is based on

the notion of events and supports the object-oriented features of GDMO.

When combining behavior descriptions and GDMO de�nitions, two ex-

tremes can be identi�ed. The �rst is to keep both parts separate only linking

them by specifying which behavior applies to which objects. The other ex-

treme is to have the behavior included in the GDMO de�nitions. This can

be accomplished in at least two ways. One is introduced in GDMO+ [12]

which de�nes a number of new templates that contain certain aspects of the

behavior. The other solution is the inclusion of formal behavior descriptions

in regular BEHAVIOUR-templates. These usually contain informal text but

can be enhanced by including formal descriptions. In this case, the informal

and the formal parts must be distinguishable. An easy solution is the separ-

ation by keywords. The beginning and the end of the formal part might be

marked by the words \FormalBehaviourBegin" and \FormalBehaviourEnd".

Everything in between is the formal description of some aspect of the behav-

ior. The collection of all aspects within an information model constitutes the

complete behavior of a device. The latter method has the advantage of not

introducing any new templates. Existing GDMO tools can still be used as

they do not know about the formal extension.

The applicability of behavior can be deduced from the placement of its

description. BEHAVIOUR-templates are referenced by other parts of the

GDMO description directly or indirectly (e.g. via packages or by inheritance).

The references imply that the described behavior applies to the referring com-

ponent. GDMO allows di�erent types of templates to reference the same

behavior, e.g. an attribute might show the same behavior as an object. In

practice, this feature is not used. It is not explicitly considered in this paper

but does not a�ect the usability of the proposed framework.

Depending on the referring component, the event which triggers a certain

behavior might be predetermined. If an ACTION-template references a be-

havior, the triggering event is already known: it is the reception of that action.

On the other hand, if a package references a behavior, no further information

is known about the triggering event. Only the classes to which this behavior

applies can be deduced. To �nd out to which event the behavior really ap-

plies, some further information must be given inside the formal description.

A possible solution is presented in Section 5.1.

The experience with existing information models showed that behavior is

usually described in a distributed manner. This is useful if the descriptions

are placed according to their semantic meaning in the way described above.

Unfortunately, behavior aspects which belong together are often separated

and placed in multiple BEHAVIOUR-templates. This increases the di�culty

(c) 1999 IFIP



A Methodology for Formalizing GDMO Behavior Descriptions

of developing a valid implementation of an information model as all behavior

aspects of a component have to be collected and assembled �rst. The frame-

work described in this paper allows such broad distributions but it requires

the speci�cation of the context of each part. This enables the automatic

collection of all behavior aspects related to one GDMO component.

4 Important Aspects for Formalizing Behavior

At present, implementation of the management interface usually consists of

two steps. First, the object model, described in GDMO, is automatically

translated into a programming language. The next step requires the manual

insertion of code which implements the behavior described in the informal part

of the GDMO speci�cation. For both steps, the same programming language

is used. Usually, a general purpose language, e.g. C++, is chosen for this

activity. Employing a general purpose language is useful because programmers

do not need to learn another programming language. If the language is used

for a special application area, developers have to get used to the speci�c

programming environment which prescribes a certain programming style and

o�ers specialized functions. For a limited application area, such as network

management, it might be a good choice to employ a special language [3]. Such

a language incorporates speci�c features which are commonly used within its

application area. In a general purpose language these features might require

a large amount of coding which consumes valuable time and increases the

possibility of errors. With a specialized language it is thus possible to quickly

generate fully functional prototypes and even complete products.

The design of a programming language for a special application area poses

a number of questions. Among other options, a programming paradigm has

to be chosen, the type system, and internal operators and functions have

to be found. In the next sections two important aspects are discussed and

the solutions chosen for the language described in this paper are presented.

It is important to note that the language is designed especially for the use

within information models. A basic principle of the OSI network management

architecture is the abstraction from implementation details. The proposed

language tries to adhere to the same goal.

4.1 Programming Paradigm

In the context of network management, a simulation tool can be used for two

purposes. The �rst is to emulate a network resource. The other is to serve as

a reference implementation. For both purposes it is useful if the simulator can

generate all possible valid responses in reaction to a management operation.

For each invocation of the same management operation a di�erent answer

might be sent back. When emulating a network resource, this is useful to

verify that a manager can cope with di�erent possible results. If employed as

(c) 1999 IFIP



Formal Methods

a reference implementation, the device must be able to allow, recognize, and

generate all possible valid results.

The aspect that there is usually a whole set of correct answers plays an

important role in the choice of a suitable language for formal behavior de-

scriptions. The most common programming languages like C and Pascal are

based on the imperative programming paradigm. In this domain, a program

precisely describes one way to get from the input to the desired output. The

implemented way realizes the chosen algorithm. In the domain of logic pro-

gramming languages a program does not describe a certain way to reach

results. A program rather contains a set of facts and a set of rules which state

relations among the facts, the input, and the output. Given a certain request,

the computer tries to deduce the answer by itself from the given rules and

facts [1].

A reasonable application of a reference implementation could be the use

as a \judge". Given the device's internal state, a management operation,

and the result of another device, the reference implementation would try to

deduce that result from the input. If that is possible, the device's answer is

correct. If the deduction fails, the answer is incorrect and the device made

a mistake. This application area can be covered by a logic programming

language very easily. Instead of letting the computer �nd a solution to a

management operation, the answer is supplied as well. The language's search

algorithm is now automatically guided by the answer either showing it a valid

path or leading to a contradiction.

The previous remarks should have made clear why a logic programming

language was chosen for formalizing behavior descriptions. It is more import-

ant to describe the valid set of object states, management operations, and

responses than to specify an algorithm to calculate only one valid result from

some input state and operation. The seamless inclusion of a logic program-

ming language into the TMN framework is easy when thinking of the MIB

(management information base) as the set of facts. The incoming manage-

ment operation is the query and the rules state relationships among the facts,

the query, and the result.

4.2 Type System

The type system is an important feature of a programming language. One

can distinguish between compilers with static and compilers with dynamic

type checking [7]. A compiler with static type checking knows the types of

all components (variables, etc.) at compile time. It is therefore not necessary

to check the type consistency at run-time, which compilers using dynamic

type checking have to do. For some languages both kinds of type checking

are possible { at least to a large extent. Other languages only allow dy-

namic type checking. Usually, compilers working with static type checking

o�er better performance at run-time. A more important advantage of static

type checking is the possibility of �nding type errors at an early stage during

(c) 1999 IFIP



A Methodology for Formalizing GDMO Behavior Descriptions

the development process. Experience with a language only allowing dynamic

type checking showed that most programming errors were type errors. When

employing static type checking, these errors can be caught at compile-time re-

moving the turn-around time between compiling and executing. The language

discussed in this paper thus o�ers the possibility of static type checking.

A type system within a language used in the area of OSI network man-

agement must include at least two kinds of types. ASN.1 types are intrinsi-

cally needed, since attributes have these types. The second kind are GDMO

types. In line with the object-oriented programming paradigm, managed ob-

ject classes are considered to be types. To be able to reference objects in the

MIB, the language must o�er the possibility to store these references in vari-

ables. To enable static type checking and allow access to attributes of objects,

these references must contain information about the type of the referenced ob-

ject. It is therefore necessary to de�ne variables which have managed object

classes as their types.

As GDMO incorporates inheritance, variables referencing managed ob-

jects should support polymorphism [5]. Variables of this kind are allowed

to reference managed objects of their own class as well as objects of classes

which are derived from that class. Additional attributes of the derived class

are not accessible directly as the compiler does not know the actual class of

the object referenced at run-time. If an additional attribute is to be accessed,

the compiler has to be informed about the actual type of the object. This

operator is especially important as attributes which reference objects within

the MIB usually have the ASN.1 type \ObjectInstance". The type of the

referenced object is unknown at compile time. Usually only a limited number

of classes is supposed to be referenced, though. If the class of the referenced

object is �xed, this knowledge can be made available to the compiler which in

turn grants access to the class' attributes. At run-time it has to be ensured

that the referenced object has the anticipated type. This is the only situation

in which dynamic type checking has to be employed.

5 Behavior Description Language

After describing a number of important aspects which have to be considered

when designing a language for behavior descriptions, this section focuses on

the syntax and semantics of the language BSL which is discussed in this paper.

5.1 Program Structure

A BSL program consists of two parts. The �rst declares functions and the

context to which the code applies. The second is the code itself.

The important idea in this section is the notion of contexts. As described

in Section 3, the placement of a behavior aspect can imply its applicability.

Often, this is not the case, though, and some additional information is needed

(c) 1999 IFIP



Formal Methods

to fully determine the behavior's area of application. The encoding of this

information is done by so-called contexts. Each context consists of three ele-

ments: the managed object class, the event, and some additional information.

The meaning of the additional information depends on the event. For the

prede�ned events, this is listed below:

Event Additional Information

create/delete {

get/set attribute's name

action action's name

noti�cation noti�cation's name

It is allowed for one or even more elements of a context to be unknown. The

unknown elements are simply excluded from the decision about the applica-

bility of the related behavior. This means that if the additional information

for an \action"-event is missing, the related behavior is applied to all actions

of the respective class (if the class is not known either, the behavior is applied

to all actions of all classes). Such underdetermined contexts appear naturally

when referencing behavior by attributes or packages. The scope of the be-

havior can be narrowed by supplying the missing context elements, e.g. the

behavior of an attribute can be constrained to just the \set"-event by the BSL

code fragment \context event=set".

It is worth noting that adjusting the class in a context contradicts the

object-oriented paradigm and is therefore not encouraged. The possibility

has been introduced for practical reasons. It eases the restriction of a type

of behavior to just a single class, if it is referenced by multiple classes. An-

other advantage is the possibility of specifying behavior separate from the

GDMO de�nition. This is important when using information models from

external sources, e.g. from the ITU-standard M.3100 [4]. If formal behavior

descriptions are inserted in such a description, updates of the model require

a complete reinsertion of the code. If the model and the behavior are kept

apart, each one of them can change without a�ecting the other.

BSL allows adjusting the context by the language construct \context

<tag>=<value>". <tag> can be one of \class", \event", and \info".

Context modi�cations can be connected by semicolons.

Example: context class=software; event=get; info=version;

The actual program code of a behavior description is preceded by the

word \begin" and followed by the word \end". Code which is encapsulated

by these two words is called a block. Blocks can be nested. Each block starts

with the declaration of its variables.

5.2 Variables

Variables in logic programming languages are not representing memory loca-

tions as in imperative languages. They rather denote a local name for a data

(c) 1999 IFIP



A Methodology for Formalizing GDMO Behavior Descriptions

object. Values are not assigned to variables { variables are bound to data

elements.

Variables in BSL have a certain type and must be declared before use. Dec-

larations can only appear at the beginning of each block and are introduced

by the word \var". To be able to use components of ASN.1 data structures

as type identi�ers, BSL contains the two operators \." and \elem()". \."

grants access to components of a choice, a set, or a sequence. \elem()" selects

the base type of a set-of/sequence-of type.

Example: var i:Integer; obj:fabric; e:elem(VSet).x

BSL allows the use of symbolic names wherever possible. It not only allows

to access attributes and elements of sets and sequences by their names, it also

lets the programmer use the symbolic names for values in enumerations and

for types in choices.

5.3 Program Sequences

BSL programs consist of a number of statements. They can be combined

by logically or-ing or and-ing them together. For a program to terminate

correctly, all and-combined statements must be satis�ed. For or-combined

statements only one of them must lead to an answer. The order of execution

of the statements depends on the type of combination. And-connected state-

ments are executed in the order in which they were written. Or-connected

statements allow non-determinism to be introduced. One of those statements

is selected at random. If it leads to a contradiction, another possibility is

tried until an answer is found. Grouping statements together by \and" is

done using the comma (\,"), by \or" using the pipe symbol (\|"). Following

common mathematical rules, \and" has higher precedence than \or".

In BSL, each statement and therefore each sequence of statements has

a type. This feature is especially needed to determine the return type of

functions. The type of a sequence of \and"-connected statements is the type

of the last statement. The types of \or"-combined statements must all be the

same as it is not known until run-time which alternative is chosen but type

checking already occurs at compile time.

5.4 Control Structures

The language BSL incorporates a small number of execution control struc-

tures. Two of them allow the selective execution of di�erent program code.

These are the \if-then-else" statement and the \case" statement. It has

to be observed that all possible branches must have the same type to ensure

static type checking.

Examples: if x=0

then y=22

else y=99

endif

choice x of

case 0: y=22

case 1: y=99

otherwise: y=x*11

endchoice

(c) 1999 IFIP



Formal Methods

m
an

ag
ed

E
le

m
en

t
op

N
E

managedElementId
systemTitle
alarmStatus
administrativeState
operationalState
usageState

objectClass
nameBinding
packages to

p

opNEId
opNEType

elem::managedElementelem::managedElement

m
an

ag
ed

E
le

m
en

t
op

N
E

managedElementId
systemTitle
alarmStatus
administrativeState
operationalState
usageState

objectClass
nameBinding
packages to

p

opNEId
opNEType

elem::opNEelem::opNE

m
an

ag
ed

E
le

m
en

t
op

N
E

managedElementId
systemTitle
alarmStatus
administrativeState
operationalState
usageState

objectClass
nameBinding
packages to

p

opNEId
opNEType

elem::topelem::top

Figure 4: Visibility of attributes

The third control structure is an iteration construct. It allows the applica-

tion of a piece of code to all elements in a set (ASN.1 types set-of/sequence-of).

Example: foreach element in ConnectInfo do

Print(element.administrativeState)

5.5 Operators

BSL o�ers a number of operators. Besides the usual arithmetic, logic, and

comparison operators, it has a few for working with structured data. Es-

pecially noteworthy are the operators described in the following sections.

The �rst operator is the type change operator \::" whose functionality

has been described in Section 4.2. An example is shown in Figure 4. Supposed

that the variable elem has the type top but references an object of type opNE,

the usage of the operator \::" can make additional attributes visible.

It is important to state a few remarks about the assignment operator \:=".

Normal variables adhere to the logic programming paradigm and can only be

bound to other data items. This is done by the binding operator \=" which

also serves as the equality operator. It returns the logic value true, if binding

was successful or the equality relation holds. Unlike variables, attributes have

an imperative semantics. They can be changed at any time and as often as

needed using the assignment operator.

The choice of operators for accessing structured data is led by the possibil-

ities of GDMO and ASN.1. Especially the access operator \." is indispens-

able. Depending on the type of data it is applied to, it allows to read the value

of an object's attribute or to select a component of an ASN.1 choice, set, or

sequence. Supposed the variable obj references an object with the attribute

ConnInf which has an ASN.1 sequence type containing the choice itemType

with the element bidir. To access that component, one simply writes:

obj.ConnInf.itemType.bidir.

To �nd out which alternative of a choice is present in an instance of that

data type, the operator \type()" can be used. To get a reference to the

(c) 1999 IFIP



A Methodology for Formalizing GDMO Behavior Descriptions

object which is denoted by a value of type ObjectInstance, the operator

\object()" is available.

5.6 Functions

BSL allows the de�nition and invocation of functions. Functions can be de-

clared before the start of the program code. All functions can be accessed

globally. Function de�nitions include the function's name, the declaration of

its parameters, possibly a return type, and the code of the function. Each

declaration is introduced by the keyword \function". Following the keyword

\returns" the return type of the function can be speci�ed. It is important

to note that the return type of the code must match this type.

Example: function mult(Integer a, Integer b) returns Integer :-

a * b;

The availability of a return type might be surprising in a logic program-

ming language. Parameters in these languages can be used for input as well

as output. The data direction is determined by the actual arguments in the

function call. If an actual parameter is bound to a constant, it is an input

parameter, otherwise it is used for returning a value. There are two reasons

for a return type being available. First, it allows the explicit speci�cation of

an argument as an output parameter making the intended use of the function

more obvious. Second, it should ease the semi-automatic translation to an

imperative language.

Function invocation is straightforward: the function's name and its actual

arguments have to be speci�ed, e.g. x = mult(3,5). BSL incorporates a

number of prede�ned functions. These are designed to facilitate common jobs

in a network management environment. There are functions to create and

delete objects, handle set types, etc.

6 Conclusion

This paper presented a language for formalizing behavior descriptions in the

OSI telecommunications management network framework. A number of ques-

tions which arise when designing a language have been discussed and a general

framework for the inclusion of formal behavior speci�cations in GDMO de�-

nitions has been presented.

The proposed language was used to formally specify the behavior of the

MOON information model as well as of the underlying model M.3100. A com-

piler for the proposed language has been implemented and used to translate

the BSL speci�cation to the language RDL used by the simulation environ-

ment. This demonstrated that BSL is capable of specifying the behavior of

a reasonably sized information model. A large amount of the behavior could

be described in a surprisingly short and easy to understand manner.

The speci�cation of the MOON information model showed that a large

part of the behavior was speci�ed in a rather imperative fashion. This gives

(c) 1999 IFIP



Formal Methods

rise to the possibility of compilers for destination languages other than RDL.

Especially common imperative, object-oriented languages like C++ are an im-

portant target. Unfortunately, programming languages cannot be translated

easily into languages of a di�erent programming paradigm. Specifying behav-

ior as imperative as possible, a translator needing only a minimal amount of

manual adaptation seems feasible.

References

[1] Ambler, A. Burnett, M. Zimmerman, B. Operational Versus De�ni-

tional: A Perspective on Programming Paradigms. IEEE Computer 25,

9 (September 1992), 28-43.

[2] Eberhardt, R., Mazziotta, S., and Sidou, D. Design and testing of in-

formation models in a virtual environment. The Fifth IFIP/IEEE In-

ternational Symposium on Integrated Network Management \Integrated

Management in a Virtual World". San Diego, May 1997.

[3] Glass, R. L. How Best to Provide the Services IS Programmers Need.

Communications of the ACM 40,12 (December 1997), 17-19.

[4] ITU-T. Recommendation M.3100, Maintenance { Telecommunications

management network { Generic network information model. ITU-T,

1995.

[5] Meyer, B. Object-Oriented Software Construction. Prentice Hall, Upper

Saddle River, 1997.

[6] Mader, W. D0103: Progress Report 2. MOON document

A231.P01.010.DS.P.010.a1, 1998.

[7] Pratt, T. W. Programming Languages. Prentice Hall, Englewood Cli�s,

1984.

[8] Telenet GmbH. TSE-P-Handbuch. Telenet GmbH, Darmstadt, Germany,

1997.

[9] CCITT. Recommendation X.208, Speci�cation of Abstract Syntax Nota-

tion One (ASN.1). CCITT, 1988.

[10] CCITT. Recommendation X.701, Information technology { Open Systems

Interconnection { Systems management overview. CCITT, 1992.

[11] CCITT. Recommendation X.722, Information technology { Open Systems

Interconnection { Structure of management information: Guidelines for

the de�nition of managed objects. CCITT, 1992.

[12] ITU-T. Draft of ITU-T Rec. X.722/Amd. 4, Information technology {

Open Systems Interconnection { Structure of management information:

Guidelines for the de�nition of managed objects { Amendment 4: An

extension of GDMO for specifying managed objects behaviour. ITU-T,

1996.

(c) 1999 IFIP



A Methodology for Formalizing GDMO Behavior Descriptions

Biography

Peer Hasselmeyer received a Master of Science degree in Computer Science

from the University of Colorado, Boulder, in 1995. In 1997, he graduated

from Darmstadt University of Technology and received a diploma degree in

Computer Science. Since then, he has been a research assistant and PhD can-

didate in the Computer Science department of that University. His research

interests include telecommunications and network management systems.

(c) 1999 IFIP


