An Approach to Predictive Detection for
Service Management

Joseph L. Hellerstein', Fan Zhang®, and Perwez Shahabuddin?

VIBM T.J. Watson Research Center
Hawthorne, New York, USA
hellers@us.ibm.com

2 Industrial Engineering and Operations Research
Columbia Unwversity

New York City, New York USA
{fzhang, perwez} @ieor.columbia.edu

Abstract

Service providers typically define quality of service problems using thresh-
old tests, such as “Are HI'TP operations greater than 12 per second on server
XYZ?” This paper explores the feasibility of predicting violations of threshold
tests. Such a capability would allow providers to take corrective actions in ad-
vance of service disruptions. Our approach estimates the probability of thresh-
old violations for specific times in the future. We model the threshold metric
(e.g., HT'TP operations per second) at two levels: (1) nonstationary behavior
(as is done in workload forecasting for capacity planning) and (2) stationary,
time-serial dependencies. Using these models, we compute the probability of
threshold violations. We assess our approach using measurements of HT'TP
operations per second collected from a production web server. These assess-
ments suggest that our approach works well if (a) the actual values of predicted
metrics are sufliciently distant from their thresholds and/or (b) the prediction
horizon is not too far into the future.

Keywords

Proactive Management, Service Level Agreement, Forecasting Models, Time-
series Models

(c) 1999 IFIP

1 Introduction

The tremendous growth in network-based services has greatly increased the
pressure on administrators to rapidly detect and resolve service problems. Typ-
ically, problem detection is done by specifying threshold tests. Examples in-
clude: “Do ping response times exceed .7 seconds?” and “Are HTTP operations
greater than 12 per second on server XYZ?” Unfortunately, once detection oc-
curs, there is often little time to take correction actions. This paper describes
an approach to predicting threshold violations, thereby enabling administrators
to take corrective action in advance of wide-spread service disruptions.

Threshold tests (hereafter, just thresholds) are specified by a predicate con-
sisting of: a measurement variable or function of measurement variables (e.g.,
LAN utilization over the last five minutes), a comparison operator (e.g., greater
than), and a threshold value (e.g., 30%). A threshold violation occurs if this
such a predicate is satisfied. Typically, this results in an alarm, such a flashing
red light on an operator’s display.

We are interested in predictive detection. By this, we mean predicting that
a threshold violation will occur. In our view, such predictions have two compo-
nents: (1) the probability that the threshold will be violated and (2) the time
at which it is anticipated that the threshold will be violated. An example of
predictive detection is “There is a 60% probability that in 5 minutes the re-
quests for hypertext transfer protocol (HTTP) operations on web server XYZ
will exceed 12 per second.” By knowing the probability of a threshold viola-
tion, service providers can assess the seriousness of the situation. By knowing
the time frame, service providers can determine what level of intervention is
possible.

We investigate predictive detection in the context of a web server. In partic-
ular, we extend our work in [6] that considers data collected over eight months
(June, 1996 through January, 1997) from a production web server at a large
corporation using the collection facility described in [2]. Each observation in the
data set contains approximately twenty variables that are aggregated over five
minute intervals; 288 five minute intervals are reported for each day. We focus
on HT'TP operations per second, which is the measurement variable httpop/s.
HTTP operations include gets, posts, and the rate at which cgi (common gate-
way interface) scripts are initiated.

Many researchers have investigated the detection of service degradations.
Central to this is characterizing normal, nonstationary behavior, as is done in
[12] (who uses ad hoc models to estimate weekly patterns), [9] (who employs
more formal time series methods), and [10] (who uses knowledge of the func-
tional relationship between inputs and outputs to detect changes in system
operation). Work on predictive detection has been much more limited. Statis-
tical process control (SPC) employs warning limits on measurement variables
to provide advance notice of threshold violations (e.g., [13]). However, violating
a warning limit gives little insight into when (or if) a threshold violation will
occur. Research in data mining has addressed ways to anticipate the next pat-

(c) 1999 IFIP

tern in a sequence (e.g., [3]). But these efforts do not provide the anticipated
time of this occurrence, and the approaches employed are more suited to cate-
gorical data (e.g., event type) than to the continuous variates considered in our
work (e.g., httpop/s). References [8] and [14] describe techniques for detecting
changes in networks that are leading indicators of service interruptions. This
work complements ours in that if these indicators can be expressed as threshold
tests, then our work provides a way to predict service interruptions. Our efforts
follow the lines of workload and resource usage forecasting in capacity plan-
ning, which employs curve extrapolation to predict threshold violations (e.g.,
[11]). In essence, we extend these approaches to consider stationary, time-serial
dependencies and the probability of threshold violations.

This paper explores the feasibility of predicting threshold violations by
studying httpop/s in a production web server. Section 2 describes the model we
use for the normal behavior of httpop/s. Section 3 uses this model to develop
our approach to predictive detection. Section 4 assesses its eflectiveness. Our
conclusions are contained in Section 5.

2 Model of Normal Behavior

This section summarizes our model of normal behavior of httpop/s. More
details can be found in [6].

The model consists of two submodels. The first addresses time-varying or
nonstationary behavior of the measurement variable, as is done in workload
forecasting for capacity planning. The second addresses stationary, time-serial
dependencies once the effect of the first model have been removed.

We begin by modeling nonstationary behavior. An example of such behav-
ior is shown in part (a) of Fig. 1, which plots two weeks of httpop/s collected
from the web server we study. Observe the pronounced and consistent trend
based on time-of-day.

Our approach is similar to that used in workload forecasting for capacity
planning. We consider the factors time-of-day, day-of-week, and month. Let
Sijrt be the random variable for httpop/s in the i-th five minute interval (e.g.,
¢ = 2 is the interval [12:05am, 12:10am)), the j-th day of the week (e.g., j = 3 is
Wednesday), the k-th month (e.g., kK = 1 is June), and the I-th instance in the
data (since several ¢ and j occur within the same k:) Let s;;1; be the observed
value of Sj;z;. Fig. 1 part (a) plots s, for a work week (Monday through
Friday) in June of 1996 and a work week in November of 1996. The x-axis is
time in hours, and the y-axis is httpop/s.

We proceed by using notation from analysis of variance (ANOVA, e.g., [4]).
We partition Sz into five components: the overall mean (p), the deviation
from the mean due to the i-th time-of-day value (), the deviation due to
the j-th day of the week (3;), the contribution of the k-th month (), and a
random variable that quantifies statistical errors (Yij %1). By definition, Zi o; =
Zj B; = 0. (The ~y; are obtained using least squares regression and so do not

(c) 1999 IFIP

06/1006/11 06/12 06/13 06/14 11/18 11/19 11/20 11/21 11/22
| | |

Figure 1: Illustrate Data for Model of Nonstationary Behavior. x-axis is time
in hours; y-axis is httpop/s. (a) is raw data; (b) removes fi and &;; (c) also

removes Bj; (d) also removes ¥y,

necessarily sum to 0.) Our submodel for nonstationary behavior is:

Sijr =+ i+ B + v+ Yiju. (1)

We evaluate the quality of this model in two ways. First, we note that
the model accounts for 64.18% percent of the variability in the data, which is
fairly good for models of production computer systems. Second, we examine
the residuals, what remains after the effects of the model have been removed.
In essence, the residuals estimate of Y;;;. Let, i, &y, Bj, and 4y be estimates of
the model parameters as obtained using the techniques described in [6]. Then,

Yijr = Sijw — it — & — B — -

These residuals are plotted in Fig. (1), part (d). Observe that little remains
in the way of systematic behavior. That is, our model has done a good job of

(c) 1999 IFIP

0.5
| s 1Ll
0 \ < L ________
-0.5
-5 -1
0 20 40 60 80 100 120 0 5 10 15
(a) (b)
5 1
0.5
Y S
| | L L
0 < -l __
-0.5
-5 . : : . . -1 . . :
0 20 40 60 80 100 120 0 5 10 15
(c) (d)

Figure 2: Autocorrelations of Data Used to Illustrate Building the Characteri-
zation Model: (a) residuals of Eq. (3) model for First Week in Fig. 1; (b) ACF
of residuals in (a); (c) Residuals after AR(2) model (Eq. (4)) is applied to (a);
(d) ACF of residuals in (c).

removing predictable patterns.

Although Eq. (1) does well with removing nonstationary effects, it turns out
that a somewhat subtle behavior remains. These are stationary, time-serial de-
pendencies. Such dependencies can be detected by plotting the autocorrelation
function (ACF) of the residuals.

Fig. 2 part (a) plots the residuals of Eq. (1) for the week of June 10 (i.e.,
the first half of part (d) of Fig. 1). Part (b) of this figure plots the ACF of
these residuals. The y-axis is the correlation value (which lies between -1 and
1); the x-axis is the lag (number of time intervals) between measurements that
are used for that correlation. ACF values that lie between the dashed-lines
are statistically identical to zero (i.e., would not reject the hypothesis of 0
autocorrelation at a significance level of 5%). The correlation at lag 0 is always
one since this is the variable correlated with itself at the same lag. Note that in

(c) 1999 IFIP

part, (b) of the figure, all correlations are above the dashed line. This suggests
that the data contain significant time-serial dependencies.
To remove these dependencies, we employ the following model:

Y, =Y +p2Yio + Uy, (2)

where the U, are independent and identically distributed (i.i.d.) random vari-
ables with mean 0 and variance 02. Eq. (2) is a second order autoregressive
model (AR(2)); ¢1 and ¢ are parameters of the model. The model parameters
are estimated from the data using standard techniques [1]. Fig. 2 part (c¢) plots

the residuals of Eq. (2), that is: u; = y; — d1¥s_1 — PaYe_2, where ¢, is an

estimator of ¢,,. In our data, ¢, = .4632 and ¢y = .2111. Part (d) displays
the ACF of the residuals of Eq. (2). Observe that almost all correlation values
lie within the dashed lines. This suggests that the autocorrelations have been
removed, which is consistent with the U; being independent random variables.
From the u;, we can compute 62, the unbiased estimator of o2 (e.g., as in [4]).
In our data, 62 = .011109.

3 Approach to Predictive Detection

This section describes our approach to predictive detection. We begin with an
overview of the approach, followed by a detailed description of its operation. We
conclude with several observations about the characteristics of our approach.

Our approach to predictive detection extends existing techniques employed
in workload forecasting for capacity planning. These techniques model the non-
stationary behavior of the mean of a metric (e.g., httpop/s), as in Eq. (1). We
do the same. In addition, we consider stationary, time-serial dependencies that
remain after the effects of nonstationarities are removed. Such time serial de-
pendencies are modelled using Eq. (2). Based on these two models, we estimate
the probability of a threshold violation.

We use the model of nonstationary behavior (a modification of Eq. (1)) to
transform the time-varying measurements of the s; into stationary y;. Since we
transform the measurements, we must transform the thresholds in the same
way. An implication of the latter is that transformed thresholds vary with
time (since the transformation is time—indexed). We use th; to denote the
transformed value of T" at time £.

Let 3;(h) denote a prediction that is A time units in the future, where h is
the prediction horizon. ;(h) is computed as E[Yiin | Yi = ¥, Yic1 = Y1),
which is the expected value of Y at time £+ given values of y; and y;_; (which
are computed from s, and s;_1). Because of random variations, ¢;(h) may be
larger than th;, but the actual value of y;y; may be less than th;. For this

reason, our approach calculates Pt(h) = P[Y;4 violates a threshold | Y, =

Ye,Yeo1 = ye-1]. Pt(h) incorporates information about both the expected value

(c) 1999 IFIP

and variance of Yy . E(h) is computed for h = 1,2, ..., H time units into the
future.

In general, there may be several threshold tests for a measurement variable
or function of measurement variables. Following the conventions of statistical
process control, we consider two thresholds for s;. T is an upper threshold,
which means that an alarm is raised if s; > T'. T is a lower threshold; an alarm
is raised if s; <7T'. We assume that 7" < T

Before continuing, we define more precisely what we mean by transformed
values of s;. A common difficulty with measurements of queueing systems is that
the variance of metrics increases as their mean increases. Such metrics cannot be
modelled as identically distributed Gaussian (normal) random variables, which
in turn makes it difficult to calculate the probability that the metric violates a
threshold. We address this difficulty in a standard way by modifying Fq. (1)
so as to stabilize the variance of the residuals. Thus, instead of Eq. (1), we use

In(Sijm +1) = p+ ;i + 6 + v, + Yijm- (3)

(The 1 is added to ensure that transformed values are non-negative.) By trans-
forming the s;, we mean computing the residuals of the above equation from the
measurements. Our analysis of these residuals for httpop/s in the web server
data suggests that it is reasonable to assume that the U; are i.i.d. Gaussians,
where these U, are obtained by applying Eq. (2) to the Y;;z; in Eq. (3). Further,
it turns out that using Eq. (3) instead of Eq. (1) does not change the values of
1, ¢2 in for our data.

We now describe our algorithm for predictive detection. We consider a
single routine, predict, that estimates the probability of threshold violations.
predict assumes that estimates have been obtained for 1, o, B85, Y, ¢1, and ¢o.
It is also assumed that there is a separate process that uses Eq. (3) to transform
s¢ into y; using estimates of these parameters.

The predict routine is invoked on demand, such as to update an operator
display. predict takes as input the current time index (t), the lower threshold
(T"), the upper threshold (7)), and the maximum time horizon (H). predict
returns P;(1), ..., P,(H)-the probabilities of violating either T or T at each
time horizon A.

Fig. 3 details the four steps in predict. Step one estimates the value of future
measurements by computing §,(h), where §,(h) = E[Yien | Ye = y1, Vo1 =
yi—1] (e.g., see [1]). Step two estimates the variance of the future measurement
given ¥, y¢—1; that is,

Uf(h) =VarYen | Ye=ve,Yio1 =Ye1)-

Step three estimates the probabilities of violating the thresholds based on these
estimates. Steps one, two, and three are repeated for h = 1 through H. Step
four returns the probabilities of threshold violations.

Steps two and three require some additional explanation. For step two, we
explain the computation of o2 (h). We begin by expressing Y; as a function of

(c) 1999 IFIP

predict(t, 7',7, H) returns(P;(1),..., P,(H))

1. Estimate the forecast means for 1,2,..H

g(1) = ggblHistory[l] + poHistory[2]
U:(2) = ¢U:(1) + g2 Historyl[l]
Ge(H) = $10e(H = 1) + oo (H —2)

2. Estimate the forecast variances for h =1,2,...H

3. Estimate P;(h), the probability that the forecast value < T" or > T for
h=1,2,..H.

5 Ge(h) —thirp thip, — 9:(R)
= (M2) o (S)
(¢',7', k") are the indicies for t + h
. th£+h =In(l14+7")—ji— &y — B — A
theen =In(1+T) — fi — &r — B —
®(z) is the CDF of the standard normal

4. Return(Py(1), ..., P(H))

Figure 3: Algorithm for Predictive Detection

U;. Using the backshift operator B (i.e. B"X; = X; ,,) as in [1], we rewrite
Eq. (2) as

(1 —¢1B — ¢p2BAY; = U,. (4)
That is,
— Uy
Y = (1-A,B)(1-A3B)’

where A;, Ag are the reciprocal of the zeroes in 1 — ¢; B — ¢2B% = 0. For
example, if ¢; = .4632 and ¢ = .2111, then A; = —0.2829 and A; = 0.7461.

Using partial fraction expansion, we have:

Y, = AU _ AUy
t (A1—A2)(1-A1B) (A1—A2)(1—-A2B) 5
_ oo (APT'-AZTHBMUL (5)
- Zn:O Aj—As

(c) 1999 IFIP

Note that for Y; to have a finite variance (i.e., be stable), it is required that
| A |< 1 [1]. Also note that 3;(h) — 0 as h becomes large. This follows from
the computation of §;(h) in Step 1 of Fig. 3 and the fact that | ¢, |< 1 for
httpop/s.

To compute o2(h), we express Y; in terms of Uyiq,...,Usyp. (We need not
consider U, v < t since the forecast is conditioned on ¥y, yt,l.) Note that h —1
is the power of B that selects Uyiy for Yiip. Further, recall that the U; are
independent and identically distributed. Hence,

h 1 n+1 n+1
A—A)z)]. (6)

n=0

We obtain 62(h) by substituting 2 for o2

We make a few observations about o} (h) First, observe that for h = 1,
02(1) = 02. This makes sense since Y;11 = ¢19; + ¢oyr1 + U1, and only
Ut11 is a random variable (since the observations through ¢ are assumed to be
known). Second, note that o2(h) is non-decreasing in h. This is also intuitive
since we are less certain about a forecast the further it is in the future. Also,
note that it is intuitive that oZ(h) converges to the variance of Y; as h — oco.

Next, we explain the computation of]525(]1)7 the probability of violating a
threshold at time ¢t + h given knowledge of the measurements through time ¢.
A threshold violation occurs if either S; <T" or S; > 1. That is,

Pt(h) = P(Yt—&-h < thzlg_;_h or Yiip > thiy | yt7yt71)7 (7)

where thl’H_h is 1" transformed into y units. Since conditioning on ¥;,y:—q is
assumed throughout, we do not explicitly express this in the sequel.

We proceed in the standard manner by assuming that the estimated model
parameters are in fact constants (e.g., [1]). Observe that from Eq. (5), Y;p is
Gaussian since it is a linear combination of Gaussians. Further, the expected
value of Yy is 9:(h), and its variance is 62(h) (see Eq. (6)). Thus, Z;.p =

Yitn—G:(h) -
ith U is a standard normal. So
G (h) ’

Pi(h) = P(Yien <thyy, or Yepn > thepn)
= 1— P(thtih (hy)t(h) < Zt+h < thtih*hy)t(h))
1_ |® thern—9:(h) P tj:h —§:(h) (8)
& (h) N (U]_f)(h)
_ Ge(h)—thitn thyyy— i
= ‘I’< 5o (h))+‘1’< 5o h))

where ®(z) is the cumulative distribution function of the standard normal at
x.

We make a few observations about this result. First, note that each variable
in the arguments of ® is determined entirely by only one of the submodels of

(c) 1999 IFIP

St. thysn is determined by the model of nonstationary behavior (Eq. (3)); 4:(h)
and 6;(h) are calculated using the model of stationary, time-serial dependencies
(Eq. (2)). Further, recall that as h grows large, 3;(h) — 0 and &,(h) converges.
Thus, for large h, the model of nonstationary behavior determines how E(h)
changes with h.

Now consider the influence of the thresholds. If T" becomes very large, then
B(—00) + @ (4*—”” &jhy;(h))
(I) <th£ih7?}t(h)) .

P(h)

G (h)

Similarly, if 7" becomes very small, then P,(h) = ® (M%%})”“i) . Further, if
t

T~ T', then By(h) ~ 1 — {qz (W) — (%)} = 1. That is, if

the lower and upper thresholds are equal, we always violate a threshold.
Finally, note that the probability of a threshold violation at time ¢ + h

depends on two factors. The first is the magnitude by which the predicted

value violates the threshold. That is, Maz{g,(h) — tht+h7th;+h — 4 (h)}. As
this value increases, so does Py(h). The second factor is ;(h), the standard
deviation of the forecast. A larger 6;(h) results in a smaller Pt(h)

4 Assessment of Approach

To gain insight into how well our approach works in practice, we study]%(h)
using the web data for a threshold that is fixed in s units. Our objective is
to understand how Pt(h) varies with s, the value of the observation for
which predictive detection is done. Throughout, we simplify matters by only

considering an upper threshold, T that is, 77 = —oo.
We compare E(h) with the ideal probability of a threshold violation. The
latter is denoted by P;(h), where
Pr(h) = { 1 ifsyyp>T

0 otherwise

Clearly, P} (k) can never be achieved in practice since it requires prior knowledge
of future measurements! Thus, we do not expect to be anywhere close to this
ideal. Rather, we use P;(h) as a reference from which values of P;(h) are
assessed.

In this study, T = 7. We construct confidence limits for P;(h) (% two
standard deviations around the sample mean) by partitioning the s;.; into
intervals. Fig. 4 plots the results. There are ten plots, one for each value of
h. In each, st} is the x-axis and Pt(h) is the y-axis. The solid lines are mean

(c) 1999 IFIP

Figure 4: Assessment of the relative accuracy of Pt(h) The x-axis is S¢ip;
the y-axis is probability. Dashed lines specily P (h), the ideal estimate of the
probability of exceeding the threshold. Solid lines are average E(h), dotted
lines are 4 two standard deviations around the average.

values of E(h), the dotted lines are the confidence limits. The dashed lines
(which are the same in all ten plots) depict P (h).

We use Fig. 4 to compare our approach with the ideal algorithm for predic-
tive detection. Note that P;(h) closely approximates P*(h) for values of s,
that are distant from 7', such as s;.p < 6 or s;1p, > 8. Put differently, in these
ranges, | P*(h) — Py(h) | is small. This means that if P;(h) is large, service
providers can be certain that a threshold violation will occur in A time units.
Conversely, if Pt(h) is small, service providers are assured that a threshold
violation will not occur in A time units.

Now consider the effect of 2 on our ability to approximate P*(h). As h
increases, s;15, must be more distant from 7" in order to achieve the same value

of | P*(h) — Py(R) |. This is a consequence of two factors. First, the variance of

(c) 1999 IFIP

Y;(h) increases with h, which causes P;(h) to converge to .5. Second, for large
h, 5:(h) — 0. Both effects increase | P*(h) — P;(h) |.

There is another implication of these effects. As h increases, there is a
diminished contribution of the model Qf time serial behavior to the calculation
of P;(h). To see this, observe how the FP;(h) curve in Fig. 4 flattens as h changes
from 1 to 5. But from 6 through 10, the curve and its confidence intervals are
relatively unchanged. This means that we are relying almost entirely on the
model of nonstationary behavoir.

What happens if we want to detect small deviations from the threshold?
From Fig. 4, we see that the Pt(h) confidence limits are widest when s, =
7 =T. Thus, detecting small deviations from the threshold requires a very low
model variance.

In addition to the assessments herein presented, we have: (a) compared

Pt(h) with the measured fraction of the observations that violate thresholds
and (b) used simulation to study the accuracy of our approach. These results
suggest that our approach works quite well. Details can be found in [7].

5 Conclusions

This paper explores the feasibility of predicting threshold violations. Such a
capability would be of immense benefit to service managers in that corrective
actions could be taken before there are wide spread service disruptions.

We believe that predictive detection must include both the probability that
the threshold will be violated and an occurrence time. The probability conveys
the likelihood that corrective action is needed; the occurrence time constrains
the actions that can be taken. While others have proposed approaches to proac-
tive detection in networked systems (e.g., [8], [14]), our approach is the first that
addresses predictive detection—providing the probability that a threshold will
be violated at specific times in the future.

Our approach can be viewed as an extension of techniques for workload
forecasting in capacity planning. These techniques model nonstationary behav-
ior of metrics. We do the same. In addition, we model stationary, time-serial
dependencies. We use both models to compute Pt(h), the probability of vi-
olating a threshold for a time horizon of & given that the current time is ¢.
This is done in a manner that considers both lower and upper thresholds for
measurement values.

We provide insight into our approach to predictive detection by applying
it to measurements of a production web server. These results suggest that our
approach works well if (a) the actual values of predicted metrics are sufficiently
distant from their thresholds and/or (b) the prediction horizon is not too far
into the future.

We show that for smaller values of h, modeling time-serial behavior pro-
vides considerable predictive benefit. However, as h increases, Pt(h) converges

(c) 1999 IFIP

to what would be obtained by only considering the model of nonstationary
behavior.

Another insight is that our approach to predictive detection works best
when 545, (the observed value at time ¢+ h) is distant from the threshold value,
either smaller or larger. This is a consequence of the fact that the variance of
Pt(h) is largest when s;1, is near the threshold. Also, for predictions made
further into the future (i.e., larger values of h), $;1 must be even more distant
from the threshold since variance is nondecreasing in h.

While our results are encouraging, much work remains. Clearly, a broader
range of measurement variables should be studied. Also, to be practical, pa-
rameter estimation should be on-line rather than off-line (via a fixed set of
training data). Further, a variety of technical issues need to be addressed more
carefully, such as the manner in which probabilities are estimated for thresholds
that are at the tails of the distribution (which is very sensitive to deviations
from a Gaussian distribution). Finally, some thought must be given as to how
predictive detection should be employed in practice. Informing customers of po-
tential service disruptions may or may not be a good idea, depending on their
expectations. One possibility here is to describe predictive detection as a kind
of weather report for future service delivery.

Acknowledgements

This work was supported in part by NSF Career Award Grant DMI-96-25291
and a grant from the IBM Corporation.

References

[1] George E. P. Box and Gwilym M. Jenkins: Time Series Analysis
Forecasting and Conlrol, Prentice Hall, 1976.

[2] Adrian Cockcroft: “Watching your Web server,” SunWorld OnLine,
http://www.sunworld.com/swol-03-1996 /swol-03-perf.hit ml, 1998.

[3] Thomas G. Dietterich and Ryszard S. Michalski: “Discovering Pat-
terns in Sequences of Events,” Artificial Intelligence, 25, 187-231, 1985.

[4] Wilfrid J. Dixon and Frank J. Massey: Introduction to Statistical
Analysis, McGraw-Hill Book Company, 1969.

[5] N.R. Draper and H. Smith: Applied Regression Analysis, John Wiley
and Sons, 1968.

[6] Joseph L. Hellerstein, Fan Zhang, and Perwez Shahabuddin:
“Characterizing Normal Operation of a Web Server: Application to Work-
load Forecasting and Problem Detection,” Proceedings of the 1998 Confer-
ence of the Computer Measurement Group, Anaheim, California, December
7-11, 1998.

(c) 1999 IFIP

[7] Joseph L. Hellerstein, Fan Zhang, and Perwez Shahabuddin: “An
Approach to Predictive Detection for Service Management,” IBM Research
Report, RC 21254, August 4, 1998.

[8] C.S. Hood and C. Ji: “Proactive Network Fault Detection.,” Proceedings
of INFOCOM, Kobe, Japan, 1997.

[9] P. Hoogenboom and J. Lepreau: “Computer System Performance

Problem Detection Using Time Series Models,” Proceedings of the Summer
USENIX Conference, 15-32, 1993.

[10] R. Isermann and B. Freyermuth: “Process Fault Diagnosis Based
on Process Model Knowledge,” Proceedings of 1989 ASME International
Computers In Engineering Conference and Exposition, July, 631-642, 1989.

[11] G. Jay Lipovich: “Fixing Capacity Planning’s Achilles Heel: An Ap-
proach to Managing Forecast Accuracy,” Proceedings of the 1997 Confer-
ence of the Computer Measurement Group, Orlando Florida, December 8-12,
1997.

[12] Roy A. Maxion: “Anomaly Detection for Diagnosis,” Proceedings of
the 20th Annual International Symposium on Fault Tolerant Computing
(FTCS) 20, June 1990, pp. 20-27.

[13] William 1. Sikora: “Response Time Measurement and SPC,” Computer
Measurement Group Transactions, pp.35-42, Summer, 1992.

[14] Marina Thottan and Chuanyi Ji: “Adaptive Thresholding for Proac-
tive Network Problem Detection,” Third IEEE International Workshop on
Systems Management, Newport, Rhode Island, April 22-24, 1998, pp. 108-
116.

(c) 1999 IFIP

