
New Design Schemes for Lightweight TMN
Mediation Device/Q3 Adapter

Abstract
This paper describes new design schemes of telecommunication network
management (TMN) agent for man machine language (MML)-managed network
elements (NEs), especially for ATM networks. Most of currently developed ATM
switches have simple MML interfaces for local operator crafts. This means that
most operations, administration, maintenance, and provisioning (OAM&P)
functions reside within the NE itself, and designing TMN agent as a proxy is
considered to be most appropriate in that more intelligent event correlation and
filtering can be done in NE itself. In TMN environment, proxy based management
expects an agent to have a functionality of Q adaptation function (QAF), rather
than network element function (NEF) itself. In contrast with NEF, QAF can be
simplified by focusing on the message conversion, namely adaptation and
mediation, between standard CMIP message and proprietary MML message or any
kind of management message. Based on the observed fact above, this paper
proposes several design schemes for Q3 agent and its companion gateway function,
so that a Q3 agent, as a proxy, can rather be lightweight and mediation insensitive.
The design schemes proposed in this paper are listed in the following: designing
management protocol insensitive schema for NE-embedded database (DB),
mapping of management information base (MIB)/management instances tree
(MIT) accesses to DB queries and making direct use of DB queries, minimizing the
retained information on MIT/MIB, and using an GDMO/ASN.1 based MML
mediation capabilities with various message adaptation capabilities.

Keywords
MML-managed NE, NE-embedded database, mapping of MIB/MIT accesses to
DB queries, GDMO/ASN.1 based MML mediation.

1. Introduction

In recent years, telecommunication networks have become more diverse and
complicated. The telecommunication services also tend to be diverse as the
capabilities of underlying telecommunication infrastructure evolve in terms of

J.J. Lim,
Network Management S/W Lab.,
SAMSUNGELECTRONICS,
Bundang P.O.Box 32,463-050,Korea
jj lim@telecom.samsung.co.kr

K.W. Kim,
Switching S/W Lab.,
SAMSUNG ELECTRONICS,
Bundang P.O.Box 32,463-050,Korea
kkyewan@telecom.samsung.co.kr

(c) 1999 IFIP

software and hardware technologies. So efficient and effective network
management becomes more significant to the orderly operation in large, multi
domain networks. The telecommunication management network (TMN)[1] that
was recommended by ITU-T provides the effective concepts to achieve
interoperability and also provides efficiency to implement heterogeneous multi-
domain management system.
 TMN, based on the OSI system management concept, models the managed
system using a set of managed objects (MOs). These MOs are classified into two
classes: resource MO (RMO) and support MO (SMO). The former represents real
resources in a managed system and the latter represents abstract functions
conducted in a managed system. Those MOs constitute the MIB/MIT representing
the information and operations for a managed NE. Currently many efforts have
been made to define MIBs[2,3], by standardization organization such as ITU-T and
ATM Forum, and its runtime aspects, namely management application framework
(MAF), by many TMN toolkit vendors.
 On the other hand, network management has a tendency to make heavy use of
database. The database may be either normative relational DB or object-oriented
DB, or any form of main memory resident DB. The MIB of a TMN agent is a
typical example of main memory resident DB. Generally, several deployments of
DBs bring off a DB consistency problem. This is true of a proxy based TMN agent.
But typical implementations[4,5,6] of such a proxy agent tend to interpret MIB as
real repository, in which case MIB has the same, but rather standardized
management information as embedded DB of NE. Therefore it can be safely said
that a proxy agent, or shortly Q3 adapter, has redundant information, thus having
such a potential problem.
 The intention of OSI manager-agent model still seems to be thought of having
standardized management interface or message interface, although recent shift in
software architecture of NE shows that features supported by built-in software are
being handled and redefined through standardized MIBs, namely MIB supportable.
This interpretation for proxy-based management enables to invent new design
schemes for Q3 agent and its gateway function. With most OAM&P functions
delegated to the real resource management functions in NE, an agent simply
focuses on the adaptation and mediation of non-standardized messages to Q3
CMIP messages and the vice-versa. This interpretation is contrasted with the
traditional approaches in that they treat MIBs as real repositories maintained and
viewed at an agent itself, not as conceptual repositories translated and mediated by
an agent.
 Although this is the general case, interpretation in this way makes an agent
heavy, especially for Q3 adapter. Based on the fact above, this paper proposes
design schemes for a so-called lightweight agent targeted for proxy-based
management over MML-managed NEs. The term "lightweight" means that
designing and implementing MIB of an agent is done such that only containment
and association relationships are represented. The accesses by managing system to
the managed resources are through the adaptation and mediation of a proxy agent.
For this, a proxy agent needs a direct access to embedded DB, rule database for

(c) 1999 IFIP

mediation, adaptive message interface to MML managed-NEs, and separation of
agent’s pure Q3 functionality from mediation function by defining a restricted Qx
functionality around M interface.
 Finding solutions for integrating TMN and legacy system may be worth
challenging in that it has the essential points for accommodating the various
management protocols or for interworking several managing systems. To overcome
the fixed Q3 interface over multi-domain, multi-protocol environments, adopting
more open technologies are prevailing on these network management trends.
Besides the Internet SNMP, the World Wide Web (WWW)/Java [7,8] and common
object request broker architecture [9,10] are good examples of current
trends[11,12,13].
 The expected result of this paper is to show the road to surviving integration
methods to meet such emerging technological trends and needs. The organization
of this paper is as following. Section 2 explains the proposed functional
architecture and its philosophies. Section 3 goes into detail about each functional
component and its implementation. Section 4 gives a concluding remark.

2. Architecture Descriptions

2.1. Functional Components and its Philosophies

Figure 1 shows the simplified architecture of an agent, which has interfaces of both
Q3 and M interface [1]. Q3 interface is often described as a set of CMIP/S and
FTAM, whereas M interface is where a gateway function resides for translation of
standard information model into proprietary information model and the vice-versa.
The underlying concepts of Figure 1 are listed in the following: extensibility and
robustness, transparent distribution, and lightweight property.

Q3 IF M IF

C
M

IP

MML
IF

DB
IF

FILE
IF

MO
thr

MO
thr

MO
thr

MO
thr

MOAgentCore

F
T

A
M

F
T

P

subAgent

subAgent

subAgent

������������������	�
������
��������������������������	�
�������
�

�����	
��������������������
����
������� �
!��������������"������������

����������
���#�

$����!���������"
�
�	��
���!%&��
������������

�����

��

��	
��
������

������������

���������	�
���

�������

MOC MIT

FilterAgentX 1

Scope

UsrHook 2Filter

tcl/tk

rpc/xdr

IIOP3

create
delete
get/set
action
report

Figure 1: Simplified Views and its Functional Components for a Lightweight
Agent.

(c) 1999 IFIP

� Extensibility and robustness: Extensibility means that when we design an
agent, it is possible to keep an agent design simple and component-based on
each device without taking the volume of managed information into much
account. A sub agent takes charge of each managed resource independently of
other sub agents. Thus robustness can be improved by making other sub
agents running on separate process spaces.

� Transparent distribution : Partitioning the managed resources into a set of
domains maintained by each sub agent counts, only if the partitioned domains
are made available in a way that an managing system can access to and
receive events from the managed resources transparently. As for managing
system, it shall manage a logical view of MIB as a single unit without
knowing the partitions and existences of multiple sub agents.

� Lightweight property : To lessen the burden on an agent and to rid an agent
of DB inconsistency and update problems, interpreting an MIB as less as
necessary to adapt and mediate messages matters. This can be achieved with
well-defined DB schema in NE, mapping rules/APIs translating CMIP
messages into DB queries. In this sense, an agent just depends on the
embedded DB for modifying and retrieving the managed information. Any
other real resource management is done by applications in NE, with their
results being kept traced within the embedded DB.

2.2. CMIP AgentX (Agent eXtensibility) Protocol

 Defining functional components in operations system (OpS), configuring the
functional components, and building OpS in a hierarchical way are well defined in
ITU-T Rec. M.3010. Its underlying concept is logically layered architecture (LLA)
and its real applications are described in other papers[14,15]. Less attention,
however, are given to the framework of an agent than that of a manager. This is
partly because managing system, together with its requirements for diverse
user/application objectives, has been more complex, and partly because neither
performance nor real-time property for an agent system has been considered to be
critical.
 However, our experiences during the development of TMN agent for ATM
switch reveal that there is a necessity to divide MIB over a set of units on each
switching subsystem. They also reveal that some management operations shall not
block the processing of another independent management operations, or must not
be influenced by the running states of other switching subsystems. The SNMP
AgentX (Agent eXtensibility) protocol[16], as a proposed IETF standard, seems to
be first publication handling this agent extensibility problem.
 The proposed SNMP AgentX protocol allows multiple sub agents to make MIB
information available in a way that is transparent to SNMP management
applications. Although the AgentX protocol is only applied to SNMP, concept of
sub agent can also be applied to CMIP (denoted by italic AgentX in Figure
1,CMIP-AgentX, or shortly AgentX). To keep the proposed transparent distribution

(c) 1999 IFIP

property, the AgentX protocol between the master agent and sub agents must be
defined in a CMIP context. Moreover, each role to be conducted by the master
agent and sub agents shall be discerned. The protocols, besides normal CMIP
procedures, include a set of AgentX specific procedures: administration procedure
for sub agents, dispatching procedure for CMIP messages.
 The administration procedures of the AgentX, whose main features are
naturally adopted from the SNMP AgentX, have the following sub procedures:
� Session establishment/release procedures: When a sub agent wishes to

start/stop the communications with the master agent, this procedure is
meaningful.

� MIB registration/unregistration procedures: When a sub agent is started, it
contacts the master agent and registers/unregisters the various MIB domains
for which it takes responsibility. A sub agent submits a descriptor for its
MIB domain, and the master agent resolves any registration conflicts between
sub agents. The registration description may take form of specifying which
ObjectClass, under which ObjectInstance, what AVA (Attribute Value
Assertion) conditions, and et.al.

 The dispatching procedure is to forward the received CMIP message to a sub
agent charge of handling it. Especially when an updating message such as M-SET
is received, the master should apply its access control policy: best effort or atomic.
Thus it has the following sub procedures:
� Commit/Undo procedures: Based on the received access control policy, the

master agent must preserve its property, even when the designated MOs are
accessed by different sub agents.

� Prioritizing procedure: For fault tolerant sub agent, it may be allowed to
register multiple sub agents with the same MIB domains. A registered sub
agent then may take precedence over the other sub agents with priority
information. Thus received CMIP message is normally dispatched to and
handled by a sub agent with highest priority.

2.3. Lightweight MO Definitions

As contrary to common implementations, each MO may be implemented with
minimal set of in-memory attributes under the assumption that Q3 supportable
embedded DB or well-defined mapping rules/APIs is possible. Realizing MOs with
all the defined attributes in main memory or in persistent storage is natural.
However, to update all the attributes values for a MO is time-consuming. For
example, to set up an ATM-Forum M4[2] compliant point-to-point virtual circuit
connection in ATM NE, it requires the traversals on several MOs like uni, intraNNI,
vpTTPBirectional, vcCTPBidirecitional, atmFabric, and atmCrossconnection.
Under light load on the system it can be negligible, but under heavy stress test it
cannot be negligible. This is also true of millions of MO instances.
 To lessen the load on an agent and to gain performance benefits, we choose to
design MIBs with the minimal set of attributes for given MOs. The minimal set of

(c) 1999 IFIP

attribute represent only containment relationships, together with association
relationships such as SBO (supportedByObjectList) and AOL
(affectedObjectList). Thus MIB snapshot in any time may be like Figure 2.

Q3 IF M IF

C
M

IP

M M L
IF

DB
IF

FILE
IF

M O
thr

M O
thr

M O
thr

M O
thr

MIT (Containment/Association Only)

F
T

A
M

F
T

P

M O C MIT

Filter

Scope

UsrHook

tcl/tk

rpc/xdr

IIOP3

�����

��

�	
���
�

Filter

create
delete
get/set
action
report

Filter

create
delete
get/set
action
report

UsrHook

��������

��	
���	
������

���

������

������

F igu re 2 : L ig h tw e ig h t M O D e f in i t io n s w ith C o n ta in m e n t T ree a n d A ssociation
Relationships.

 To make the underlying assumptions realistic, it is required to implement the
AgentX protocol. Furthermore, we should define mediation scenario for each
received CMIP message with MO’s behavior algorithm and defined user-hook
functions. Fortunately, currently available TMN toolkits by many vendors meet
this AgentX’s requirement. Thus there is no obstacle to do this. As for mediation
scenario, it must describe the steps necessary to access the managed resources via
defined M interface. The mediation may take approaches of either direct translation
or abstract translation in [17], or both. As explained previously, however, all of
these complexities depend on the Q3 supportabilities of both an embedded DB and
NE’s information model, and on the ease of getting services provided by
applications in NE.

2.4. Mediation for M Interface

What is important to the mediation function is to avoid unnecessary coupling with
a general Q3 functionality of agent side. To take examples from Figure 2, there are
many implementations as to where the UsrHook functionality is placed: in either
NE side or Q3 side, or as another entity. Therefore the more tightly coupled
mediation is, the less modularity and reusability of an agent’s Q3 functionality are
achieved. The problems caused by a tightly coupled mediation may have lacks in
accommodating the subtle changes of NE side software.
 To avoid these problems we invent a loosely-coupled mediation architecture by
defining the mediation-specific SMOs. All of mediation algorithms and differences
between software versions are handled by them, whereas the existences of
mediation-specific SMOs are hidden from a managing system. These mediation
SMOs and CMIP operations for the UsrHooks constitute the proposed Qx
functionality.

(c) 1999 IFIP

 A n o th e r co n s id e ra tio n fo r m e d ia tio n is a b in d in g sc h e m e o f sc e n a r io to th e
d e fin ed M in te r fac e . The scenario can be linked in either a dynamic binding or
static binding. Dynamic binding means that we modify the scenario in run-time
without affecting the running state of an agent, whereas static binding means that
each scenario is determined in compile-time. Tcl/tk[18] script language is a good
example of such dynamic binding, which can read each scenario from rule
database, and its applications for management accesses are also described[19]. On
the other hand, RPC/XDR[20] or even CORBA can be suitable for a static binding.

2.5. Adaptation for M Interface

Adaptation can be thought of translating messages from one form to another. This
is dependent on the number of management protocols among them. Instead of
defining management protocol dependent message structure, it would be nice to
define a lot general message container. This property is more required when we
design the NE interface. Therefore the desirable features of adaptation is analyzed
on NE’s part.
 Stepped away from management protocols, we can simplify the relationships
among the NE, GUI, and its underlying management protocols. Traditional MML-
managed NEs can safely be said to have two invariant parts: GUI and NE,
regardless of underlying management protocols such as CMIP, SNMP, and
WWW/Java. This means that an operator accustomed to MML-managed NE
expect to use a uniform interface, regardless of its management protocols. In this
case, a management protocol is merely management middle-ware, whose main
functions are just marshalling/un-marshalling messages, dispatching messages to
appropriate object, not processing the messages.
 Admitting of leaping forward in our assumptions, we design the proposed
adaptation capabilities based on the following criteria. One is adapting simple
ASCII strings for MMLs or SQL queries, another is adapting a meta data structure
for MMLs. And the third is adapting the general byte streams, which aim to
incorporate the concept of interface definition language (IDL). Given these
capabilities, any kinds of interface messages are believed to be translated to the
application’s requirements accessing the NE.

3. Prototype Implementation

3.1. Overall Functional Configuration and Its Interaction

The implemented functional architecture for a lightweight agent in Figure 3 has
typical functional components. There are general Q3 MO handling block and
mediation blocks. And the functional architecture is component-based on its
management functional area basis. This architecture is similar to that of our
manager system[14,15], exactly a mirrored architecture. Each MO is conceptually
grouped and constitutes the management functional areas such as configuration
management, fault management. However, this grouping does not indicate any
implementation addendum or restriction between MOs. Every MO has the same

(c) 1999 IFIP

interfaces to both AgentCore block and UsrHooks as another MO.

Managed Object Handler

AgentCore

MIT

UsrHooks

C o A

CFIF

PFIF

FTIF

CNIF

S
Y
S

ACIF

S
A
P PF-MOs

CF-MOs

CN-MOs

FT-MOs

AC-MOs

�����

��

���

���

����

�	�
��
���

������	

��
���

�������

����
������������������������������� ��

���������������������
����
���
�����
��

�������

��

��������
���������� ����� ���
����������
��������

������ �� ����������!�
���������� ����"������#��
�
��
��������

Q3 FwdQ3 AugQx M

Figure 3: Overall Functional Configurations.

 The AgentCore block takes responsibility for forwarding the received CMIP
message to target MOs. This dispatching, as already mentioned in the previous
section, is based on the containment and association relationships only. The
UsrHooks block is an implementation of adaptation and mediation. Between them,
MO threads implementations are placed. Each MO has the same control algorithm
and interfaces with each other. Each CMIP message received by AgentCore is
forwarded to the target MO threads. The MO threads extract the meaning of
operation for the received message, and extract a list of {type,value} pair for
managed attributes. Then they pass them as an augmented Qx M-ACTION request
to its user-defined hook functions.
 For autonomous messages from NE or response messages, the user-defined
hook functions generate a list of Qx M-ACTION reply or M-EVENT-REPORT
indication messages. And they pass them to a target MO thread. For both
mediations to succeed, there must be well-defined database directing the mappings.
The Rule DB provides the necessary information for both mediations. And the
UsrHooks block communicates with the OMP by exchanging MMLs. It also
accesses directly the embedded DB with SQL queries, or RAID with FILE
interface. All of communications between the UsrHooks and the NE are provided
by the adaptation services defined at the SYS.

3.2. Embedded DB Interface and Rule DB

To support CMIP attribute-oriented operation with a direct access to the embedded
DB, we firstly implement the DB provider in both the SYS and NE. The NE side
provider is called as a DB Server and the SYS side is called as a DB Accessor. In
fact, the DB Server is just a SQL query processor with its DB engine. The DB
Accessor, as a child process of the SYS block, has inter-process communication

(c) 1999 IFIP

facilities for other modules in the SYS. Furthermore, its GUI interface for an
operator is also provided as shown in Figure 4. Using this facility an operator
verify the results of queries issued by the SYS.

Figure 4: Screen Dump of a DB Accessor GUI.

 The SYS side provider makes it possible to access directly the relations and
their tuples of the managed resources. These relations and tuples for a given
attribute of each MO are also defined in the Rule DB. In reality, the cores of Rule
DB are just the specification of lists of {mo, attribute – relation, tuple}
relationships. The permitted access operations for current implementations are
select, update, and count. The select operation gets the tuples matching given SQL
queries for a designated relation. The update operation set the vales of tuples
matching given SQL queries. And the count operation just counts the number of
tuples matching given SQL queries.

3.3. Mediation for M Interface

To provide the proposed lightly coupled mediation, we define the simple Qx
interface. The Qx interface between the Q3 agent and its companion gateway has
the only form of restricted CMIP messages: M-ACTION and M-EVENT-REPORT.
All of the received Q3 CMIP messages are converted into Qx M-ACTION only.
The behavior implementation of M-ACTION is sequencing the steps for mediation
and adaptation. Based on the defined mapping rules in Rule DB, their action
information and notification types are determined. In this way we can eliminate the
dependency of Q3 agent to the NE as minimum.
 Although both behaviors of M-ACTION and triggering condition for a specific
NE may be different from another, The Q3 agent will see the same information
under the same GDMO/ASN.1 specifications. Because any agent using the same
GDMO/ASN.1 specifications shows the same information retained in
GDMO/ASN.1 specifications only. All the differences are mediated at the

(c) 1999 IFIP

UsrHook function using Qx functionality. Figure 5 shows the implemented
mediation configurations.

S
Y
S

�

��������	
�

�
����	
�

�����	

Agent
Core

MO Usr
Hooks

Mediation(MD)
m-act ion,

m-event- repor t

A
d
a
p
t
i
o
n

Qx

Mgr Q3

NE's MIT
MD's MIT

Figure 5: Loosely-coupled MD Configuration.

3.4. Adaptation for M Interface

Legacy operations systems has a set of system specific MMLs to control and
monitor the NE. The MML is eligible for system diagnostics, but in case of further
processing such a non-human processor it has deficiency in decoding the MML
messages. This is the case for interworking the other managing systems using the
different management protocols for further processing.
 To overcome this problem, three types of protocol data unit (PDU) for
generalized inter-process communications are defined: string PDU, meta PDU, and
xdr PDU. The string PDU is just prettily printed char streams of ASCII strings.
The meta PDU has a generalized meta data structure to convey a sequence of type-
value pairs with format effectors for any MML message. And the xdr PDU
incorporates the concept of IDL which is currently most promising technology for
the exchange of information. Current limitations allow only xdr PDU to contain
any kind of interface messages. And other two types, string PDU and meta PDU,
are only allowed to convey the MML interface messages and DB SQL queries.

CSer

S
Y
S

����

���

���

�	�
��
���

�����������

��	
��
�	�����

���
��

	��������

��
��

����
���

����
��

������

���

����

���

 ��

���

Local
HMI

!	��"�#�$�����%���&'�(&�������)�*�������'�(���&��)��

���������+��,�'&��!�����������	-��������������.�/��.-�

#��"�#%�����&���������������(����&(���

 ��"�� �����)��������%���������&��&'��
!0123

JNI

CMIP
SNMP

IM

Figure 6: Adaptation Capabilities.

 Given these adaptation approaches and capabilities, we are able to freely attach
other types of message adapters into MML-managed NEs. This adapter contains
the Java native interface (JNI) interface modules for CMIP, SNMP, and needless to
say for legacy HMI console. This indicates the ease of integration with other

(c) 1999 IFIP

management protocols and means that a generalized NE interface can be possible.
Figure 6 shows such examples of deploying local operator craft and any other
consumer modules with the proposed adaptive interface.

4. Conclusion

This paper proposes new design schemes for a lightweight TMN Q3 agent and its
loosely-coupled gateway function. The term "lightweight" means that designing
and implementing MIB of an agent is done such that only containment and
association relationships are represented. The accesses by managing system to the
managed resources are through the adaptation and mediation of a gateway. For this,
there are several inventories including a direct access method to the NE-embedded
DB, a rule database for mediation, an adaptive message interface to MML
managed-NEs. In an effort to make these schemes successful, required capabilities
are proposed and implemented partially.
 One of current issues in telecommunication network is to integrate legacy
systems into TMN. The other is to allow for more open interfaces such as
WWW/Java, CORBA, SNMP, instead of strict adhering to CMIP based TMN. To
meet the current trends, the proposed schemes and techniques are meaningful and
effective for employing the integrated network management systems. Finally,
remaining works, mentioned but not covered in current implementation, are the
definition of protocol-insensitive DB schema from the standardized MIBs
definitions. Applying of agent extensibility protocols and fully implementing the
lightweight MIB/MIT are still in progress. The continuing researches on the not
resolved design schemes, on the problems of implementing the proposed schemes,
and on the performance comparison with the traditional agent system will be
conducted in near future.

References

[1] ITU-T Recommendation M 3010,” Principles for a Telecommunications
Management Network”, 1992.

[2] The ATM Forum af-nm-0027.000, “CMIP Specification for the M4 Interfaces”,
Sep. 1995.

[3] Adrian Manley, Clare Thomas, “Evolution of TMN Network Object Models for
Broadband Management”, IEEE Comm. Mag., pp 60 – 65, October 1997.

[4] M. Feridun, et.al, “Implementing OSI Agent/Managers for TMN”, IEEE Comm.
Mag. Sep. 1996, pp 62~67.

[5] Roch H. Glitho, et. al, “Approaches for Introducing TMN in Legacy Networks:
A Critical Look”, IEEE Comm. Mag. Sep. 1996, pp 55 ~ 60.

[6] Tomoaki Shimzu, et.al, “Implementing and Deploying MIB in ATM Transport
Network Operations System”, E-mail:shimizu@ntttsd.ntt.jp

[7] Java Soft, “Java Management API”, Specification 1.0, Sep, 1996,
[8] Free Range Media, Inc., “Industry Leader Propose Web-Based Enterprise

Management Standard Efforts”, July 17,1996,
[9] Douglas C. Shmidt, “An Overview of the Common Object Request Broker

(c) 1999 IFIP

Architecture (CORBA)”,
[10] Object Management Group, “CORBA-based Telecommunication Network

Management System”, OMG Whitepaper Draft2, January 1996.
[11] Qinzheng Kong and Graham Chen, “Integrating CORBA and TMN

Environment”, CiTR Technical Journal, an later version of IEEE/IFIP Network
Operations and Management Symposium 1996.

[12] Subrata Mazumdar, “Inter-Domain Management between CORBA and
SNMP: WEB-based Management – CORBA/SNMP Gateway Approach”,
DSOM ’96, L’Aquila, Italy, October 28-30, 1996.

[13] Subrata Mazumdar, “Inter-Domain Management: CORBA, OSI, SNMP”,
IM ’97, San Diego, May 12, 1997,

[14] S.H. Lee, J.J. Lim, W.S. Kim, “Layered Architecture of TMN Management
Application Framework for ATM Switch in NEML and Sub-NML Layer”,
ICT ’97, Melbourne, Australia

[15] S.H. Lee, W.S. Kim, J.J. Lim, “A Proposal on Design Scheme of TMN
NEML Management Application Framework for ATM Switching Systems”,
ICC 97, Montreal, Canada

[16] RFC 2257, “AgentX Protocol Version 1.”, M. Daniele, B. Wijnen, D.
Francisco. January 1998.

[17] Eckhart Koerner, “Design of a proxy for managing CMIP agents via SNMP”,
Computer Communications, pp 349-360, 1997

[18] Ousterhout, “The Tcl Language and the Tk Toolkit, Reading, MA: Addison-
Wesley, 1994.

[19] George Pavlou, et.al, “A CMIS-Capable Scirpting Language and Associated
Lightweight Protocol for TMN Application”, IEEE Comm. Mag., Sep. 1996,
pp82~87.

[20] IETF RFC 1832, “XDR: External Data Representation Standard”, August
1995.

(c) 1999 IFIP

