
0DQDJHPHQW�RI�3UR[\�2EMHFWV�3URYLGLQJ
0XOWLPHGLD�$SSOLFDWLRQV�LQ�WKH�0RELOH
(QYLURQPHQW

-��6HLW]��.��&KHYHUVW��1��'DYLHV��0��(EQHU��$��)ULGD\
&RPSXWLQJ�'HSDUWPHQW��/DQFDVWHU�8QLYHUVLW\
/DQFDVWHU�/$���<5��8��.�
7HO����������������������)D[���������������������
(�PDLO��VHLW]��NF��QLJHO��HEQHU��DGULDQ�#FRPS�ODQFV�DF�XN

$EVWUDFW
Due to increasing computational power, long-life batteries and wireless links with
improving bandwidth, distributed multimedia applications have become more and
more attractive for mobile users. However, the varying quality of service (QoS) on
the wireless link is still a major problem. One, generally accepted solution to this
problem utilises ‘proxies’ which act on behalf of the mobile user and modify the
communication data stream in order to match the current QoS conditions. These
proxies are generally dependent on protocol layers, applications or application data.
Therefore, in order to enable proxy objects to be flexibly inserted for a given mul-
timedia stream, an architecture is required for managing supplied and installed
proxy objects.

.H\ZRUGV
Management of Distributed Object-Oriented Multimedia Applications, Mobile
Systems, CORBA, Quality of Service, Proxy

�� ,QWURGXFWLRQ

Multimedia communication has been made feasible by emerging broadband net-
working technologies based on fiber, e.g. ATM, and high performance chips. Fur-
thermore, due to increasing battery power and improving display technology, mo-
bile computers have become more and more popular. However, new wireless “un-
tethered” communication services must be able to adapt to a constantly changing
communications environment brought on by mobility [12]. Because physical prob-
lems like signal reflection, fading and distortion prevent a constant and high bit rate
over a wireless link, the strong QoS requirements of multimedia applications have
to be decreased by modifying the communication stream to adapt its requirements
to match the characteristics of the wireless transmission link.

One way to achieve this adaptation is to install SUR[LHV into the communication
data stream. A proxy acts on behalf of the mobile client, separating the wireless
from the wireline link. In addition to this, it also acts as a mediator between these
two different links modifying the communication stream to adapt its requirements

(c) 1999 IFIP

(see figure 1, [20]). The technique to insert a proxy has been most commonly used
to access World-Wide Web pages [15] and to implement firewalls [14]. However,
the idea of proxies has proved to be valuable for mobile clients, too.

DFFHVV�QRGH
�3UR[\�

PRELOH�FRPSXWHU
�&OLHQW�

ORZ�EDQGZLGWK
KLJK�ODWHQF\

KLJK�EDQGZLGWK
ORZ�ODWHQF\

FRPSXWHU�LQ
ZLUHG�QHWZRUN

�6HUYHU�

ZLUHOHVV�QHWZRUN
�H�J���UDGLR�

ZLUHG�QHWZRUN

�H�J���,QWHUQHW�

)LJXUH��: Scheme of a Proxy

However, although this approach has been implemented in several research
projects, the insertion of proxies remains rather static. Thus, we propose an archi-
tecture to flexibly insert proxies “on the fly”. The architecture is based on the
&RPPRQ� 2EMHFW� 5HTXHVW� %URNHU� $UFKLWHFWXUH� �&25%$�� standard by the Object
Management Group [16]. CORBA is a widespread architecture for the implemen-
tation of distributed applications. Its applicability in the area of (tele-)commu-
nication services and their management has also been proved [21]. Furthermore,
actual research projects deal with real-time CORBA implementations.

This paper focuses on the management of proxies. For selecting and installing
proxies, a generic modeling technique has to be defined. We propose a multi-
layered technique to supply several interfaces that allow the use of the proxies
while assuming different knowledge of their functionality. Furthermore, we detail
the part of the architecture dealing with supplying, selecting and installing proxies.

The remainder of this paper is structured as follows. Section 2 introduces the
RAPP architecture, discussing different levels of proxies and related work. Next,
section 3 works out a classification scheme for proxy objects on which their man-
agement is based. The details of the management of proxies as part of the RAPP
architecture are described in section 4. Finally, section 5 summarizes this paper and
gives an outlook on future work.

�� 7KH�5DSS�$UFKLWHFWXUH

��� 5HODWHG�:RUN

In the area of mobile computing, proxies can be found on two different levels:-
3URWRFRO�3UR[LHV operate on the protocol level. They can interfere on the trans-

port level by introducing indirectness like in ,QGLUHFW�7&3� [2] or by acting on be-
half of the mobile client as in the 6QRRS�protocol [3]. More specific proxies work
on the base of a modified application protocol like a version of HTTP improved for
mobile clients [17] or the /RZ�%DQGZLGWK�;�3URWRFRO� �/%;� [10] suitable for X-
Windows applications running on a mobile client.

(c) 1999 IFIP

$SSOLFDWLRQ� 3UR[LHV additionally modify application data to reduce the re-
quired bandwidth or to pre-compute data. One example, covering the area of CAD
and network management using a pen-based palmtop computer, is described in [5].

Some approaches combine the two levels of proxies, leading to proxy instances
improving the behaviour of protocols and modifying (e.g. compressing or filtering)
application data to reduce the required bandwidth. Some examples of this are the
*/2023 project [6], its follow-on project 3\WKLD� [8], the use of VHUYLFH� SUR[LHV
[11] and an architecture based on real-time distillation [24]. Other approaches do
not only include proxies but define a complete platform for supporting adaptive
mobile applications. One of the most interesting approaches is the 0RELZDUH�7RRO�
NLW [4], which provides a set of open programmable interfaces and algorithms and,
hence, deals with mobile devices, base stations and mobile-capable switches or
routers. However, this architecture demands serious modifications in the distributed
applications.

Generally, the following issues have not been solved completely in these ap-
proaches:-
• ([WHQVLELOLW\. Most approaches have developed specific proxies for certain

applications or for special data types, but it is often hard to extend these ap-
proaches to deal with new applications and data types.

•)OH[LEOH�%HKDYLRXU. In most systems the behaviour of the proxy is statically
defined. In addition to this, it is generally not possible to fine-tune the proxy’s
operation to cope with variations in the wireless link’s QoS.

•)OH[LEOH�3ODFHPHQW. The location of the proxy is an important factor in deter-
mining the performance of the overall proxy system.

• 6FDODELOLW\. Finally, there is the issue of scalability. All the described ap-
proaches work well, if you have one or two mobile hosts, each being repre-
sented by their own proxy, or if you scale to the number of mobile nodes by in-
stalling a high-performance computer or cluster of computers to host the prox-
ies (e.g. [7]). However, for the system to scale proxies must be distributed
throughout the system.

We have attempted to address the above issues in our architecture, which is de-
scribed in the next section.

��� $Q�2YHUYLHZ�RI�WKH�5$33�$UFKLWHFWXUH

The RAPP (5eactive $daptive 3roxy 3lacement) architecture is based on the
&RPPRQ� 2EMHFW� 5HTXHVW� %URNHU� $UFKLWHFWXUH� �&25%$� standard [16]. Using
CORBA, it is easy to extend existing applications and proxy objects to become part
of the RAPP architecture. Proxy objects can be installed on the fly using CORBA
object calls. Furthermore, the CORBA adapters for the application components
exchange QoS messages via a generic QoS service on which decisions to install or
deinstall proxy objects are based. Figure 2 illustrates the RAPP architecture.

One key issue of the RAPP architecture is the management of proxy objects.
Therefore, a consistent model for proxy objects was created based on a comprehen-
sive classification of proxy objects, which is detailed in the next section.

(c) 1999 IFIP

4R6�6HUYLFH� 4R6�6HUYLFH�

&25%$�$GDSWHU &25%$�$GDSWHU

0XOWLPHGLD�
6HUYHU

0XOWLPHGLD�
&OLHQW

0XOWLPHGLD�VWUHDP
XVLQJ�VSHFLILF�SURWRFRO

3UR[\�)DFWRU\

2EMHFW�5HTXHVW�%URNHU

7UDQVPLVVLRQ�&RQWURO�3URWRFRO

3

,QWHUQHW�,QWHU�25%�3URWRFRO

:LUHG�7UDQVPLVVLRQ�/LQN

8VHU�'DWDJUDP�3URWRFRO

,QWHU�25%�3URWRFRO
DGDSWHG�IRU�ZLUHOHVV�OLQNV

:LUHOHVV�7UDQVPLVVLRQ�/LQN

LQ
V
WD
OO�P
R
G
LI\

UHTXHVW
LQVWDOODWLRQ

)LJXUH��: An Overview of the RAPP Architecture

�� 3UR[\�2EMHFWV

��� &ODVVLILFDWLRQ�RI�3UR[\�2EMHFWV

One of the goals of the RAPP architecture is to transparently provide proxy objects
for distributed applications. This enables a suitable proxy object to be chosen and
installed, whenever the actual link’s characteristic demands a proxy object. As the
collection of different proxy objects offered via the RAPP architecture is independ-
ent of the applications, one cannot expect the distributed application to be prepared
to cope with any of these proxy objects. However, the application can use the ad-
vantages of the proxy objects via generic interfaces. To determine these generic
interfaces proxy objects require classification. We propose a hierarchical classifi-
cation in order to allow flexibility in defining and using these interfaces.

At top level, three main characteristics define the classification scheme:-
1. The proxy object modifies the input stream without changing the stream type.

Hence, the types of input and output stream are the same, but the amount of
data in the output stream has been changed by (usually loss-prone) compres-
sion. This characteristic is called 'DWD�)LOWHULQJ.

2. The proxy object receives an input stream, processes the data and sends the
processed data in an output stream. This data processing might not only change
the amount of data to be sent but also its type. We call this characteristic 'DWD
7\SH�0RGLILFDWLRQ.

3. Besides processing the data, the proxy object might also be capable of storing
the data so that the client can retrieve them later, which we call 'DWD�&DFKLQJ.

(c) 1999 IFIP

According to these three main characteristics, three different classes of proxy ob-
jects have been identified and are described below:-
)LOWHULQJ�3UR[LHV
A proxy object that cannot cache data and cannot change the data type when proc-
essing the incoming stream is called a ILOWHULQJ� SUR[\. One example of this is a
proxy object acting as an MPEG filter to reduce the required bandwidth by drop-
ping colours or less relevant video frames [22].
7UDQVIRUPLQJ�3UR[LHV
A proxy object that modifies the stream type without being able to store the trans-
formed data locally is classified as a WUDQVIRUPLQJ�SUR[\. Such a proxy might com-
press an ASCII stream into a compressed binary stream to save bandwidth.
&DFKLQJ�3UR[LHV
In mobile computing the user would sometimes like to work without being con-
nected to the wired network. Therefore, a FDFKLQJ�SUR[\, like a mail proxy, might
store data for the mobile client so that they can request the stored data after having
established a reliable connection to the wired network again.
Furthermore, these proxy classes can also be combined. A transforming proxy
might use a loss-prone compression technique, hence it also acts as a filtering
proxy, whereas a caching proxy might additionally implement a function to change
the type of the stream or to compress data. Because each proxy class results in a
specific interface (see section 3.3), a proxy implementing different proxy classes
offers the combination of their interfaces.

��� 7\SHV�RI�3UR[\�2EMHFWV

The next level of the classification scheme is based on the types of streams a proxy
object receives and emits. Therefore, we introduce a three-fold stream classification
scheme involving a coarse-grain classification, a fine-grain classification and an
extension of the latter. In the coarse-grain classification we differentiate between
five VWUHDP� W\SHV according to the 0XOWLSXUSRVH� ,QWHUQHW�0DLO�([WHQVLRQV�0,0(
standard [9]. To formally define the stream type we use the Object Type Macro as
defined in [18] shown below.
streamType OBJECT-TYPE
 SYNTAX Integer{
 text(1),
 application(2),
 image(3),
 audio(4),
 video(5)}
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 “To classify a communication data stream coarsely,
 five MIME Content-Types can be used:
 1 – text;
 2 – application;
 3 – image;
 4 – audio;
 5 – video.”
 ::= { commDataStreamEntry 2 }

(c) 1999 IFIP

Each of the five stream types can be further subdivided using fine-grain sub-
types shown in figure 3.

6WUHDP�7\SH6WUHDP�7\SH

WH[W DSSOLFDWLRQ LPDJH DXGLR YLGHR

SODLQ

KWPO

SGI

UWI

SRVWVFULSW

RFWHW�VWUHDP

PVZRUG

JLI

MSHJ

ELWPDS

SKRWR�FG

SFP

ZDY

PLGL

PSHJ

UHDODXGLR

PSHJ

P�MSHJ

TXLFNWLPH���

��� ���

��� ���

K����

)LJXUH��: Stream Types and Subtypes

Each of the subtypes can be enhanced by a specific characteristic: examples are
“encrypted” or “compressed”. To be as flexible as possible both subtypes and sub-
type enhancements are easily extensible. Any proxy object might then be charac-
terized by the stream it receives and the stream it sends. This characterization is
mirrored in the proxy selection process described in section 4.

��� ,QWHUIDFHV�RI�3UR[\�2EMHFWV

Each proxy object offers an interface for requesting the different services which the
object has implemented. Because the RAPP architecture is a generic architecture,
the applications using the services of a proxy object should not be specially cus-
tomized for these services. Hence, the proxy objects should supply a generic inter-
face making it easier for applications to request services independently of the proxy
object’s implementation. However, because the proxy objects have different tasks
and serve different purposes, we propose to use four levels of interfaces.
*HQHULF�3UR[\�2EMHFW�,QWHUIDFH
Any proxy object should offer an interface independently of the implemented serv-
ices. This generic interface allows the following operations:-
• ProxyObject installProxy (IPAddress sender, integer port,

 IPAddress receiver, integer recPort, integer StreamID)
To install a proxy object, this generic “installProxy” operation is used.
When calling this operation, one must supply the sender of the stream to be
modified by the proxy, the port the stream should be re-routed to, the receiver
and its port, and the stream identification. As a result, a handle to the installed
proxy object is returned. (Note that this interface procedure is indirectly of-
fered by the proxy factory described in section 4.1.)

• boolean reRouteProxy (IPAddress sender, integer port,
 IPAddress receiver, integer recPort, integer StreamID)
To modify the route through a proxy, e.g. if a new proxy has to be inserted into
the stream or if another proxy has been deleted, the “reRouteProxy” proce-

(c) 1999 IFIP

dure is used. It requires the same parameters as the “installProxy” proce-
dure, but is directly called at the proxy object’s interface.

• boolean deleteProxy (ProxyObject proxy)
A proxy object can be deleted using this operation. Note that the stream has to
be re-routed first before deleting the proxy object.

&ODVV�GHSHQGHQW�3UR[\�2EMHFW�,QWHUIDFH
To influence the behaviour of a proxy object in a general way, the proxy object
should offer an interface according to its class. We suggest the following opera-
tions: The behaviour of a ILOWHULQJ� SUR[\ can be controlled using the operations
filterOn() to enable the filter, filterOff() to disable the filter, increase-
Filtering() to reduce the required bandwidth of the data stream leaving the
proxy object and decreaseFiltering() to loosen the degree of filtering. A
WUDQVIRUPLQJ�SUR[\ offers the operations transformOn() to start the transforming
process and transformOff() to stop it. The user can affect the behaviour of a
FDFKLQJ� SUR[\ using the operations cacheOn() to enable the caching, cache-
Off() to disable caching and emptyCache() to delete all the data stored in the
cache.

As stated above, a proxy that implements more than one proxy object class must
supply an interface combining all the interface operations defined for these proxy
object classes.
7\SH�GHSHQGHQW�3UR[\�2EMHFW�,QWHUIDFH
Due to the different types of streams a proxy object can process, type dependent
operations have to be gathered in a special interface. Because the number of differ-
ent stream types and their subtypes is large, not all type-dependent interfaces can be
detailed here. The following example for a filtering proxy illustrates what a type
dependent interface might look like.

In the first prototype implementing the RAPP architecture, we experimented
with a proxy object that filters an MPEG video stream [22]. Therefore, this proxy
offers a class-dependent interface for filtering proxies consisting of the operations
filterOn(), filterOff(), encreaseFiltering() and decreaseFilter-
ing(). Furthermore, as a proxy specifically developed to filter an MPEG stream, it
offers the following type-dependent operations (amongst others):-
• dropBFrames(): erase all the B-frames in the MPEG stream;
• dropBandPFrames(): erase all B- and P-frames in the MPEG stream;
• dropColor(): change the colors to black & white;
• requantize(): requantize the resolution.
All proxy objects suitable for an MPEG stream must implement these interface
operations. In addition, these operations may also be used when realizing the op-
erations of the class-dependent proxy object interface: the filterOn() operation
might be mapped onto the dropBFrames() operation, whereas the encrease-
Filtering() operation would then be performed by calling the drop-
BandPFrames() operation.
,PSOHPHQWDWLRQ�GHSHQGHQW�3UR[\�2EMHFW�,QWHUIDFH
Finally, any proxy object implementation might offer an implementation-specific
interface. The operations contained in this interface are not restricted in any way.

(c) 1999 IFIP

However, the application must be aware of the implementation if it wants to use
any of these operations.

��� /RFDWLRQ�RI�3UR[\�2EMHFWV

Another critical issue is the location of a proxy object. There are two restrictions
that have to be considered when installing a proxy:-
1. The proxy object must be installed on a node where (a) the required resources

(hardware, software, qualitative requirements) can be fulfilled and (b) the ob-
ject PD\ be installed.

2. The installation of one proxy object may result in the installation of another
proxy object. E.g., if a transforming proxy is installed which compresses data,
then another one has to be installed to uncompress the data for the receiver.

The location of a proxy has not been deeply considered in other research projects in
this area. The location of the proxy objects might be crucial to the performance
experienced by the mobile user, especially for applications distributed over a wide
area network. However, due to complex network structures and different network
domains, it is generally very complicated to compute the optimal location for proxy
installation. Therefore, we propose a simplified decision scheme for proxy place-
ment. For each proxy object, a list of five placement options determines the se-
quence of location preferences. The five options are [20]:-
1. The proxy should be located on the server.
2. The proxy should be located within the server’s domain (e.g., the same subnet).
3. The proxy should be located in the client’s domain.
4. The proxy should be located on the client.
5. The proxy could be located anywhere in the network.
For example, the location preference for the MPEG proxy described above is the
sequence <1,2,3,5>. This means that the proxy should be installed on the MPEG
server if possible to filter the MPEG stream before it leaves the sender. The second
option is to install the proxy in the server’s domain to minimize the bandwidth
needed between the server’s subnet and the client. The third option is to install the
proxy within the mobile client’s actual domain, but preferably within the wired
network, to disburden the (possible) wireless link to the mobile user of a stream
requesting too much bandwidth. Finally, if all these options are not feasible (due to
security or performance reasons), the proxy might be installed somewhere in the
network (possibly resulting in a longer transmission delay). However, to install the
proxy on the (mobile) client is not advisable, because this would have no effect on
the quality of the transmission over the wireless link.

The location preferences play an important role in the management of proxy
objects as described in the next section.

�� 0DQDJHPHQW�RI�3UR[\�2EMHFWV

After the classification of proxy objects, this section deals with their management.
Therefore, we differentiate between the following tasks:-
• Proxy objects must be hosted for instantiation.
• Suitable proxy objects must be selected.

(c) 1999 IFIP

• Instantiated proxy objects must be parametrised, modified and de-installed.
The following sections describe the components cooperating for the given tasks.

��� 3UR[\�)DFWRU\

Proxy objects are kept in proxy repositories managed by SUR[\� IDFWRULHV. Each
proxy factory is responsible for a number of different proxy objects. One can add
any proxy object to a given proxy factory by supplying a description of the proxy
object. This description contains the following information:
• a classification of the stream received by the proxy object, represented by the

triple <streamType, streamSubType, streamSubTypeSpecific>;
• a classification of the stream emitted by the proxy object using the same

structure as introduced above;
• the location preference of the proxy object given as a vector containing be-

tween one and five integers in the numeric range of one to five, as described in
section 3.4;

• a boolean variable specifying, whether the proxy object uses loss-prone com-
pression or not.

Hence, a proxy object that filters an MPEG video stream can be described by the
following information:
<video, mpeg, none> // Instream is an MPEG video
 // stream without special characteristics
<video, mpeg, none> // Outstream is an MPEG video stream
 // without special characteristics
[1,2,3,5] // Location preferences
true // The proxy uses loss-prone compression

The proxy factory registers all its proxy objects with a local proxy trader. This
proxy trading service is detailed in the next section.

��� 3UR[\�7UDGLQJ�6HUYLFH

During the proxy selection phase, the client requests a proxy object to be installed
for a given data stream. As described in the section above, the effect of a proxy
depends on the place it is installed. In order to simplify the process of finding a
suitable proxy object, we suggest the use of a SUR[\�WUDGLQJ�VHUYLFH. This service is
provided by several SUR[\� WUDGHUV. Each proxy trader is responsible for a certain
network domain, e.g. a subnet. Via a UHJLVWUDWLRQ process, a proxy trader receives
the information about all the proxies available through all the proxy factories of this
domain.

In order to register a proxy object, the proxy factory responsible for that object
has to export its service description to the proxy trading service. Following [1], this
“export” procedure must supply an object reference to the object being offered,
i.e. the proxy factory’s ID, a service type name and a set of properties, given as
name and value pairs. In the case of the proxy trading service, the service type
name is the class of the proxy object (as defined in section 3.1) and the set of prop-
erties is given through the information on the proxy object given above. As a result,
the trader returns a proxy offer ID, which is used for further modifications of the
registered service, including its withdrawal.

(c) 1999 IFIP

To de-register a proxy object, the “withdraw” procedure must be called sup-
plying the proxy offer ID. Furthermore, it is sometimes advantageous to have a
procedure de-registering all the proxy objects of a given proxy factory. For this, the
CORBA standard suggests the “withdraw_using_constraints” procedure.

Finally, the “modify” procedure can be used to modify an already registered
proxy offer specifying its offer ID and a new set of properties.

To keep the proxy trading service simple, the standardised trader operations
“describe” and “resolve” are not currently included.

Since each domain has its own proxy trader, it is easy to assign a proxy trader to
both servers and mobile clients. When the client first uses a service offered by the
server, it also receives a handle to the server’s proxy trader. This is important,
because some proxy objects might prefer to be installed close to the server.

Once the client decides that a proxy object should be installed into the stream, it
addresses the proxy trading service using the “query” procedure supplying the
following parameters:-
• the client’s ID;
• a reference to the proxy trading service of the server’s domain;
• a description of the desired proxy service (according to the proxy object de-

scription above, but without location specification);
• a preference scheme to influence the sequence of results;
• an integer value (“how_many”) for describing the maximum length for the

sequence of results.
This query leads to the proxy trading service trying to find a sequence of proxy
factories that offer proxy objects of the required kind via the following three steps
(see figure 4):-
1. The trading service searches its local database where the proxy offer descrip-

tions are stored. All the offers that allow local installation and have suitable in-
put and output streams are gathered in a vector V1. Furthermore, the trader
creates a vector V2 of all the offers whose outgoing streams correspond to the
one the client expects. These offers might be combined with a proxy object to
be installed on the server side. Hence, the trader will send additional queries to
find complement proxies to the ones stored in V2.

2. After the proxy trading service of the server’s domain has received the original
query it performs the retrieving of its local database, but without looking for
offers fitting the output stream only. The same is done for the additional que-
ries looking for complementary proxy objects. For each query a result con-
taining the offers and the corresponding proxy factories is returned.

3. The client’s proxy trading service then merges the results of its local query
stored in V1 and the first result returned by the server’s proxy trading in vector
V3. Then it combines the offers stored in vector V2 with the results of the ad-
ditional queries and extends vector V3 with the suitable proxy object pairs. If
the merged list is empty, the proxy trading service could then query other
proxy trading service instances, but only if the client did not prevent that in its
“preference” parameter.

(c) 1999 IFIP

If the result list is not empty, the proxy trading service orders the entries according
to the “preference” parameter given in the query. It also considers the
“how_many” parameter for only returning the best [results to the query. It is then
up to the client to decide which of the offers included in the returned list to choose.

 LA
N

 LA
N

6HUYHU
0RELOH�&OLHQW

,QWHUQHW

&OLHQW
$SSOLFDWLRQ

6HUYHU
$SSOLFDWLRQ

5$33�3OXJLQ 5$33�3OXJLQ

Workstation

Workstation

Workstation

Workstation

Workstation
Workstation

Workstation

3UR[\
7UDGLQJ
6HUYLFH

3UR[\
7UDGLQJ
6HUYLFH

&OLHQW
V�'RPDLQ 6HUYHU
V�'RPDLQ

4XHU\

3UR[\
2IIHUV

6WHS����4XHU\�ORFDO�GDWDEDVH

3UR[\
2IIHUV

6WHS���
4XHU\�VHUYHU
V

SUR[\�WUDGLQJ�VHUYLFH

4XHU\�ORFDO�GDWDEDVH

6WHS���
4XHU\�,QWHUQHW

)LJXUH��: Functionality of the Proxy Trading Service

��� 3UR[\�,QVWDOODWLRQ��0RGLILFDWLRQ�DQG�'H�LQVWDOODWLRQ

Having received the results to its query, the client chooses the proxy factory (or
factories, if there are two proxy objects to be installed) and requests the installation
of the proxy object. For the installation, the procedure “installProxy” is called,
which is part of the generic proxy object interface and is offered indirectly by the
proxy factory.

The client can then enable the functionality of the proxy object by calling the
functions of the class-dependent proxy interface. Based on monitoring the actual
QoS associated with the stream, the client is able to modify the behaviour of a
proxy object, choosing from three options:-
1. The class-dependent proxy interface offers high-level operations to influence

the functionality of the proxy object.
2. A finer degree of control is offered through the type-dependent proxy inter-

face. However, the client’s application must be prepared to use these opera-
tions.

3. Finally, the client could use the implementation-dependent interface offering
low-level operations.

Once the actual QoS is sufficient or the data stream has finished, a proxy object can
be de-installed using the “deleteProxy” operation. Note that de-installing a proxy
object might result in having to re-route the stream calling the “reRouteProxy”
operation of other installed proxy objects.

���� 7KH�5$33�3URWRW\SH

For a first prototype we chose the following components:
• A modification of the Berkley MPEG player is used as a client/server applica-

tion [19].

(c) 1999 IFIP

• As a proxy object, we used an MPEG filter developed by N. Yeadon [23].
We had to enhance these components with special CORBA stubs (as can be seen in
figure 5, called “RAPP Plugin” consisting of the generic QoS Service component
and the CORBA adapter illustrated in figure 2). These enhancements were pro-
grammed using the OmniBroker as an Object Request Broker implementation [13].
The video stream emitted by the MPEG video player is sent using UDP packets.
These UDP packets are not touched by the RAPP plugins. The plugins are only
responsible for signalling.

&OLHQW
&OLHQW

5$33�3OXJLQ5$33�3OXJLQ

03(*�9LGHR�6WUHDP

&RQWURO�6WUHDP

�D��EHIRUH�SUR[\�LQVWDOODWLRQ

&OLHQW&OLHQW

5$33�3OXJLQ5$33�3OXJLQ

�E��DIWHU�SUR[\�LQVWDOODWLRQ

6HUYHU
6HUYHU

5$33�3OXJLQ5$33�3OXJLQ

)LOWHU
)LOWHU

5$33�3OXJLQ
5$33�3OXJLQ

6HUYHU6HUYHU

5$33�3OXJLQ5$33�3OXJLQ

03(*�9LGHR�6WUHDP
)LOWHU

HG�0
3(*

9LGHR
�6WUH

DP

3UR[\�2EMHFW

)LJXUH��: Functionality of the Prototype

We organized the scenario as follows:
• The client part was started on a Linux Pentium-based PC in the Computing

Department of Lancaster University.
• The server part ran on another Linux Pentium-based PC in the same depart-

ment.
• The proxy trader service was supplied by a third PC in the Computing De-

partment.
The MPEG filter we chose as a proxy was, however, installed on a Sun Worksta-
tion in the Institute of Telematics in the University of Karlsruhe/Germany. This
meant, that the multimedia stream containing the MPEG video frames had to be re-
routed over Karlsruhe.

The results of this experiment have been very satisfying. Installing and de-
installing the proxy worked without any kind of disturbing delay. Although the
application parts and the MPEG filter used as a proxy object ran on different ma-

(c) 1999 IFIP

chine architectures and operating systems, CORBA provided a seamless integration
of the different application parts. This prototype is a solid foundation to extend the
implementation of the RAPP architecture.

�� &RQFOXVLRQ

Proxies have been proven to be an effective means of adapting the QoS require-
ments of multimedia applications to the varying characteristics of wireless links. In
order to be flexible when supporting different kinds of distributed applications and
multimedia streams we introduced an architecture for managing proxy objects
based on the CORBA standard.

Key factors for the success of this architecture are a comprehensive technique to
express the characteristics of proxies for the proxy selection process and an easy to
handle interface to interact with proxy objects. This interface makes it easy to call
operations and, thus, change the proxy’s behaviour, without having to know the
proxy’s functionality in detail.

The prototype of the architecture has been implemented and tested both locally
and over wide distances (between England and Germany). The results have been
very promising, and therefore we plan to enhance the prototype in order to produce
performance data. Furthermore, because installing and modifying proxies is critical
for security, the RAPP architecture will also be extended to contain a security
mechanism to control the handling of proxies.

$FNQRZOHGJHPHQWV

This work has been partly supported by the EPSRC under the auspices of the Re-
active Services project.

5HIHUHQFHV

[1] S. Baker: &25%$� 'LVWULEXWHG� 2EMHFWV� 8VLQJ� 2UEL[. ACM Press / Addison
Wesley, Harlow, England - Reading, Massachusetts, 1997.

[2] A. Bakre and B.R. Badrinath: ,�7&3�� ,QGLUHFW� 7&3� IRU� 0RELOH� +RVWV. 15th
International Conference on Distributed Computing Systems, Vancouver, Can-
ada, May 30 - June 2, 1995.

[3] H. Balakrishnan, S. Seshan and R.H. Katz: ,PSURYLQJ�5HOLDEOH�7UDQVSRUW�DQG
+DQGRII� 3HUIRUPDQFH� LQ� &HOOXODU� :LUHOHVV� 1HWZRUNV. ACM Wireless Net-
works 1(IV), 1995.

[4] A.T. Campbell: 7KH� 0RELZDUH� 7RRONLW, Fourth International Workshop on
High Performance Protocol Architectures (HIPPARCH '98), London, June 15–
16, 1998

[5] W. Citrin, P. Hamill, M.D. Gross and A. Warmack: 6XSSRUW� IRU�PRELOH�3HQ�
EDVHG� $SSOLFDWLRQV. Third annual ACM/IEEE International Conference on
Mobile Computing and Networking MobiCom'97, Budapest, Hungary, Sep-
tember 26–30, 1997.

[6] A. Fox and E.A. Brewer: *OR0RS�� *OREDO� 0RELOH� &RPSXWLQJ� E\� 3UR[\.
http://www.research.microsoft.com/os/sosp%2D15/fox.txt, 1995.

(c) 1999 IFIP

[7] A. Fox and E.A. Brewer: 5HGXFLQJ�:::�/DWHQF\� DQG�%DQGZLGWK� 5HTXLUH�
PHQWV�E\�5HDO�7LPH�'LVWLOODWLRQ. Fifth International World Wide Web Confer-
ence, Paris, France, May 6-10, 1996.

[8] A. Fox, S.D. Gribble, E.A. Brewer and E. Amir: $GDSWLQJ� WR� 1HWZRUN� DQG
&OLHQW�9DULDELOLW\�YLD�2Q�'HPDQG�'\QDPLF�'LVWLOODWLRQ. ASPLOS-VII - Sev-
enth International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, Cambridge, Mass., USA, October 1–5, 1996.

[9] N. Freed and N. Borenstein: 0XOWLSXUSRVH� ,QWHUQHW�0DLO�([WHQVLRQV� �0,0(�
3DUW�7ZR��0HGLD�7\SHV. Request for Comments 2046, November 1996.

[10] J. Fulton and C. Kantarjiev: $Q�8SGDWH�RQ�/RZ�%DQGZLGWK�;� �/%;�. The X
Resource 5(1), pp. 251–266, January 1993.

[11] A. Hokimoto, K. Kurihara and T. Nakajima: $Q� $SSURDFK� IRU� &RQVWUXFWLYH
0RELOH�$SSOLFDWLRQV�8VLQJ�6HUYLFH�3UR[LHV. 16th International Conference on
Distributed Computing Systems ICDCS, Hong Kong, May 27–30, 1996.

[12] R.H. Katz: $GDSWDWLRQ�DQG�0RELOLW\�LQ�:LUHOHVV�,QIRUPDWLRQ�6\VWHPV. Personal
Communications 1(1), pp. 6–17, First Quarter, 1994.

[13] M. Laukien and U. Seimet: 2PQL%URNHU, Object-Oriented Concepts, Inc.,
Billerica (USA) and Ettlingen (Germany). Manual, December 16, 1997.

[14] S.W. Lodin and C.L. Schuba:)LUHZDOOV�IHQG�RII�LQYDVLRQV�IURP�WKH�1HW. IEEE
Spectrum 35(2), pp. 26–34, February 1998.

[15] A. Luotonen and K. Altis: :RUOG�:LGH�:HE�3UR[LHV. First International Con-
ference on the World-Wide Web, Geneva, Switzerland, May 25–27, 1994.

[16] OMG: 7KH�&RPPRQ�2EMHFW�5HTXHVW�%URNHU��$UFKLWHFWXUH�DQG�6SHFLILFDWLRQ,
Object Management Group (OMG). Revision 2.2, February 1998.

[17] V.N. Padmanabhan and J.C. Mogul: ,PSURYLQJ� +773� /DWHQF\. Computer
Networks and ISDN Systems 28(1/2), pp. 25–35, December 1995.

[18] M.T. Rose and K. McCloghrie: &RQFLVH�0,%�'HILQLWLRQV. Request for Com-
ments 1212, March 1991.

[19] L. Rowe, S. Smoot and E. Hung: 03(*� 5HVHDUFK� DW� 8�&�� %HUNHOH\.
http://bmrc.berkeley.edu/projects/mpeg/, 1998.

[20] J. Seitz, N. Davies, M. Ebner and A. Friday: $�&25%$�EDVHG�3UR[\�$UFKL�
WHFWXUH� IRU�0RELOH�0XOWLPHGLD�$SSOLFDWLRQV. Second IFIP/IEEE International
Conference on Management of Multimedia Networks and Services MMNS'98,
Versailles, France, November 16–18, 1998.

[21] T. Urquhart: 1HWZRUN� DQG� 6HUYLFH� 0DQDJHPHQW� �� :K\� &25%$"�NOC'98 -
Third European Conference on Networks and Optical Communications, Man-
chester, UK, June 23–25, 1998.

[22] N.J. Yeadon, F. García, D. Hutchison and D. Shepherd:)LOWHUV��4R6�6XSSRUW
0HFKDQLVPV�IRU�0XOWLSHHU�&RPPXQLFDWLRQV. IEEE Journal on Selected Areas
in Communications 14(7), pp. 1245–1262, September 1996.

[23] N.J. Yeadon: 4XDOLW\� RI� 6HUYLFH�)LOWHULQJ� IRU� 0XOWLPHGLD� &RPPXQLFDWLRQ.
PhD-thesis. Computing Dept., Lancaster University, Lancaster, UK, 1996.

[24] B. Zenel and D. Duchamp: $�*HQHUDO� 3XUSRVH� 3UR[\�)LOWHULQJ�0HFKDQLVP
$SSOLHG� WR� WKH� 0RELOH� (QYLURQPHQW. Third annual ACM/IEEE International
Conference on Mobile Computing and Networking MobiCom'97, Budapest,
Hungary, September 26–30, 1997.

(c) 1999 IFIP

