
SCALABILITY OF PEER CONFIGURATION
MANAGEMENT IN PARTIALLY RELIABLE AND
AD HOC NETWORKS

Mark Burgess
Faculty of Engineering, Oslo University College, Norway
Mark.Burgess@iu.hio.no

Geoffrey Canright
Telenor Research, Fornebu, Oslo, Norway
Geoffrey.Canright@telenor.com

Abstract: Current interest in ad hoc and peer-to-peer networking technologies prompts a re-examin-
ation of models for configuration management, within these frameworks. In the future,
network management methods may have to scale to millions of nodes within a single or-
ganization, with complex social constraints. In this paper, we discuss whether it is possible
to manage the configuration of large numbers of network devices using well-known and
no-so-well-known configuration models, and we discuss how the special characteristics of
ad hoc and peer-to-peer networks are reflected in this problem.

Keywords: Configuration management, ad hoc networks, peer to peer.

1. Introduction
Configuration management is about ensuring that the operational state of a device

or host conforms to specifications lain down by a site policy. The configuration of a
host ensures its efficiency, correctness and security in performing its function. System
configuration is usually a specification of file or database contents, attributes, and pro-
cess or service characteristics, including access rights, software customization and so
on. A number of approaches has been devised for configuration management. For in-
stance, the IETF model of configuration management revolves traditionally around the
Simple Network Management Protocol (SNMP)[6]. This is read/write state based pro-
tocol for altering values in a management information database (MIB), and is used by
a number of commercial software products. The ‘Telecommunications Management
Network’ or TMN[12] is an alternative scheme designed for telecommunications net-
works and has a strong relationship with the OSI management model. These systems
use an abstraction based on the concept of ‘managed objects’. An different approach
is used by systems like cfengine[2] and PIKT[13], which use descriptive languages
to describe the attributes of many objects at the same time, and agents to enforce the
rules.

The ability to send or receive messages is crucial to configuration management of
network devices and hosts. Indeed, maintaining the configuration of hosts over time
has many features in common with the problem of information transmission over a
noisy channel[5]. Today, distributed systems sport a global geography, and are linked,

Mark Burgess and Geoffrey Canright

both conceptually and physically, by a network infra-structure. Passing messages from
one part of a system to another is subject to a plethora of uncertainties. For example,
SNMP uses an unreliable transport protocol UDP for communication; any configu-
ration scheme that relies on the availability of a resource or component at a specific
moment has only a limited chance of being carried out. Systems can be unavailable
due to power failures, physical breakages, absence of dependencies and so on. There is
thus an ad hoc element to network connectivity even in an ostensibly permanent infra-
structure. The additional complication of mobile services, with partial or intermittent
connectivity adds to this problem.

An ‘ad hoc’ network (AHN) is defined to be a networked collection of mobile hosts,
each of which has the possibility to route information. The union of those hosts forms
an arbitrary graph that changes with time. The nodes are free to move randomly;
thus the network topology may change rapidly and unpredictably. Clearly ad hoc
networks are important in a mobile computing environment, where hosts are partially
or intermittently connected to other hosts. While there has been some discussion of
de-centralized network management using mobile agents[15], the problem of mobile
nodes (and so strongly time-varying topology) has received little attention. However,
we will argue below that ad-hoc networks provide a useful framework for discussing
the problems surrounding configuration management in all network types, both fixed
and mobile. This should not be confused with the notion of ‘ad hoc management’[11],
which concerns randomly motivated and scheduled checks of the hosts.

The plan for our paper is as follows. We begin by outlining how reliability can
be discussed in terms of ad hoc connectivity in order to take advantage of its known
scaling properties. Then noting how peer to peer communication implies decentralized
policy, we estimate the required flow of configuration information as a function of the
number of hosts, for a number of management models, in order to determine their
scalability.

2. Availability of peers in a network
The probability that a host will be correctly configured is related to reliability of its

communication with a policy source. As a simplest case, we assume that the reliability
of each node and each link is independent of all others, so that the probabilities of
availability are all independent random variables. In general this is not true, since
some hosts/nodes depend on others for crucial services (e.g. the domain name service
(DNS)), but this should suffice to gauge orders of magnitude.

���������	��
��
�	���
A set of nodes or hosts is defined by a vector of probabilities

������
�������������! " ! "����#%$

, where
��&'�)(�+* " ! -,.$

is the probability that node
(

is available. If
the probabilities are 1, the hosts are said to be reliable, otherwise they are partially
reliable.

The nodes themselves may have any geographical location, and may be connected by
any means. The connectivity between the nodes is represented by a matrix.
���������	��
��
�	�0/

A network is defined by its adjacency matrix. By convention, the
adjacency matrix of a network or graph is a symmetric matrix with zero leading di-
agonal. Zeroes denote no connectivity, while a 1 means a connection. The notation1 � * $

distinguishes this (instantaneous) matrix, whose entries are binary-valued, from
the time-averaged matrix discussed below. Owing to access and routing controls, this
matrix need not be symmetrical in practice, but we shall not address that issue here.

Scalability of peer configuration management...

The properties of networks can be discussed in detail, using the adjacency matrix
representation (see for instance, ref. [14]). It is not our intention to go into excessive
detail here, but rather to distill a way of estimating the properties of networks. For
this, we choose to look at the average properties of the networks.

We define a simple measure of the availability of a service, transmitted within a
closed network, by an invariant scalar value � :
���������	��
��
�	���

The connectivity, � , of a network � , is the probability (averaged
over all pairs of nodes) that a message can be passed directly between any two nodes.� may be written as

� � *
, ��,�� * $

���� 1 ��
(1)

� has a maximum value of 1, when every node is connected to every other, and a
minimum value of zero when all nodes are disconnected.

For a fixed topology and time-independent node availabilities, � is a constant char-
acterizing the network. In general � is time-dependent; one then obtains a static figure
for the network by taking the long-time average.� �
	 ����
������� *� ��

&�� � � ��� & $ (2)

The utility of this measure is that it enables us to gauge and compare different network
configurations on equal terms. It is also the vehicle by which we can map the problem
of unreliable hosts in a fixed network onto a corresponding problem of reliable hosts
in an ad hoc network.

3. Ad hoc networks
Ad hoc networks are networks whose adjacency matrices are subject to a strong,

apparently random time variation. If we look at the average adjacency matrices, over
time, then we can represent the probability of connectivity in the network as an adja-
cency matrix of probabilities.

���������	��
��
�	���
An ad hoc network is represented by a symmetric matrix of proba-

bilities for adjacency. Thus the time average of the adjacency matrix (for, e.g., four
nodes) may be written as

� 1 	 ���� ! � �-� � �#" � �%$
� � � ! � �&" � �'$
�(" � �(" � ! �("'$
�)$ � �)$ � �)$*" !

+-,. (3)

An ad hoc network is therefore a partially reliable network.

To motivate our discussion further, we note that:/10 � �32 �54 �
A fixed network of partially-reliable nodes,

� &
, is equivalent to an ad

hoc network of reliable nodes, on average.

Mark Burgess and Geoffrey Canright� 2�� � � �
This is easily seen from the definition of the connectivity, using a matrix

component form:

, ��,�� * $-� � 	 � �
&�� � &'����& $ � 1 &�� � * $ 	 � � ����� $

� �
&�� � & � * $ � 1 &�� � � & � � $ 	 � � � * $ (4)

This concludes the proof.

The proof demonstrates the fact that one can move the probabilities (uncertainties)
for availability from the host vectors to the connectivity matrix and vice versa; for
example� � �

���
�("�� � � ! * *

* ! *
* * ! �

� � �
���
�("�� �

� *
*
* � � � ! � � � � � � � "

���'��� ! ��� �("
�("'��� �("-��� ! � � *

*
* �

Thus an array of hosts with reliability probabilities
� &

, is equivalent to an array of reli-
able hosts in an unreliable network, where the probability of communication between
them is the product of probabilities (assumed independent) from the reliability vector.

Superposed onto the routing problem is another problem of conceptual dependence.
One is not merely dependent on connectivity to provide a route for messages, but one
depends on trusted sources of information. Thus the arrows from source to receiver
are not merely bytes exchanged but authorized policy instructions. We shall consider
this issue below.

4. Peer to peer
The emergence of network file sharing applications such as Napster and Gnutella

has focused attention on an architecture known as peer-to-peer, whose aim is to pro-
vide worldwide access to information via a highly de-centralized network of ’peers’.

���������	��
��
�	�
	
A peer to peer network service is one in which each node, at its

own option, participates in or abstains from exchanging data with other nodes, over a
communications channel.

Peer to peer has a deeper significance than ad hoc file sharing. It is about the demo-
tion of a central authority, in response to the political wishes of those participating in
the network. This is an issue directly analogous to the policies used for configuration
management. In large organizations, i.e. large networks, we see a frequent dichotomy
of interest:

At the high level, one has specialized individuals who can paint policy in broad
strokes, dealing with global issues such as software versions, common security
issues, organizational resource management, and so on. Such issues can be
made by software producers, system managers and network managers.

At the local level, users are more specialized and have particular needs, which
large scale managers cannot address. Centralized control is therefore only a

Scalability of peer configuration management...

partial strategy for success. It must be supplemented by local know-how, in re-
sponse to local environmental issues. Managers at the level of centralized con-
trol have no knowledge of the needs of specialized groups, such as the physics
department of a university, or the research department of a company. In terms of
configuration policy, what is needed is the ability to accept the advice of higher
authorities, but to disregard it where it fails to meet the needs of the local en-
vironment. This kind of authority delegation is not catered for by SNMP-like
models. Policy based management attempts to rectify some of these issues[8].

What we find then is that there is another kind of networking going on: a social
network, superimposed onto the technological one. The needs of small clusters of
users override the broader strokes painted by wide area management. This is the need
for a scaled approach to system management[3].

5. Configuration management in ad hoc networks
Configuration management deals with the problem of establishing and maintaining

a policy conformant configuration on workstations and other hosts distributed around
a network. Policy is usually a set of rules and specifications about the software and re-
sources of each host, defined by a central authority and disseminated to the individual
hosts either on demand, or by common update.

Configuration management relies on two main things: i) the availability of trusted
resources to each networked host, including a policy � , and ii) the consistency of the
configuration specified by that policy. In an unpredictable environment one has poten-
tially several problems: Critical dependencies, including the policy itself, can become
unavailable or out of date; trust relationships are less certain if hosts cannot verify one
another’s’ identity, location or integrity. Thus security and verifiable control, within
specified time limits, are at stake.

Even in a fixed infrastructure network, with only partial connectivity, the availabil-
ity of the resources is open to uncertainty. This means that the ability to correctly
disseminate policy configuration is open to uncertainty. The framework of ad hoc net-
works thus encompasses a number of issues and offers a framework for discussing
configuration strategies in general. In recent times, there has been a move towards
self-configuring networks. Discovery protocols like JINI have to deal with the ad hoc
nature of networks, and the protocols themselves will need to take the uncertainties in
topology into account. Today, most protocols assume a fixed infra-structure.

One question that has been posed in this connection is whether a peer to peer strat-
egy, for disseminating configuration policy, could provide a way of spreading informa-
tion quickly about the network. If that were the case, then the temporary unavailability
of a node to a central resource would not necessarily imply its isolation from fresh,
critical data. This kind of data distribution has been discussed before[7] in connection
with the scalability of software distribution. On the down side, peer to peer reliance is
clearly an open invitation to engage in malicious activity.

6. Predictability and scaling
As networks grow, some configuration strategies do not scale well. They continue

to be used, however, by force of habit. We are interested in examining the scaling
properties of different configuration management schemes, especially in the context
of network models that look to the future of configuration management.

Mark Burgess and Geoffrey Canright

We consider a number of cases, in order of decreasing centralization, or increasing
delegation. Our basic ‘constitutive’ assumption is that there is a simple linear rela-
tionship between the probability of successful configuration and the rate(s) of com-
munication with the policy- and enforcement-source(s). We look only at the coarsest
averages over time, in order to determine the long-term behaviours of the models. We
consider a change of configuration (“charge") ��� to be proportional to an average
rate of information flow (current) � , over a time � � ; that is ��� � ��� � . This equa-
tion is valid when � represents the time-averaged flow over the interval. Since we are
interested in the limiting behaviour for long times, this is sufficient for our needs.

Now we apply this simple picture to configuration management for dynamic net-
works. We take the point of view of a ‘typical’ or ‘average’ host. It generates error in
its configuration at the (average) rate ���	�
� , and receives corrections at the rate ���
�	��
�� � .
Hence the rate of increase of error for the average node is:

����
�� � � � ���	��� � �����	��
�� � $�� � ���	��� � �����	��
�� � $ (5)

The Heaviside step-function is defined by
� ����$ � *

if
��� ! and

� �
��$ � ! if
��� � ! ,and signifies the fact that, if the repair rate exceeds the error rate, then (on average,

over long times) nothing remains outstanding and there is no net rise in configuration
error. Thus this averaged quantity is never negative.

If random errors and changes to configuration occur at a rate ���	��� and the configu-
ration agent is unavailable to correct them, then ����
�� � � ���	�
� . If this holds during a time
� � , the configuration falls behind by an amount:

�! #"�$�%�
 %�%
'&)(
� ��� $

� * �"�$�%�+,%�$�-� ���	��� $.
%/$0-�1 &32 %

4 &6587,5
��'5 * � $� � �-$

In the following we will use
�

to denote the average (over time, and over all nodes)
probability that configuration management information flow (repair current) is not
available to a node. This unavailability may come from either link or node unre-
liability. We can lump all the unreliability into the links (see above) and so write� � � * � � 1 &�� 	 $, where

� 1 &�� 	 denotes both time and node-pair average. Each node
then can only receive repair current during the fraction

� * � ��$
of the total elapsed

time.
The repair current is generated by two possible sources in our models: i) a remote

source, and ii) a local source. In each case, the policy can be transmitted and/or
enforced at a maximum rate given by the channel capacity of the source. We shall
denote the channel capacities by 9;: and 9!< for remote and local sources for clarity,
but we assume that 9 :>= 9 < , since source and target machines are often comparable,
if not identical. If the communication by network acts as a throttle on these rates,
then one can further assume that 9?: � 9!< . In any case, the weakest link determines
the effective channel capacity. Note that in the case of a confluence of traffic, as in
the star models below, the channel capacity will have to be shared by the incoming
branches. We now have a criterion for eventual failure of a configuration strategy. If
����
�� � �A@CB@ED � ! , the average configuration error will grow monotonically for all time,
and the system will eventually fail in continuous operation. Our strategy is then to
look at the scaling behaviour of ���F
�� � as the number of nodes

,
grows large.

Scalability of peer configuration management...

Table 1. Comparison of models from the viewpoint of the different dimensions: policy dissemination,
enforcement, freedom of choice, whether hosts can exchange chosen policy ideas with peers and how polit-
ical control flows. A ‘push’ model implies a forcible control policy, whereas ‘pull’ signifies the possibility
to choose. Model 3 lies between these two, in having the possibility but not the inclination to choose.

Model Application Enforcement Policy Policy Control
Topology Freedom Exchange Structure

1 Star Transmitted No No Radial push
2 Star Transmitted No No Radial push
3 Mesh Local No No Radial pull
4 Mesh Local Yes No Radial pull
5 Mesh Local Yes Yes Hierarchical pull
6 Mesh Local Yes Yes P2P pull

Star model
The traditional (idealized) model of host configuration is based on the idea of re-

mote management (e.g. using SNMP). Here one has a central manager who decides
and implements policy from a single location, and all networks and hosts are consid-
ered to be completely reliable. The manager must monitor the whole network, using
bi-directional communication. This leads to an

,�� *
ratio of clients to manager (see

fig 1). This first model is an idealized case in which there is no unreliability in any

Controller

Figure 1 Model 1: the star net-
work. A central manager main-
tains bi-directional communica-
tion with all clients. The links are
perfectly reliable, and all enforce-
ment responsibility lies with the
central controller.

component of the system. It serves as a point of reference.
The topology on the left hand side of fig 1 is equivalent to that on the right hand

side. We can assume a flow conservation of messages on average, since any dropped
packets can be absorbed into the probabilities for success that we attribute to the adja-
cency matrix. Thus the currents must obey Kirchoff’s law:

�������	� � � � � �	� � � ��
 � ��
 " ! � # (6)

The controller current cannot exceed its capacity, which we denote by 9�
 . We assume
that the controller puts out repair current at its full capacity (since the Heaviside func-
tion corrects for lower demand), and that all nodes are average nodes. This gives that
�����	��
�� � �����# . The total current is limited only by the bottleneck of queued messages
at the controller, thus the throughput per node is only

* + ,
of the total capacity. We

can now write down the failure rate in a straightforward manner:

����
�� � ��� ���	�
� � 9�
,�� � � ���	��� � 9�
,�� (7)

Mark Burgess and Geoffrey Canright

As
,����

, ����
�� � � ���	��� —that is, the controller contributes a vanishing repair current
per node. The system fails however at a finite

, � , ��� ����� � � 9�
 + ���	��� . This high-
lights the clear disadvantage of centralized control, namely the bottleneck in commu-
nication with the controller.

Star model in intermittently connected environment
The previous model was an idealization, and was mainly of interest for its simplic-

ity. Realistic centralized management must take into account the unreliability of the
environment.

In an environment with partially reliable links, a remote communication model
bears the risk of not reaching every host. If hosts hear policy, they must accept and
comply, if not, they fall behind in the schedule of configuration. Monitoring in dis-
tributed systems has been discussed in ref. [1].

Controller

Figure 2 Model 2: a star
model, with built-in unreliabil-
ity. Enforcement is central as in
Model 1.

The capacity of the central manager 9
 is now shared between the average number
of hosts

��, 	 that is available, thus

� �
�	��
�� � � 9
, � 1 &�� 	 � 9��, 	 (8)

This repair current can reach the host, and serve to decrease its policy error ��� , during
the fraction of time

� * � ��$
that the typical host is reachable. Hence we look at the net

deficit ��� accrued over one “cycle" of time � � , with no repair current for
� � � , and a

maximal current 9
 + ��, 	 for a time
� * � ��$ � � . This deficit is then

��� � � �-$ � � �	�
� � � ��
 � � �	�
� � 9�
��, 	 � � * � ��$ � � (9)

(here it is implicit that a negative ��� will be set to zero). Thus, the average failure
rate is

� �F
�� � � � �	��� �
 � � �	��� � 9�
��, 	 � � * � ��$ � � �	��� � 9�
,
(10)

(Again there is an implicit
�

function to keep the long-time average failure current pos-
itive.) This result is the same as for Model 1, the completely reliable star. This is be-
cause we assumed the controller was clever enough to find (with negligible overhead)
those hosts that are available at any given time, and so to only attempt to communicate
with them.

Scalability of peer configuration management...

This model then fails (perhaps surprisingly), on average, at the same threshold
value for

,
as does Model 1. If the hunt for available nodes places a non-negligible

burden on the controller capacity, then it fails at a lower threshold.

Mesh topology with centralized policy and local enforcement
The serialization of tasks in the previous models forces configuration ‘requests’

to queue up on the central controller. Rather than enforcing policy by issuing every
instruction from the central source, it makes sense to download a summary of the
policy to each host and empower the host itself to enforce it.

There is still a centrally determined policy for every host, but now each host carries
the responsibility of configuring itself. There are thus two issues: i) the update of
the policy and ii) the enforcement of the policy. A pull model for updating policy is
advantageous here, because every host then has the option to obtain updates at a time
convenient to itself, avoiding confluence contentions; moreover, if it fails to obtain the
update, it can retry until it succeeds. We ask policy to contain a self-referential rule
for updating itself.

The distinction made here between communication and enforcement is important,
because it implies distinct types of failure, and two distinct failure metrics: i) distance
of the locally understood policy from the latest version, and ii) distance of host config-
uration from the ideal policy configuration. In other words: i) communication failure,
and ii) enforcement failure.

Controller

Figure 3 Model 3. Mesh
topology. Nodes can learn the
centrally-mandated policy from
other nodes as well as from the
controller. Since the mesh topol-
ogy does not assure direct connec-
tion to the controller, each node is
responsible for its own policy en-
forcement.

The host no longer has to share any bandwidth with its peers, unless it is updating
its copy of the policy, and perhaps not even then, since policy is enforced locally and
updates can be scheduled to avoid contention.

Let ��� ����
 � � be the rate at which policy must be updated. This current is usually
quite small compared to � �	��� , and was neglected in the previous models. Based on the
two failure mechanisms present here, we break up the failure current into two pieces:
����
�� � � ����
�� � ��($
 ����
�� � �)(
($. The former term is

����
�� � ��($ � � ���	��� � 9!< $	��� ���	��� � 9!< $�� (11)

this term is independent of
,

and may be made zero by design. ����
�� � �)(
($ is still de-
termined by the ability of the controller to convey policy information to the hosts.
However, the load on the controller is much smaller since ��� ����
 � ��� � �	��� . Also, the
topology is a mesh topology. In this case the nodes can cooperate in diffusing policy
updates, via flooding (Note, flooding in the low-level sense of a datagram multicast
is not necessarily required, but the effective dissemination of the policy around the
network is an application layer flood.) .

Mark Burgess and Geoffrey Canright

The worst case—in which the hosts compete for bandwidth, and do not use flooding
over the mesh—is that, for large

,
, ����
�� � � � � ����
 � � . This is a great improvement over

the two previous models, since � � � ��
 � � � � �	��� . However note that this can be further
improved upon by allowing flooding of updates: the authorized policy instruction can
be available from any number of redundant sources, even though the copies originate
from a central location. In this case, the model truly scales without limit, i.e. ����
�� � � ! .There is one caveat to this encouraging result. If the (meshed) network of hosts is
truly an ad-hoc network of mobile nodes, employing wireless links, then connections
are not feasible beyond a given physical range � . In other words, there are no long-
range links: no links whose range can grow with the size of the network. As a result
of this, if the AHN grows large (at fixed node density), the path length (in hops)
between any node and the controller scales as a constant times

� ,
. This growth in

path length limits the effective throughput capacity between node and controller, in a
way analogous to the internode capacity. The latter scales as

* + � ,
[9, 10]. Hence, for

sufficiently large
,

, the controller and AHN will fail collectively to convey updates
to the net. This failure will occur at a threshold value defined by

� ��
�� � ��(
($ � ��� ����
 � � � 9�
� � , ��� �
��� � � ! � (12)

where � is a constant. The maximal network size
, ��� ����� � is in this case proportional

to � � ����	�	
���
����
�
—still considerably larger than for Models 1 and 2.

Mesh topology with partial host autonomy and local enforcement
As a variation on the previous model, we can begin to take seriously the idea of

distance from a political centre. In this model, hosts can choose not to receive policy
from a central authority, if it conflicts with local interests. Communication thus takes
the role of conveying ‘suggestions’ from the central authority, in the form of the latest
version of the policy. For instance, the central authority might suggest a new version
of widely-used software, but the the local authority might delay the upgrade due to
compatibility problems with local hardware. Local enforcement is now employed by
each node to hold to its chosen policy �

&
. Thus communication and enforcement use

distinct channels (as with Model 3); the difference is that each node has its own target
policy �

&
which it must enforce.

Controller

?
?

?

?

?

?

?

?

?

?

?

?

Figure 4 Model 4. As in Model
3, except the hosts can choose
to disregard or replace aspects of
policy at their option. Question
marks indicate a freedom of hosts
to choose.

Thus the communications and enforcement challenges faced by Model 4 are the
same (in terms of scaling properties) as for Model 3: i.e. ����
�� � is the same as that in

Scalability of peer configuration management...

Model 3. Hence this model can in principle work to arbitrarily large
,

. Model 4
is the model used by cfengine[2, 4]. The largest current clusters sharing a common
policy are known to be of order

* ! $ hosts, but this could soon be of order
* !�� , with

the proliferation of mobile and embedded devices.

Mesh, with partial autonomy and hierarchical coalition
An embellishment of Model 4 is to allow local groups of hosts to form policy

coalitions, that serve to their advantage. Such groups of hosts might belong to one
department of an organization, or to a project team, of even to a group of friends in
a mobile network. Once groups form, it is natural to allow sub-groups and thence a
generalized hierarchy of policy refinement through specialized social groups.

Controller

?

?

?

?

Figure 5 Model 5. Communi-
cation over a mesh topology, with
policy choice made hierarchically.
Sub-controllers (dark nodes) edit
policy as received from the central
controller, and pass the result to
members of the local group (as in-
dicated by dashed boxes). Ques-
tion marks indicate the freedom of
the controllers to edit policy from
above.

If policies are public then the scaling argument of Model 3 still applies since any
host could cache any policy; but now a complete policy must be assembled from sev-
eral sources. Once can thus imagine using this model to distribute policy so as to avoid
contention in bottlenecks, since load is automatically spread over multiple servers. In
effect, by delegating local policy (and keeping a minimal central policy) the central
source is protected from maximal loading. Specifically, if there are

�
sub-controllers

(and a single-layer hierarchy), then the effective update capacity is multiplied by
�

.
Hence the threshold

, ��� ����� � is multiplied (with respect to that for Model 3) by the
same factor. This model could be implemented using cfengine, with some creative
scripting.

Mesh, with partial autonomy and inter-peer policy exchange
The final step in increasing autonomy is the free exchange of information between

arbitrary hosts. Hosts can now offer one another information, policy or source ma-
terials in accordance with an appropriate trust model. In doing so, impromptu coali-
tions and collaborations wax and wane, driven by both human interests and possibly
machine learning. A peer-to-peer policy mechanism of this type invites trepidation
amongst those versed in control mechanisms, but it is really no more than a distributed
genetic algorithm. With appropriate constraints it could be made to lead to sensible
convergent behaviour, or to catastrophically unstable behaviour.

One example of such a collaborative network that has led to positive results is the
Open Source Community. The lesson of Open Source Software is that it leads to a
rapid evolution. A similar rapid evolution of policy could also be the result from such

Mark Burgess and Geoffrey Canright

Figure 6 Model 6. Free ex-
change of policies in a peer-
to-peer fashion; all nodes have
choice (dark). Nodes can form
spontaneous, transient coalitions,
as indicated by the dashed cells.
All nodes can choose; question
marks are suppressed.

exchanges. Probably policies would need to be weighted according to an appropriate
fitness landscape. They could include things like shared security fixes, best practices,
code revisions, new software, and so on. Until this exchange nears a suitable stationary
point, policy updates could be much more rapid than for the previous models. This
could potentially dominate configuration management behaviour.

This model has no centre. Hence it is, by design, scale-free: all significant inter-
actions are local. Therefore, in principle, if the model can be made to work at small
system size, then it will also work at any larger size.

We note however that Model 6, of all the models presented here, has the greatest
freedom to explore the space of possible policies. Hence an outstanding, and ex-
tremely nontrivial, question for this peer-to-peer model of configuration management
is: can such a system find ‘better’ policies than centralized systems?

7. Summary and conclusion
We have presented several models for configuration management on networks. Our

Models 3–6 depart from mainstream practice in various ways. The motivation for
considering these models is the perception that highly centralized systems are not well
adapted to networks that are too large, too heterogeneous, or too dynamic. Since
current and future networks are taking on more and more of these three qualities, it is
of interest to examine alternative models for configuration management.

We have held ourselves to a limited set of goals. The first of these is the defini-
tion of the models themselves. These models offer broad avenues for future research
in configuration management; variants of one (or several) of them are likely to be
important in future systems.

Our second goal has been to assess the scaling behaviour of these models with
respect to two criteria: communication of the current policy to the hosts, and enforce-
ment of the communicated policy. We have considered the various models’ ability to
meet these criteria, as the number of hosts

,
in the network grows large. We find, not

surprisingly, that the highly centralized systems suffer from a communications bottle-
neck that limits the size at which they can function effectively. De-centralizing one
or both of the two functions gives much better scaling behaviour—to the point that
all of the Models 3–6 can, in principle (with some qualifications), implement policy
communication and enforcement for very large systems.

Of course, de-centralization brings with it new problems, not addressed by the
centralized system: problems of trust, of the quality of chosen policies, and of con-
vergence to a stable regime. These new problems offer attractive issues for further

Scalability of peer configuration management...

research, due both to their intrinsic interest, and to their relevance to the future imple-
mentation of de-centralized network systems.

References
[1] H. Abdu, H. Lutfiya, and M. Bauer. A model for adaptive monitoring configurations. Proceedings of

the VI IFIP/IEEE IM conference on network management, page 371, 1999.

[2] M. Burgess. A site configuration engine. Computing systems (MIT Press: Cambridge MA), 8:309,
1995.

[3] M. Burgess. On the theory of system administration. Submitted to J. ACM., 2000.

[4] M. Burgess. Cfengine’s immunity model of evolving configuration management. Submitted to IEEE
Transactions on Software Engineering, 2002.

[5] M. Burgess. System administration as communication over a noisy channel. Proceedings of the 3nd
international system administration and networking conference (SANE2002), 2002.

[6] J. Case, M. Fedor, M. Schoffstall, and J. Davin. The simple network management protocol. RFC1155,
STD 16, 1990.

[7] A.L. Couch. Chaos out of order: a simple, scalable file distribution facility for intentionally het-
erogeneous networks. Proceedings of the Eleventh Systems Administration Conference (LISA XI)
(USENIX Association: Berkeley, CA), page 169, 1997.

[8] N. Damianou, N. Dulay, E.C. Lupu, and M. Sloman. Ponder: a language for specifying security and
management policies for distributed systems. Imperial College Research Report DoC 2000/1, 2000.

[9] P. Gupta and P.R. Kumar. The capacity of wireless networks. IEEE Trans. Info. Theory, 46(2):388–
404, 2000.

[10] J. Li, C. Blake, D.S.J. DeCouto, H.I. Lee, and R. Morris. Capacity of ad hoc wireless networks. Proc.
7th ACM Intl. Conf. on Mobile Computing and Networking, pages 61–69, 2001.

[11] J.P. Martin-Flatin. Push vs. pull in web-based network management. Proceedings of the VI
IFIP/IEEE IM conference on network management, page 3, 1999.

[12] M. Matsushita. Telecommunication management network. NTT Review, 3:117–122, 1991.

[13] R. Osterlund. Pikt: Problem informant/killer tool. Proceedings of the Fourteenth Systems Adminis-
tration Conference (LISA XIV) (USENIX Association: Berkeley, CA), page 147, 2000.

[14] D.B: West. Introduction to Graph Theory (2nd Edition). (Prenctice Hall, Upper Saddle River), 2001.

[15] M. Zapf, K. Herrmann, K. Geihs, and J. Wolfang. Decentralized snmp management with mobile
agents. Proceedings of the VI IFIP/IEEE IM conference on network management, page 623, 1999.

